Citations to optically levitated nanodiamond

  1. Probing millicharged particles with ultrasensitive optical nonlinear sensor based on levitated cavity optomechanics, Jian Liu, Ka-Di Zhu, arXiv:1710.03374
  2. Displacemon electromechanics: how to detect quantum interference in a nanomechanical resonator, Kiran E. Khosla, Michael R. Vanner, Natalia Ares, Edward A. Laird, arXiv:1710.01920
  3. Lei-ming Zhou, Ke-wen Xiao, Zhang-qi Yin, Jun Chen, Nan Zhao*, "Sensitivity of Displacement Detection for a Particle Levitated in the Doughnut Beam", arXiv:1709.07177.
  4. Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals, A. T. M. Anishur Rahman & P. F. Barker, Nature Photonics 11, 634–638 (2017).
  5. Rui-xia Wang, Kang cai, Zhang-qi Yin*, Gui-lu Long*, “Quantum memory and non-demolition measurement of single phonon state with nitrogen-vacancy centers ensemble”, arXiv:1705.10954.
  6. Conditional displacement interaction in ultrastrong-coupling regime, Gangcheng Wang, Qingyong Wang, Yimin Wang, Jing-Ling, Kang Xue, Chunfeng Wu, arXiv:1708.04371
  7. Junkai Dong, YiMing Chen, Da Xu*, Zhang-qi Yin*, “Greenberger-Horne-Zeilinger test for multi-dimension and arbitrary time nodes entangled histories”, accepted for Sci. Bull., arXiv:1610.04296.
  8. Diamonds levitating in a Paul trap under vacuum: Measurements of laser-induced heating via NV center thermometry, T. Delord, L. Nicolas, M. Bodini, and G. Hétet, Appl. Phys. Lett. 111, 013101 (2017)
  9. Entanglement Dynamics for Two Spins in an Optical Cavity---Field Interaction Induced Decoherence and Coherence Revival, Xue-Min Bai, Chun-Ping Gao, Jun-Qi Li, Ni Liu, J.-Q. Liang,  arXiv:1707.00851
  10. Parametric Feedback Cooling of Levitated Optomechanics in a Parabolic Mirror Trap, Hendrik Ulbricht, Jamie Vovrosh, Muddassar Rashid, David Hempston, James Bateman, and Mauro Paternostro, JOSA B  in pressing.
  11. Bykov, Dmitry. "Flying particles inside hollow-core photonic crystal fibres and their applications." PhD thesis,
  12. Magnetometry via spin-mechanical coupling in levitated optomechanics, Pardeep Kumar, M. Bhattacharya, arXiv:1705.07453
  13. In-situ tuning of whispering gallery modes of levitated silica microspheres, Yosuke Minowa,Yuusuke toyota,Masaaki Ashida, JOSA B, in pressing.
  14. Title:Coherent control of a single nitrogen-vacancy center spin in optically levitated nanodiamond; Authors:Robert Pettit,Levi Neukirch,Nickolas Vamivaka; Journal of the Optical Society of America B, in pressing
  15. Bistability and squeezing the librational mode of an optically trapped nanoparticle, Ke-Wen Xiao, Nan Zhao, and Zhang-qi Yin*, arXiv:1705.00114.
  16. On-chip quantum tomography of mechanical nano-scale oscillators with guided Rydberg atoms; A. Sanz-Mora, S. Wüster, J.-M. Rost; arXiv:1703.10869
  17. A levitated nanocryostat:  Laser refrigeration, alignment and rotation of Yb 3+ :YLF nanocrystals; A.  T.  M.  Anishur  Rahman  &  P.  F.  Barker; arXiv:1703.07155
  18. Shengyan Liu, Tongcang Li*, Zhang-qi Yin*, “Coupling the librational and translational motion of a levitated nano-particle with an optical cavity”, submitted.
  19. Electromagnetically induced transparency in optical microcavities; Yong-Chun Liu/ Bei-Bei Li/ Yun-Feng Xiao; Nanophotonics, 2017, DOI:
  20. Strong coupling between a single NV spin and the torsional mode of diamonds levitating in an ion trap,T. Delord, L. Nicolas, Y. Chassagneux, G. Hétet,arXiv:1702.00774
  21. Macroscopic non-classical state preparation via post-selection; Víctor Montenegro, Raúl Coto, Vitalie Eremeev, Miguel Orszag; arXiv:1612.03198
  22. Hybrid quantum device with a carbon nanotube and a flux qubit for dissipative quantum engineering; Xin Wang, Adam Miranowicz, Hong-Rong Li, Franco Nori;  arXiv:1612.00942
  23. Kang Cai, Rui-Xia Wang, Zhang-qi Yin*, Gui-Lu Long*, “Strong coupling between electrons spins and mechanical oscillator through the second order magnetic field gradient”,  arXiv:1610.09922.
  24. Yue Ma, Thai M. Hoang, Ming Gong*, Tongcang Li*, and Zhang-qi Yin*, “Quantum many-body simulation and torsional matter-wave interferometry with a levitated nanodiamond”, arXiv:1611.05599.
  25. Hsu, Jen-Feng. Cooling the Center-of-Mass Motion of a Diamond Nanocrystal in a Magneto-Gravitational Trap. Diss. University of Pittsburgh, 2016.
  26. Qizhe Hou, Wanli Yang*, Changyong Chen, and Zhangqi Yin*, “Generation of macroscopic Schrodinger cat state in diamond mechanical resonator”, Scientific Reports 6, 37542 (2016).
  27. Optical Levitation of Nanodiamonds by Doughnut Beams in Vacuum; Lei-Ming Zhou, Ke-Wen Xiao, Jun Chen, Nan Zhao; arXiv:1609.08678
  28. Qizhe Hou, Wanli Yang*, Changyong Chen, Zhangqi Yin*, "Electromagnetically induced acoustic wave transparency in diamond mechanical resonator", accepted for JOSAB.
  29. Topical Review: Spins and mechanics in diamond, Donghun Lee, Kenneth W. Lee, Jeffrey V. Cady, Preeti Ovartchaiyapong, Ania C. Bleszynski Jayich;  arXiv:1609.00418
  30. Zhang-qi Yin*, Tongcang Li*, “Bringing quantum mechanics to life: from Schrodinger's cat to Schrodinger's microbe”, invited review, in preparing.
  31. Optical levitation of high purity nanodiamonds in vacuum without heating; A. C. Frangeskou, A. T. M. A. Rahman, L. Gines, S. Mandal, O. A. Williams, P. F. Barker, G. W. Morley;  arXiv:1608.04724
  32. Single and two-mode mechanical squeezing of an optically levitated nanodiamond via dressed-state coherence; Wenchao  Ge  and  M.  Bhattacharya; arXiv:1606.07054
  33. Hybrid quantum device with NV centers in diamond coupled to carbon nanotubes; Peng-Bo Li, Ze-Liang Xiang, Peter Rabl, Franco Nori;  arXiv:1606.02998
  34. Xia, Keyu, and Jason Twamley. "Generating giant spin squeezing states and GHZ entanglement using a hybrid phonon-spin ensemble in diamond." arXiv preprint arXiv:1605.03693 (2016).
  35. An efficient cooling of the quantized vibration by a four-level configuration; Lei-Lei Yan, Jian-Qi Zhang, Shuo Zhang, Mang Feng; arXiv:1605.07772
  36. Thai M. Hoang, Yue Ma, Jonghoon Ahn, Jaehoon Bang, F. Robicheaux, Zhang-Qi Yin*, and Tongcang Li*, “Torsional optomechanics of a levitated nonspherical nanoparticle”,  arXiv:1605.03990.
  37. Nanoelectromechanical diamond structures in quantum informatics. Part II; A. V. Tsukanov; Russian Microelectronics, May 2016, Volume 45, Issue 3, pp 153-166
  38. Li Z F, Li P B, Li F L. Entangling a single NV centre with a superconducting qubit via parametric couplings between photons and phonons in a hybrid system[J]. Journal of Modern Optics, 2016: 1-7.
  39. Proposal for a quantum delayed-choice experiment with a spin-mechanical setup; Peng-Bo Li, Fu-Li Li; arXiv:1605.00935
  40. Strong coupling optical spectra in dipole-dipole interacting optomechanical Tavis-Cummings models; Imran Mirza; Optics Letters, received 03/29/2016; accepted 04/26/2016; posted 04/27/2016; Doc. ID 261971
  41. Cooling the Motion of Diamond Nanocrystals in a Magneto-Gravitational Trap in High Vacuum; Jen-Feng Hsu, Peng Ji, Charles W. Lewandowski, Brian D'Urso;  arXiv:1603.09243
  42. Charge state dynamics of the nitrogen vacancy center in diamond under 1064 nm laser excitation; Peng Ji, M. V. Gurudev Dutt; arXiv:1603.08066
  43. Method for observing robust and tunable phonon blockade in a nanomechanical resonator coupled to a charge qubit; Xin Wang, Adam Miranowicz, Hong-Rong Li, Franco Nori; arXiv:1603.07546
  44. Controlling the Motion of a Nanoparticle Trapped in Vacuum; Jamie Vovrosh, Muddassar Rashid, David Hempston, James Bateman, Hendrik Ulbricht; arXiv:1603.02917
  45. Zeptonewton force sensing with nanospheres in an optical lattice; Gambhir Ranjit, Mark Cunningham, Kirsten Casey, Andrew A. Geraci;  arXiv:1603.02122
  46. Burning and graphitization of optically levitated nanodiamonds in vacuum; A. T. M. A. Rahman, A. C. Frangeskou, M. S. Kim, S. Bose, G. W. Morley & P. F. Barker; Scientific Reports 6, Article number: 21633 (2016) doi:10.1038/srep21633
  47. Entanglement dynamics of Nitrogen-vacancy centers spin ensembles coupled to a superconducting resonator, Yimin Liu,  and Jiabin You; Sci. Rep. 6, 21775; doi: 10.1038/srep21775 (2016).
  48. Yue Ma, Zhang-qi Yin*,  Pu Huang, W. L. Yang, and Jiangfeng Du*, “Cooling Mechanical Resonator to Quantum Regime by Heating it”,  arXiv:1603.05807.
  49. Montenegro Tobar, V. A. Quantum Entanglement and Networking with Spin-Optomechanics. Diss. UCL (University College London), 2015.
  50. Ge, Wenchao. Quantum states preparation in cavity optomechanics. Diss. Texas A&M University, 2015.
  51. Optomechanics based on angular momentum exchange between light and matter,Hao Shi, Mishkat Bhattacharya, arXiv:1512.08989
  52. Generation of macroscopic Schrödinger's cat states in qubit-oscillator systems; Jie-Qiao Liao, Jin-Feng Huang, Lin Tian,  arXiv:1512.08536
  53. Qidong Xu, W. L. Yang*, Zhang-qi Yin*, “Phonon induced two-mode squeezing of nitrogen-vacancy-center ensembles”, arXiv:1512.08605.
  54. Free Nano-Object Ramsey Interferometry for Large Quantum Superpositions; C. Wan, M. Scala, G. W. Morley, ATM. A. Rahman, H. Ulbricht, J. Bateman, P. F. Baker, S. Bose, M. S. Kim,  arXiv:1511.02738
  55. Progress Toward a Spin-Optomechanics Platform With Vacuum Levitated Nanodiamonds; Levi Neukirch, Eva von Haartman, Jessica Rosenholm, and Nick Vamivakas; Frontiers in Optics 2015 San Jose, California United States 18–22 October 2015
  56. Observation of vacuum-enhanced electron spin resonance of levitated nanodiamonds; Thai M. Hoang, Jonghoon Ahn, Jaehoon Bang, Tongcang Li; arXiv:1510.06715
  57. Tongcang Li* and Zhang-Qi Yin*, “Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator”, arXiv:1509.03763.
  58. Optomechanics: Diamonds take off; Klemens Hammerer  & Markus Aspelmeyer;         Nature Photonics 9, 633–634 (2015).
  59. Nagornykh P. Cooling and Stabilization of Graphene Nanoplatelets in High Vacuum. PhD thesis, University of Maryland, 2015.
  60. Lombardo, D. and Twamley, J. Deterministic Creation of Macroscopic Cat States. Sci. Rep. 5, 13884; doi: 10.1038/srep13884 (2015).
  61. Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond; Levi P. Neukirch,  Eva von Haartman, Jessica M. Rosenholm & A. Nick Vamivakas;         Nature Photonics (2015) doi:10.1038/nphoton.2015.162
  62. Title: Tolerance in the Ramsey interference of a trapped nanodiamond; C. Wan, M. Scala, S. Bose, A. C. Frangeskou, ATM A. Rahman, G. W. Morley, P. F. Barker, M. S. Kim;  arXiv:1509.00724
  63. Title: Generation of broadband two-mode squeezed light in cascaded double-cavity optomechanical systems; Zhen Li, Sheng-li Ma, and Fu-li Li; Phys. Rev. A 92, 023856 (2015).
  64. Title: Loading an Optical Trap with Diamond Nanocrystals Containing Nitrogen-Vacancy Centers from a Surface; Authors: Jen-Feng Hsu, Peng Ji, M. V. Gurudev Dutt, Brian R. D'Urso; Source:  arXiv:1506.08215
  65. Liao J Q, Law C K, Kuang L M, et al. Enhancement of mechanical effects of single photons in modulated two-mode optomechanics[J]. Physical Review A, 2015, 92(1): 013822.
  66. Title: Large quantum superpositions of a nanoparticle immersed insuperfluid helium; Authors: O. Lychkovskiy; Source: arXiv:1504.00682
  67. Title: Real-time emission spectrum of a hybrid atom-optomechanical cavity; Author: Imran M. Mirza; Source:  Journal of the Optical Society of America B Vol. 32, Issue 8, pp. 1604-1614 (2015), arXiv:1504.00443
  68. Albrecht, Andreas. "Controlled Quantum Dynamics of Nitrogen Vacancy Centers in Diamond.", PhD Thesis, Institute of Theoretical Physics,University of Ulm, 2015
  69. Title: Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities; Authors: Peng-Bo Li, Yong-Chun Liu, Shao-Yan Gao, Ze-Liang Xiang, Peter Rabl, Fu-Li Li, and Yun-Feng Xiao; Source: arXiv:1503.02437
  70. Zhang-qi Yin, Zhao Nan, Tongcang Li, "Hybrid opto-mechanical systems with nitrogen-vacancy centers" (review), submitted to SCIENCE CHINA Physics, Mechanics & Astronomy, arXiv:1501:00636.
  71. Title: Macroscopic optomechanical superposition via periodic qubit flipping; Authors: Wenchao Ge and M. Suhail Zubairy; Source: Phys. Rev. A 91, 013842 (2015)
  72. Title: Cold atoms as a coolant for levitated optomechanical systems; Authors: Gambhir Ranjit, Cris Montoya, Andrew A. Geraci; Source: Phys. Rev. A 91 013416 (2015), arXiv:1412.5503
  73. Levi P. Neukirch & A. Nick Vamivakas (2014): Nano-optomechanics with optically levitated nanoparticles,Contemporary Physics, DOI:10.1080/00107514.2014.969492
  74. Title: Testing quantum gravity by nanodiamond interferometry with nitrogen-vacancy centers; Authors: Andreas Albrecht, Alex Retzker, and Martin B. Plenio; Source: PHYSICAL REVIEW A90, 033834 (2014), arXiv:1403.6038
  75. Title: Generating large steady-state optomechanical entanglementby the action of Casimir force; Authors: NIE WenJie, LAN YueHeng, LI Yong & ZHUShi Yao; Source: Sci China-Phys Mech Astron, 2014, doi: 10.1007/s11433-014-5580-4
  76. Title: Preparing ground states and squeezed states of nanomechanical cantilevers by fast dissipation; Authors: Xin Wang, Hong-rong Li Peng-bo Li, Chen-wei Jiang, Hong Gao, and Fu-li Li; Source: PHYSICAL REVIEW A 90, 013838 (2014).
  77. Title: Hybrid cavity mechanics with doped systems; Authors: Aurelien Dantan, Bhagya Nair, Guido Pupillo, Claudiu Genes; Source: Phys. Rev. A 90 033820 (2014),  arXiv:1406.7100.
  78. Title: Cooling mechanical resonators to quantum ground state from room temperature; Yong-Chun Liu, Rui-Shan Liu, Chun-Hua Dong, Yan Li, Qihuang Gong, Yun-Feng Xiao; Source: arXiv:1406.7359. Physical Review A 91.1 (2015): 013824.
  79. Title: Optimal limits of cavity optomechanical cooling in the strong-coupling regime; Authors: Yong-Chun Liu, Yu-Feng Shen, Qihuang Gong, and Yun-Feng Xiao; Source:  Phys. Rev. A 89, 053821 (2014).
  80. Title: Generating the Schr ̈odinger cat state in a nanomechanical resonator coupled to a charge qubit; Authors: Jian-Qi Zhang, Wei Xiong, Shuo Zhang, Yong Li, and Mang Feng; Source: arXiv:1405.3129. Annalen der Physik, 527(1-2), 180-186.
  81. Title: Testing the quantum superposition principle in the frequency domain; Authors: M. Bahrami, A. Bassi, and H. Ulbricht; Source: Phys. Rev. A 89, 032127 (2014).
  82. Title: Nonlinearity Induced Entanglement Stability in a Qubit-Oscillator System; Authors: Víctor Montenegro, Alessandro Ferraro, Sougato Bose; Source: Phys. Rev. A 90, 013829 (2014), arXiv:1403.3637.
  83. Title: Collapse models: from theoretical foundations to experimental verifications, Authors: A. Bassi, H. Ulbricht; Source: arXiv:1401.6314. 2014 J. Phys.: Conf. Ser. 504 012023
  84. Title: "Single CdSe/ZnS Nanocrystals in an Ion Trap: Charge and Mass Determination, and Photophysics Evolution with Changing Mass, Charge, and Temperature."  Authors: Bell, David M., Collin R. Howder, Ryan C. Johnson, and Scott L. Anderson. ;  Source: ACS Nano, 2014, 8 (3), pp 2387–2398, online publication.
  85. Title: Opto-mechanical micro-macro entanglement; Authors:  R. Ghobadi, S. Kumar, B. Pepper, D. Bouwmeester, A.I. Lvovsky, C. Simon; Source: Phys. Rev. Lett. 112, 080503 (2014), arXiv:1401.2356
  86. Title: Fast transitionless expansions of Gaussian anharmonic traps for cold atoms: bang-singular-bang control; Authors: Xiao-Jing Lu, Xi Chen, J. Alonso, J. G. Muga; Source: arXiv:1401.1352
  87. Title: Near-field interferometry of a free-falling nanoparticle from a point-like source; Authors: James Bateman, Stefan Nimmrichter, Klaus Hornberger, Hendrik Ulbricht; Source: Nature Communications 5, 4788 (2014)   arXiv:1312.0500
  88. Nan Zhao*, Zhang-qi Yin*, “Room temperature ultra-sensitive mass spectrometer via dynamic decoupling”, arXiv:1311.2266.
  89. Title: Review of cavity optomechanical cooling Liu Yong-Chun, Hu Yu-Wen, Wong Chee Wei, Xiao Yun-Feng; Source: Chin. Phys. B, 2013, 22(11): 114213.
  90. Title: Probing macroscopic realism via Ramsey correlations measurements; Authors: Asadian, A.; Brukner, C.; Rabl, P..  Source: PHYSICAL REVIEW LETTERS 112(19), 190402 (2014), arXiv:1309.2229.
  91. Zhang-qi Yin, Andrew Geraci, Tongcang Li, “ Optomechanics of Levitated Dielectric Particles” (invited review), Int. J. Mod. Phys. B 27, 1330018 (2013)
  92. Title: Fast optical cooling of nanomechanical cantilever with the dynamical Zeeman effect; Authors: Jian-Qi Zhang, Shuo Zhang, Jin-Hua Zou, Liang Chen, Wen Yang, Yong Li, Mang Feng; Source: OPTICS EXPRESS 21, 29695 (2013), arXiv:1307.3952
  93. Title: Matter Wave Interferometry of a Levitated Thermal Nano-Oscillator Induced and Probed by a Spin; Authors: M. Scala, M. S. Kim, G. W. Morley, P. F. Barker, S. Bose; Source: Phys. Rev. Lett. 111, 180403 (2013), arXiv:1306.6579.
  94. Title: Observation of nitrogen vacancy photoluminescence from an optically levitated nanodiamond; Authors: Levi P. Neukirch, Jan Gieseler, Romain Quidant, Lukas Novotny, A. Nick Vamivakas; Source: Optics Letters, in press, arXiv:1305.1515