
Top Control Initiated Resizes 
bokan@chromium.org 

tl;dr 
Chrome resizes the initial containing block(ICB) in response to the top controls, meaning 
elements with % heights or vh units get resized as a result of scrolling. We should match Safari 
here and make it static (pos:fixed elements should still resize), matching the viewport size with 
top controls showing. 
 
Additionally, we should consider removing the Resize event and changing the timing of the 
resize to happen on top controls hitting their extent, rather than touch-end. 

Background 
 
On page load, the top controls (aka “The URL bar”) start off shown. If the page is scrollable, and 
the user scrolls down, the top controls will begin to hide, as if they’re attached to the content. 
Scrolling the page up brings the top controls back in. This means the amount of height available 
to the page changes as the top controls are shown and hidden. 
 
However, there’s two notions of height here: the content height the user sees (this changes as 
the top controls hide/show), and the layout height the page sees. Resizing the page can be a 
costly operation since it typically means we have to perform a layout. Also, the page may have a 
long running resize handler. For these reasons, we don’t tell the page about the resize 
continuously during the scroll. Only when the user lifts their finger, and the top controls are 
either fully shown or fully hidden, will we resize the initial containing block (ICB) from which the 
page gets its layout size and send a resize event. During the scroll, we simply adjust of the 
height of the clipping layer, showing more or less of the page content to the user. 
 
An added complication is position: fixed elements fixed to the bottom of the screen. Until we 
give the page the new height and perform a layout, simply adjusting the clipping layer means 
that the bottom fixed element wouldn’t stay fixed in place as expected. We compensate for this 
with a small hack that nudges bottom fixed elements up or down, depending on the top controls 
position. This makes them appear to stay stuck to the page bottom. 
 

Problems 
 



Constantly resizing the page is jarring to users and gives an impression of poor performance - 
particularly as the page is loading; adding a resize and layout just adds to the load-time jank. 
Since we don’t resize the page continuously during the scroll, there’s an effect where the user 
lifts their finger and the page starts moving around (while we do layout). This is surprising to the 
user (“the top controls may have been hidden a while ago, why is the page going nuts?”) and in 
the worst case can cause them to lose their place. 
 
For developers, dealing with top controls can be difficult and restricts how they build their pages. 
For example, while it sounds like nice design to be able to peg the font size to the viewport size, 
doing so is currently impractical since every time the user scrolls in a new direction, the text will 
change size(bug). Also, developers don’t expect frequent resize messages, particularly on 
mobile devices. This leads to surprising behaviour and/or janky pages. 

What do other browsers do? (Notes) 
Tested mostly on http://bokan.ca/resize.html 

Safari 
Safari has both a bottom and top control bars. They don’t fully hide but shrink on scrolls to 
smaller versions of themselves. 
 
Resize events fire as soon as the top controls hit their full shrunk/expanded state but before the 
touch end. 
 
Percentage based heights relative to body don’t change at all! 
document.documentElement.clientHeight remains constant. Seems like the ICB doesn’t change 
size and is based on height with top controls shown. Strange that they send a resize at all. 
 
Pos:fixed elements do change height. They disappear (strange!) when the controls are fully 
hidden, reappear with new height after touchend. Bottom fixed are counter scrolled like Chrome 
until disappearance. 

IE 
IE has a static URL bar that doesn’t change size 

Firefox 
Doesn’t fire resize events at all. (For top control resizes) 
 
Non fixed elements with percentage heights remain constant. Like Safari, the ICB also looks 
static except that they use the height with top controls hidden. 
 

https://dev.opera.com/articles/css-viewport-units/
http://crbug.com/428132
http://crbug.com/510938
https://loren.exposure.co/spring-in-zion


Pos:fixed elements are resized to match the new height as soon as the top controls hit fully 
shown/hidden. Bottom fixed elements are counter scrolled like like Chrome. 
 

Summary 

 IE Chrome Safari Firefox Chrome 
Proposed 

Resize Event Timing N/A Touchend Top 
Controls Hit 
Extent 

No Resize 
Event 

Touchend 

ICB Size 
(documentElement.client
Height) 

N/A Dynamic - 
based on 
visual 
viewport* - 
changed on 
touchend 

Static - 
smallest 
possible 
viewport 
(i.e. 
controls 
showing) 

Static - 
largest 
possible 
viewport 
(i.e. 
controls 
hidden**) 

Static - 
smallest 
possible 
viewport 

window.{inner|outer}Heig
ht 

N/A Dynamic - 
based on 
visual 
viewport* - 
changed 
during 
scroll 

Dynamic - 
based on 
visual 
viewport* - 
changed 
during 
scroll 

Static - 
largest 
possible 
viewport 

Dynamic - 
based on 
visual 
viewport 

Pos: fixed elements 
resize timing 

N/A Touch End Touch End Top 
Controls Hit 
Extent 

Touch End 

pos: fixed height based 
on 

N/A Visual 
Viewport* 

Visual 
Viewport* 

Visual 
Viewport* 

Visual 
Viewport 

vh units relative to N/A ICB Static - 
Largest 
possible 
viewport 

ICB Static - 
smallest or 
largest 
possible 
viewport? 

*Visual Viewport here means the size of the content area, not including the top controls if they’re showing 
**If possible. If the page is non-scrollable, the controls don’t hide and the ICB doesn’t include the top 
controls height. Hence, “largest possible”. 



Proposal 
Here’s some changes I think would make this area more rational and interoperable: 
 

1.​ Having a static ICB size would make developer’s lives easier and improve performance 
on a subset of pages. The question is which size to use (the one with top controls 
showing or hidden). Sizing the ICB to the page with controls showing will make the initial 
page look more correct. We’d also be compatible with Safari which is a plus. This point is 
the most important and should be fairly non-controversial given we’re the only ones that 
do it. 
 
A side effect of this is that elements with percentage based heights relative to the root 
element may not reflect the viewport when the top controls are hidden. For example, if 
we have a position: absolute; height: 100% element, it will fill the viewport when the 
page first loads. However, when we hide the top controls we won’t resize the ICB so the 
element will now be shorter than the viewport by the amount of the top controls. Position: 
fixed elements with height 100% will resize as expected though (which is a natural 
consequence of their containing block directly being the viewport: see 
http://www.w3.org/TR/CSS21/visudet.html#containing-block-details). 
 

2.​ Don’t send a resize event. IMO, if we’re not changing the ICB then we shouldn’t fire a 
resize. This might be controversial and we’d diverge from Safari here. On the other 
hand, I only rarely see bad resize handlers so this probably isn’t as big a deal. 

 
3.​ Resize event (if we do keep it) and pos:fixed resize should happen on Top Controls 

hitting their extent. Safari’s resize event and pos:fixed resize timing are inconsistent here 
and make no sense. This is more of a UX concern than compatibility and developer pain. 

 
 
 

http://www.w3.org/TR/CSS21/visudet.html#containing-block-details

	Top Control Initiated Resizes 
	tl;dr 
	Background 
	Problems 
	What do other browsers do? (Notes) 
	Safari 
	IE 
	Firefox 

	Proposal 


