
SUMMARY

Update the Material library classes related to themes,
to make them easier to understand and use.

Author: Hans Muller (@hansmuller)
Go Link: flutter.dev/go/material-theme-system-updates
Created: January 2020 / Last updated: January 2020

OBJECTIVE
This document describes changes to the Material library theme classes. We’ve considered
making sweeping updates to the theme classes before, however we were stymied by the need
to remain backwards compatible. We’re going to try again, given the new Flutter breaking
change policy and the tolerance for breaking changes that was shown in recent Flutter
developer surveys.

Here is what we’re trying to accomplish by updating Material’s theme support.

Migrate to the latest Material Design terms and parameters

Of course we’ve never stopped migrating Flutter, however in the past we’ve been particularly
cautious about changing APIs to match the latest Material terminology. Among the more difficult
changes we’re planning now: limiting the theme dependencies of each component to the overall
theme’s color scheme, text theme, and one component specific theme. We also plan to move to
the latest text style names in the text theme.

Easy to configure the appearance of all components of a particular type

This is the final push in an ongoing effort. A theme will be defined for each significant Material
component type and each of those themes will be a property of the overall theme.

PUBLICLY SHARED

https://github.com/flutter/flutter/wiki/Tree-hygiene#handling-breaking-changes
https://github.com/flutter/flutter/wiki/Tree-hygiene#handling-breaking-changes
https://docs.google.com/document/d/1LWfczhSPk3yE_mjfYQyammMSGOrmgXvLLEJvxdr_Rio/edit?ts=5e0fcead#bookmark=id.i2k39ywlbeym
https://docs.google.com/document/d/1LWfczhSPk3yE_mjfYQyammMSGOrmgXvLLEJvxdr_Rio/edit?ts=5e0fcead#bookmark=id.i2k39ywlbeym
https://api.flutter.dev/flutter/material/ColorScheme-class.html
https://api.flutter.dev/flutter/material/TextTheme-class.html
https://api.flutter.dev/flutter/material/TextTheme-class.html
https://api.flutter.dev/flutter/material/TextTheme-class.html

PUBLICLY SHARED

Easy to explain a component’s visuals in terms of the themes

The relationship between a component’s visual properties and the themes should be clear from
the component’s API doc. Similarly the impact of each visual property in a theme should be
clear from the theme’s API doc. New Flutter components do this better, see for example
ToggleButtons and ToggleButtonsTheme. Older components are sometimes relatively difficult to
understand, see for example the Material button widgets. In addition to improving
documentation, we’re going to regularize the APIs of the existing themes, so that they all
conform to a consistent, easily understood, pattern.

OVERVIEW
The following subsections motivate and describe two large projects that collectively address the
goals listed above. Both projects include breaking changes. The projects are covered in greater
depth in the “Design” section that follows.

Component Theme Normalization
The overall goal of this project is to “normalize” the definitions of all of the existing component
themes and to add new normalized component themes for components that don’t already have
them.

How Did We Get Here
In late 2015, the ThemeData class had 5 named parameters and 15 properties. There was no
overall growth plan.

class ThemeData {
ThemeData({
ThemeBrightness brightness: ThemeBrightness.light,
Map<int, Color> primarySwatch,
Color accentColor,
this.accentColorBrightness: ThemeBrightness.dark,
TextTheme text

})
final ThemeBrightness brightness;
final Color canvasColor;
final Color cardColor;
final Color dividerColor;
final Color hintColor;
final Color highlightColor;
final Color selectedColor;
final double hintOpacity;
final TextTheme text;
Color get primaryColor
TextTheme get primaryTextTheme
IconThemeData get primaryIconTheme
Color accentColor
ThemeBrightness accentColorBrightness;

}

PUBLICLY SHARED

https://api.flutter.dev/flutter/material/ToggleButtons-class.html
https://api.flutter.dev/flutter/material/ToggleButtonsTheme-class.html

PUBLICLY SHARED

Now, about four years later, ThemeData has 64 named parameters and 62 properties.

Of the 62 properties, 13 are generic values (they appear to apply to all widgets). For example
focusColor and hoverColor apply to nearly all of the components, although only when the
components are part of apps running on desktop platforms.

Another 21 properties are values that sound generic but only apply to a few components. For
example canvasColor is used for the background color in the Material, ProgressIndicator,
OutlineButton, and Dropdown menu widgets. ThemeData’s backgroundColor property is used
for the background color in the LinearProgressIndicator, the date and time pickers, the Stepper
widget, and the SnackBar widget.

And finally 28 of the properties are complex theme values. About 20 of the complex theme
values apply to just one type of Material component (so they are “component themes”). For
example the toggleButtonsTheme property applies to ToggleButtons. Some of the old theme
valued properties see very limited use. For example the accentIconTheme property is only used
by FloatingActionButton, and only its color attribute is used there.

The Interdependent ThemeData Problem
Complex dependencies are another aspect of the overall Material theme’s properties that can
make them difficult to understand and apply. Here’s just a small fragment of the ThemeData
constructor.

final bool isDark = brightness == Brightness.dark;
primarySwatch ??= Colors.blue;
primaryColor ??= isDark ? Colors.grey[900] : primarySwatch;
primaryColorBrightness ??= estimateBrightnessForColor(primaryColor);
primaryColorLight ??= isDark ? Colors.grey[500] : primarySwatch[100];
primaryColorDark ??= isDark ? Colors.black : primarySwatch[700];
toggleableActiveColor ??= isDark ? Colors.tealAccent[200] : (accentColor ?? primarySwatch[600]);
accentColor ??= isDark ? Colors.tealAccent[200] : primarySwatch[500];
canvasColor ??= isDark ? Colors.grey[850] : Colors.grey[50];
scaffoldBackgroundColor ??= canvasColor;
bottomAppBarColor ??= isDark ? Colors.grey[800] : Colors.white;
cardColor ??= isDark ? Colors.grey[800] : Colors.white;
dividerColor ??= isDark ? const Color(0x1FFFFFFF) : const Color(0x1F000000);

The origin of this implementation was a desire to just configure the theme to match the original
Material spec. As the importance of making custom themes grew, we began to move away from
adding individual generic properties with default values, and towards component-specific
“theme” valued properties, whose own properties were default null. The responsibility for
computing default values for visual properties moved from the themes to the components.

Although the newest Material components and their themes conform to the new approach, there
is considerable technical debt. Not all of the new component themes have been defined
consistently. There was a certain amount of “evolution” in their design, as they were added over
a considerable period of time. Thankfully the design has stabilized and in addition to moving
most of the theme’s remaining generic properties to component themes, we’re going to
“normalize” the existing ones.

PUBLICLY SHARED

PUBLICLY SHARED
Related issues: #22913, #9148.

Normalized Component Themes
A normalized component theme is one that applies to just one type of Material component. It
represents a collection of visual parameters, all of which are null by default. The component’s
widgets configure their visuals in terms of widget parameters (also null by default), and then
component theme properties, and then the overall theme’s text theme and color scheme. The
properties of the text theme and color scheme are guaranteed to have non-null values.

The ToggleButtons (implementation) widget is a good example of a component and its
normalized theme. See ToggleButtonsTheme, an inherited widget that’s configured with a
ToggleButtonsThemeData, as well as its test.

Here’s an outline of the pattern for a normalized theme in terms of a component called “Foo”
that’s represented by a widget of the same name.

● InheritedWidget FooTheme defines the Foo component theme. FooTheme’s constructor
has a FooThemeData parameter called data.

● FooThemeData defines the theme’s visual attributes. The class extends Diagnosticable,
it has a const constructor, and its properties are null by default.

● ThemeData has a FooThemeData property called fooTheme. Its value is const
FooThemeData() by default and it cannot be null.

● FooTheme.of(context) returns the nearest FooTheme’s data, otherwise it returns
Theme.of(context).fooTheme.

● Foo widgets compute defaults at build time based on (in priority order): Foo properties,
FooTheme.of(context), Theme.of(context).colorScheme and
Theme.of(context).textTheme, internal defaults.

This Foo example is probably more helpful than the previous outline.

ThemeData Cleanup
We’d like to gradually revise the ThemeData class until its contents are essentially just a
TextTheme, a ColorScheme, and a set of normalized component themes. Doing so would make
it much easier to configure custom themes because that’s all components (will) depend on. We
also plan to move to the latest text style names in the text theme, so that developers will have
an easier time with UI specs that have been written with the current terminology.

Another advantage of the work outlined here is that it will mesh nicely with Material Design
tools, like the Material Theme Builder.

Related issues: #36624, #65782, #66060.

Rename the TextTheme TextStyles

PUBLICLY SHARED

https://github.com/flutter/flutter/issues/22913
https://github.com/flutter/flutter/issues/9148
https://api.flutter.dev/flutter/material/ToggleButtons-class.html
https://github.com/flutter/flutter/blob/master/packages/flutter/lib/src/material/toggle_buttons.dart
https://api.flutter.dev/flutter/material/ToggleButtonsTheme-class.html
https://api.flutter.dev/flutter/material/ToggleButtonsThemeData-class.html
https://github.com/flutter/flutter/blob/master/packages/flutter/test/material/toggle_buttons_theme_test.dart
https://gist.github.com/HansMuller/9d9917bcd9f43327395a6b4800d8c557
https://github.com/flutter/flutter/pull/45745
https://material.io/resources/build-a-material-theme/
https://github.com/flutter/flutter/issues/36624
https://github.com/flutter/flutter/issues/65782
https://github.com/flutter/flutter/issues/66060

PUBLICLY SHARED
The names of the 13 text styles in the TextTheme class are based on the original Material spec.
In early 2018 a new set of names were introduced. It was particularly difficult to adopt the
implied API changes because among the text styles with new names was ‘body1’, which had
been renamed ‘body2’, and ‘body2’ which of course was now ‘body1’.

We took a run at making the changes in October 2018 (see #22330). In the end we decided to
just document the mapping from the old names to the new ones.

We’ve decided to finally tackle the problem, see #45745.

Deprecate/remove the accent properties
The Material Design spec no longer includes a color called ‘accent’. The ‘secondary’ color
scheme color is roughly equivalent. The overall theme’s accent properties are rarely used within
Flutter itself. For example the accentIconTheme is only used by FloatingActionButton and in that
case, it’s only used (in one expression) for the sake of backwards compatibility. The
accentColorBrightness property is only used by GridTile. We plan to replace component
dependencies on the accent properties with dependencies on component themes, and the
overall theme’s color scheme and text theme.

Color accentColor;
Brightness accentColorBrightness;
TextTheme accentTextTheme;
IconThemeData accentIconTheme;

The process for removing these properties will take a considerable amount of time because
they’ve been around since early versions of Flutter.

1. Remove dependencies - but not definitions - from Flutter.
2. When all of the accent properties dependencies have been removed, send a breaking

change announcement.
3. Deprecate the properties and constructor parameters.
4. Remove the deprecated properties and constructor parameters.

A little bit of work has been done on step 1, see #46923.

This proposal has been mirrored on GitHub: #56918.

Compute brightness, primaryColorBrightness, accentColorBrightness

Currently ThemeData has two obviously conflicting brightness values, ThemeData.brightness
and ThemeData.colorScheme.brightness. These values are redundant and they are not kept in
sync.

ThemeData's constructor uses the brightness value to configure many of the grab-bag colors
(see "Deprecate/move/remove the 21 grab-bag properties"). The brightness is also used to

PUBLICLY SHARED

https://github.com/flutter/flutter/pull/22330
https://api.flutter.dev/flutter/material/TextTheme-class.html
https://github.com/flutter/flutter/pull/45745
https://github.com/flutter/flutter/pull/46923
https://github.com/flutter/flutter/issues/56918

PUBLICLY SHARED
make the color of all the textTheme's text styles black for Brightness.light, white for
Brightness.dark.

We are evolving the Theme's colorScheme as the primary source of default material
components colors as well the overall theme's brightness.

This PR changes ThemeData.brightness to be a simple getter that returns
colorScheme.brightness:#56956. Specifying a brightness value is still allowed; it's applied to the
theme's colorScheme. Likewise for the brightness copyWith parameter.

The values of the other two brightness properties are computed if they're not specified.

primaryColorBrightness ??= estimateBrightnessForColor(primaryColor);
accentColorBrightness ??= estimateBrightnessForColor(accentColor);

Specifying these values requires the developer to understand how they'll be used (what
components depend on them), which is unlikely. Specifying these values implies that there isn't
a more direct way to configure the dependent components, which is also unlikely. It would be
simpler if they were read-only, i.e. they were not ThemeData constructor parameters.

The following sections describe how primaryColorBrightness and accentColorBrightness are
currently used and why they shouldn’t be.

AppBar
AppBar and AppBarTheme have a brightness parameter which can be used to override the
theme's primaryColorBrightness value. The brightness value is only used once, by the build
method, to decide if the system overlays (status bar, navigation bar) should be light or dark.

final Brightness brightness = widget.brightness
?? appBarTheme.brightness
?? theme.primaryColorBrightness;

final SystemUiOverlayStyle overlayStyle = brightness == Brightness.dark
? SystemUiOverlayStyle.light
: SystemUiOverlayStyle.dark;

The AppBar API probably should have provided an explicit overlayStyle parameter. It’s unlikely
a developer would intentionally create a ThemeData that specified a primaryColorBrightness
that was inconsistent with the primaryColor, just to override the AppBar’s overlay style.

TextField
On iOS, the keyboard's appearance can be modified a little with the keyboardAppearance
parameter, https://api.flutter.dev/flutter/material/TextField/keyboardAppearance.html which
defaults to the value of primaryColorBrightness. Overriding the Theme's primaryColorBrightness
isn't a sound way to get this effect since developers are unlikely to be aware of all of its
implications.

PUBLICLY SHARED

https://github.com/flutter/flutter/pull/56956
https://api.flutter.dev/flutter/services/SystemUiOverlayStyle-class.html

PUBLICLY SHARED

SearchDelegate
Defines the appearance of the page shown by showSearchPage(). The SearchDelegate's
appBarTheme method returns a ThemeData (rather than an AppBarTheme and see
https://github.com/flutter/flutter/issues/45498). By default it returns a copy of the current theme
with primaryColor set to white, and with primaryColorBrightness set to Brightness.light. This
example demonstrates why it's useful for ThemeData.copyWith() to include the
primaryColorBrightness property: copyWith doesn't update dependent properties, so if the
primaryColor is changed, then primaryColorBrightness must be changed too. If
primaryColorBrightness was always computed, this wouldn't be necessary.

GridTileBar
This class is very rarely used. Internally, it creates a Theme that overrides both accentColor and
accentColorBrightness. As noted above, if the accent (secondary) color's brightness was
computed, this would not be necessary.

final ThemeData darkTheme = ThemeData(
brightness: Brightness.dark,
accentColor: theme.accentColor,
accentColorBrightness: theme.accentColorBrightness,

);

Deprecate/move/remove the 21 grab-bag properties
Many of the colors in this section have been around for years and most of them are only used
by a handful of components. In most cases the colors should migrate to new or existing
component themes.

A considerable amount of TBD analysis will be needed for each property. It’s possible that
some/all of these colors will never be completely removed or deprecated.

Color backgroundColor;
Color bottomAppBarColor;
Color canvasColor;
Color cardColor;
Color cursorColor;
Color dialogBackgroundColor;
Color disabledColor;
Color dividerColor;
Color errorColor;
Color highlightColor;
Color hintColor;
Color indicatorColor;
Color unselectedWidgetColor;
Color buttonColor;
Color secondaryHeaderColor;
Color textSelectionColor;
Color textSelectionHandleColor;

PUBLICLY SHARED

PUBLICLY SHARED
Color scaffoldBackgroundColor;
Color selectedRowColor;
Color splashColor;
Color toggleableActiveColor;

Related issue: #33257.

DETAILED DESIGN

Component Theme Normalization Project
This subsection provides some additional detail about how the theme API will change per
component theme normalization. It is not a comprehensive list of every change, it’s just a more
detailed outline of the work. As the work proceeds, component by component, issues will be
created that cover all of the details.

The table below lists all 28 of the Material components or component categories, as they appear
in the current Material spec. Currently, the components correspond to about 90 Material library
widgets, and about 20 component themes. The linked sections that follow summarize the work
needed to normalize all of their component themes.

App bars: bottom App bars: top Backdrop

Banners Bottom Navigation Buttons

Buttons: floating action Cards Chips

Data tables Dialogs Dividers

Image Lists Lists Menus

Navigation Drawer Pickers Progress Indicators

Checkboxes Radio buttons Switches

Sheets: bottom Sheets: side Sliders

Snackbars Tabs Text fields

Tooltips

Currently there’s no Material library component.

PUBLICLY SHARED

https://github.com/flutter/flutter/pull/33257
http://material.io/components/

PUBLICLY SHARED

There are no themes for the components in this category yet.

The theme support needs significant work to make it conformant.

The theme support needs a modest amount of work to make it conformant.

The theme support is conformant or very close.

Related issues: #49154, #27979

App bars: bottom
Widget: BottomAppBar.

The widget API docs don't mention BottomAppBarTheme.

BottomAppBarTheme properties are null by default (good), but there's no
BottomAppBarThemeData.

ThemeData property is BottomAppBarTheme

Related issues: #48195.

App bars: top
Widgets: AppBar, SliverAppBar, FlexibleSpaceBar.

AppBarTheme properties are null by default (good), but there's no AppBarThemeData.

ThemeData property is AppBarTheme.

Related issues: #47166, #48195, #49430, #50606, #60792

Backdrop
Defined here: https://material.io/components/backdrop/

Although we’ve built backdrop components for various demo apps - see for example #15579 -
currently the Material library doesn’t include one and currently we don’t have plans to add this
widget to the Material library.

Banners
Widget: MaterialBanner

The widget API docs don’t mention MaterialBannerTheme.

MaterialBannerTheme and MaterialThemeData are conformant.

PUBLICLY SHARED

https://github.com/flutter/flutter/issues/49154
https://github.com/flutter/flutter/issues/27979
https://github.com/flutter/flutter/issues/48195
https://github.com/flutter/flutter/issues/47166
https://github.com/flutter/flutter/issues/48195
https://github.com/flutter/flutter/issues/49430
https://github.com/flutter/flutter/issues/50606
https://github.com/flutter/flutter/issues/60792
https://material.io/components/backdrop/
https://github.com/flutter/flutter/pull/15579

PUBLICLY SHARED

Bottom navigation
Widget: BottomNavigationBar

BottomNavigationBar and BottomNavigationBarTheme are conformant. See #54714.

Buttons
A detailed proposal about updating the button widgets and their theme system can be found
here: https://flutter.dev/go/material-button-system-updates and an additional GitHub on this
same topic here: #54776.

The remainder of this section summarizes the limitations of the origin buttons API.

Most of the issues raised here have been addressed by a new set of button widgets, see
#59702.

Widgets: RaisedButton, RawMaterialButton, FlatButton, MaterialButton, IconButton,
BackButton, CloseButton, OutlineButton, ToggleButtons, InkResponse, InkWell.

One bright spot: ToggleButtons already has a normalized theme. In fact it can be considered the
archetype for normalized component themes.

Related issues: #16488, #19623, #22745, #26180, #27461, #27979, #29556, #29728, #30047,
#32020, #37587, #38335, #38602, #38646, #38655, #41627, #44047, #43358, #45849,
#46715, #48299, #48299, #51144, #62882.

Updating ButtonTheme

Currently FlatButton, RaisedButton, and OutlineButton are all styled with ButtonTheme. In
addition to not conforming to the patterns described in the "Component Theme Normalization"
section, there are several problems with the way ButtonTheme currently works.

ButtonTheme's get methods compute the default values for the visual properties of all three
types rather than deferring to the components. In some cases they use the type of the get
method's MaterialButton parameter to compute the property. This makes it quite difficult to
explain the theme, or for apps to configure it.

Color getFillColor(MaterialButton button) {
final Color fillColor = button.enabled ? button.color : button.disabledColor;
if (fillColor != null)
return fillColor;

if (button is FlatButton || button is OutlineButton || button.runtimeType == MaterialButton)
return null;

if (button.enabled && button is RaisedButton && _buttonColor != null)
return _buttonColor;

PUBLICLY SHARED

https://github.com/flutter/flutter/pull/54714
http://flutter.dev/go/material-button-system-updates
https://github.com/flutter/flutter/issues/54776
https://github.com/flutter/flutter/pull/59702
https://github.com/flutter/flutter/issues/16488
https://github.com/flutter/flutter/issues/19623
https://github.com/flutter/flutter/issues/22745
https://github.com/flutter/flutter/issues/26180
https://github.com/flutter/flutter/issues/27461
https://github.com/flutter/flutter/issues/27979
https://github.com/flutter/flutter/issues/29556
https://github.com/flutter/flutter/issues/29728
https://github.com/flutter/flutter/issues/30047
https://github.com/flutter/flutter/issues/32020
https://github.com/flutter/flutter/issues/37587
https://github.com/flutter/flutter/issues/38335
https://github.com/flutter/flutter/issues/38602
https://github.com/flutter/flutter/issues/38646
https://github.com/flutter/flutter/issues/38655
https://github.com/flutter/flutter/issues/41627
https://github.com/flutter/flutter/issues/44047
https://github.com/flutter/flutter/issues/43358
https://github.com/flutter/flutter/issues/45849
https://github.com/flutter/flutter/issues/46715
https://github.com/flutter/flutter/issues/48299
https://github.com/flutter/flutter/issues/48299
https://github.com/flutter/flutter/issues/51144
https://github.com/flutter/flutter/issues/62882

PUBLICLY SHARED

switch (getTextTheme(button)) {
case ButtonTextTheme.normal:
case ButtonTextTheme.accent:
return button.enabled ? colorScheme.primary : getDisabledFillColor(button);

case ButtonTextTheme.primary:
return button.enabled
? _buttonColor ?? colorScheme.primary
: colorScheme.onSurface.withOpacity(0.12);

}
}

Similarly, it's quite difficult to configure ButtonTheme to just change the appearance of one type
of button. Like the textColor for FlatButtons or the pressed elevation for RaisedButtons.

ButtonThemes include a ButtonTextTheme (a misnomer) valued property, which according to
the enum's documentation affects the button's text color.

enum ButtonTextTheme {
normal, /// textColor is black or white depending on [ThemeData.brightness].
accent, /// textColor is the theme's accent color
primary, /// textColor is the theme's primary color

}

Sadly, it also changes the button's default padding, shape, fill color, splash color, and highlight
color. In many of these cases, the way the default is computed also depends on the type of the
ButtonTheme getter's button parameter.

All three button classes just configure a RawMaterialButton. A simpler, conforming, approach to
defining the ButtonTheme would be to define three themes: FlatButtonTheme,
RaisedButtonTheme, OutlineButtonTheme. These themes would - by and large - have the same
null-by-default properties:

Color color
Color textColor
TextStyle textStyle
Color highlightColor
Color splashColor
double elevation
EdgeInsetsGeometry padding
BoxConstraints constraints
ShapeBorder shape
Duration animationDuration

The color, textColor, and elevation properties could be defined with MaterialStates to enable
specifying different values for disabled, focused, hovered, pressed.

OutlineButtonTheme would get an additional borderSide property.

Buttons: floating action

PUBLICLY SHARED

PUBLICLY SHARED
Widget: FloatingActionButton.

FloatingActionButtonThemeData is conformant but there’s no FloatingActionButtonTheme class.
The ThemeData property is a FloatingActionButtonThemeData (good).

Related issues: #28138, #53502.

Cards
Widget: Card.

CardTheme properties are null by default (good), but there's no CardThemeData.

ThemeData property is CardTheme.

Chips
Widgets: Chip, RawChip, InputChip, ChoiceChip, FilterChip, ActionChip.

ChipTheme and ChipThemeData are conformant however the default ChipTheme constructed
by ThemeData includes non-null default values.

Data tables
Widgets: DataTable, PaginatedDataTable, DataColumn, DataRow, DataCell, TableRowInkWell,
GridTileBar.

DataTableTheme was added in #64316

Dialogs
Widgets: AboutDialog, Dialog, AlertDialog, SimpleDialogOption, SimpleDialog, ButtonBar.

DialogTheme should be called DialogThemeData.

Dividers
Widgets: Divider, VerticalDivider.

The widget API class doc doesn’t mention DividerTheme.

DividerTheme and DividerThemeData are conformant.

Image lists
There is no Flutter component yet, see https://material.io/components/image-lists/.

PUBLICLY SHARED

https://github.com/flutter/flutter/issues/28138
https://github.com/flutter/flutter/issues/53502
https://github.com/flutter/flutter/pull/64316

PUBLICLY SHARED

Lists
Widgets: RadioListTile<T>, SwitchListTile, AboutListTile, ExpansionTile, CheckboxListTile,
GridTile, ListTile, Scrollbar, ReorderableListView.

ListTileTheme is conformant, but there’s no ListTileThemeData and no ThemeData propety. It
also serves double duty as the theme for Drawer (by setting style to ListTileStyle.list) which is an
odd one-off.

Related issues: #42621, #17635 (comment)

Menus
Widgets: DropdownButton<T>, DropdownButtonFormField<T>, PopupMenuButton<T>,
DropdownMenuItem<T>, PopupMenuDivider, PopupMenuItem<T>,
CheckedPopupMenuItem<T>.

PopupMenuTheme and PopupMenuThemeData are conformant.

There is no theme for dropdown menus.

Navigation drawer
Widgets: Drawer, UserAccountsDrawerHeader, DrawerHeader.

Currently the drawer’s contents are wrapped with a ListTileTheme whose style is
ListTileStyle.drawer. It would probably be better to just have a DrawerTheme.

Pickers
Widgets: DayPicker, MonthPicker, YearPicker.

Currently there are no themes for the date and time pickers.

Progress indicators
Widgets: LinearProgressIndicator, CircularProgressIndicator, RefreshProgressIndicator,
RefreshIndicator.

ProgressIndicatorTheme was added in #81075.

Selection controls: Checkboxes
Widget: Checkbox.

PUBLICLY SHARED

https://github.com/flutter/flutter/issues/42621
https://github.com/flutter/flutter/issues/17635#issuecomment-650535819
https://github.com/flutter/flutter/pull/81075

PUBLICLY SHARED
There is no checkbox theme. Currently the widgets are configured in terms of the overall
theme’s toggleableActiveColor, unselectedWidgetColor, disabledColor, focusColor, and
hoverColor.

Related issues: #53420.

Selection controls: Radio buttons
Widget: RadioButton<T>.

There is no theme for RadioButtons. Currently they’re defined in terms of the overall theme’s
unselectedWidgetColor, disabledColor, toggleableActiveColor, focusColor, hoverColor.

Selection controls: Switches
Widget: Switch.

There is no theme for Switch. Currently some of the switch colors are defined in terms of the
overall theme’s toggleableActiveColor, hoverColor, focusColor.

Sheets: bottom
Widget: BottomSheet.

BottomSheetThemeData is conformant however there’s no BottomSheetTheme.

Sheets: side
Side sheets are just a feature of Scaffold, see
https://api.flutter.dev/flutter/material/Scaffold/endDrawer.html

Sliders
Widgets: RangeSlider, Slider.

SliderTheme and SliderThemeData are conformant.

Snackbars
Widgets: SnackBarAction, SnackBar.

SnackBarTheme and SnackBarThemeData are conformant.

There’s an open RFE, see #46599.

Tabs

PUBLICLY SHARED

https://github.com/flutter/flutter/issues/53420
https://api.flutter.dev/flutter/material/Scaffold/endDrawer.html
https://github.com/flutter/flutter/issues/46599

PUBLICLY SHARED
Widgets: Tab, TabBar, TabBarView, TabPageSelectorIndicator, TabPageSelector.

TabBarTheme should be called TabBarThemeData, etc.

Related issues: #69162.

Text fields
Widgets: TextField, InputDecorator, SelectableText, TextFormField, TextSelectionToolbar.

Related issues: #21385, #33183, #31169, #28228, #41382, #48287, #48882

Update InputDecorationTheme, InputDecorator
InputDecorationTheme should be called InputDecorationThemeData, etc, per “Normalized
Component Themes” above.

InputDecorator uses ThemeData primaryColor, accentColor, disabledColor, errorColor,
hintColor, iconTheme.color.

Current values for disabledColor are defined by InputDecorator.
// dark theme: 10% white (enabled), 5% white (disabled)
// light theme: 4% black (enabled), 2% black (disabled)
const Color darkEnabled = Color(0x1AFFFFFF);
const Color darkDisabled = Color(0x0DFFFFFF);
const Color lightEnabled = Color(0x0A000000);
const Color lightDisabled = Color(0x05000000);

Current values for errorColor and hintColor are defined by ThemeData.
errorColor ??= Colors.red[700];
hintColor ??= isDark ? const Color(0x80FFFFFF) : const Color(0x8A000000);

The default input color for input decorator icons is defined like this:
switch (themeData.brightness) {
case Brightness.dark:
return Colors.white70;

case Brightness.light:
return Colors.black45;

default:
return themeData.iconTheme.color;

}

These dependencies should be updated:

primaryColor => colorScheme.primary
accentColor => colorScheme.secondary
disabledColor => colorScheme.onSurface.withOpacity(0.38)
errorColor => colorScheme.error
iconColor => colorScheme.onSurface.withOpacity(0.80)

PUBLICLY SHARED

https://github.com/flutter/flutter/issues/69162
https://github.com/flutter/flutter/issues/21385
https://github.com/flutter/flutter/issues/33183
https://github.com/flutter/flutter/issues/31169
https://github.com/flutter/flutter/issues/28228
https://github.com/flutter/flutter/issues/41382
https://github.com/flutter/flutter/issues/48287
https://github.com/flutter/flutter/issues/48882
https://material.io/design/color/text-legibility.html#text-backgrounds
https://material.io/design/color/text-legibility.html#text-types

PUBLICLY SHARED

Add TextSelectionTheme

Please see flutter.dev/go/text-selection-theme, the design doc that supersedes the material in
this section. The remainder of this section should be viewed as historical background.

The default appearance of the text selection (handles, cursor, highlight) is intended to match the
platform. The material spec does not cover text selection, however both Android and iOS specs,
as well as Angular Material (though not listed in spec) match the border color by defaulting to
the primary color. The handle color on mobile is seen to default to the cursor color. In addition,
also on mobile, the highlight color seems to generally be based on primary with an opacity of
20-45% depending on the color, though there are many exceptions.

The Material text selection toolbar, text selection handles and menu are defined by
materialTextSelectionControls (in text_selection.dart).

The toolbar is just a row of FlatButtons, which inherit the current button theme. A
TextSelectionTheme class would enable configuring the appearance of FlatButtons in the
toolbar.

Currently, materialTextSelectionControls depends on ThemeData.textSelectionHandleColor:

textSelectionHandleColor ??= isDark ? Colors.tealAccent[400] : primarySwatch[300];

The Material SelectableText widget defines the appearance of selected text. Currently it
depends on 2 ThemeData properties:

textSelectionColor ??= isDark ? accentColor : primarySwatch[200];
cursorColor = cursorColor ?? const Color.fromRGBO(66, 133, 244, 1.0);

The cursor's width radius can not be configured with ThemeData, they default to 2 and const
Radius.circular(2) respectively.

These classes should defer to a new TextSelectionTheme.

Related issues: #42122, #39387, #37550, #46238, #61227.
Related proposal: Change default textSelectionHandleColor to accentColor

Update TextField
TextField depends on ThemeData errorColor, cursorColor, and textSelectionColor. These
dependencies should be updated as outlined in the previous sections.

The new text field theme, TextInputTheme, is #61008.

Related issues: #44100.

Tooltips

PUBLICLY SHARED

https://flutter.dev/go/text-selection-theme
https://material.io/components/text-fields/
https://material.io/develop/ios/components/textfields/
https://material.io/develop/ios/components/textfields/
https://material.angular.io/components/form-field/overview
https://github.com/flutter/flutter/blob/master/packages/flutter/lib/src/material/text_selection.dart
https://github.com/flutter/flutter/issues/42122
https://github.com/flutter/flutter/issues/39387
https://github.com/flutter/flutter/issues/37550
https://github.com/flutter/flutter/issues/46238
https://github.com/flutter/flutter/issues/61227
http://flutter.dev/go/change-default-textselectionhandlecolor-to-accentcolor
https://github.com/flutter/flutter/pull/61008
https://github.com/flutter/flutter/issues/44100

PUBLICLY SHARED
Widget: Tooltip.

TooltipTheme and TooltipThemeData are conformant.

Other Material Components
The Material library contains several components that are no longer defined by the Material
spec. Most of them can still be found here: https://material.io/archive/guidelines/components/.

There are no themes for these components.

Stepper
Widgets: Stepper, Step.

Expansion panel
Widgets: ExpansionPanel, ExpansionPanelRadio, ExpansionPanelList.

Mergeable Material
Widgets: MergeableMaterial, MaterialSlice, MaterialGap.

SearchBar
TBD and highly requested, see #9784, #17119.

PUBLICLY SHARED

https://material.io/archive/guidelines/components/
https://github.com/flutter/flutter/issues/9784
https://github.com/flutter/flutter/issues/17119

