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Abstract 

Soil moisture is a critical variable that regulates land-atmosphere interactions (e.g., via 
evapotranspiration) and is directly linked with plant productivity and plant survival. Information 
on soil moisture is crucial for designing appropriate irrigation strategies and increasing crop 
yield. Additionally, long-term soil moisture coupled with climate information provides insight 
into potential agricultural thresholds and risks.  

Soil moisture data currently comes from satellite remote sensing. However, this data has 
two issues. (1) Although satellites can provide global information, they are limited to coarse 
spatial resolution (at the multi-kilometer scale), a scale too large to provide meaningful, 
representative data. (2) Satellites are also unable to measure soil moisture in areas of dense 
vegetation, snow cover, or extremely dry surfaces, resulting in gaps in the data.  

Advances in Artificial Intelligence, called deep learning autoencoders have shown to 
learn efficient compressions of data by minimizing the error between the compressed and 
subsequently reconstructed output versus the original input. Since the compression forces the 
autoencoder to learn only the essential latent features, the reconstruction ignores nonessential 
variation such as random noise and missing gaps of data. By combining publicly available 
datasets of satellite-derived soil moisture measurements from the European Space Agency 
(ESA), fine-grained, gap-free soil moisture predictions are generated using the denoising 
capabilities of a deep learning autoencoder.  

This project reveals that the denoising deep autoencoder significantly improves the 
spatial resolution of soil moisture in both simulated and real ecoregional data by an average of 
39%, demonstrating a novel application for precision agriculture and crop yield optimization. 
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1. Introduction 
 

Agriculture has existed for thousands of years and yet humans still obtain unpredictable 
and mixed crop results. One reason for this is the lack to adapt agricultural practices that fit the 
environmental conditions caused by soil moisture. Soil moisture is the water stored in the soil, 
which is influenced by factors such as precipitation, temperature, and soil characteristics; soil 
moisture, therefore regulates the Earth’s plant land-atmosphere interactions [1]. Moreover, soil 
moisture helps define how suitable a crop is to a biome. By measuring the moisture values in the 
soil, we can predict droughts, design more precise and efficient irrigation systems, monitor 
floods, and increase crop yields for a given year [2,3].  

Soil moisture has been routinely measured since the 1980s. However, attempts at 
capturing global soil moisture data have been a struggle because remote satellite sensing 
technologies poorly measure soil moisture in areas of dense vegetation, snow cover, or extremely 
dry surfaces. Additionally, due to the limitations of remote sensing satellites, this data is 
measured at a coarse spatial resolution (at the multi-kilometer scale), a scale too large to provide 
meaningful, representative data for agricultural interests. Several techniques have been proposed 
for reconstructing/refining the data but often only result in specific regions having fine-grained 
data [3]. 

Neural networks are mathematical models that can extract nonlinear relationships by 
analyzing training examples. Initially, neural networks start out with a randomized set of weights 
and biases, but as more and more training examples are provided, these weights and biases 
become fine-tuned [4]. Neural networks can manifest in many neural architectures and models. 
However, in recent literature, deep convolutional neural networks have demonstrated exceptional 
ability in understanding high dimensional patterns in 2D matrix-based datasets [5]. Autoencoders 
are special types of neural networks which rely on unsupervised learning to learn an 
approximation to the identity function. Briefly, within an autoencoder neural network, an input is 
passed through layers of compression known as the “encoding” phase to the “latent space 
representation”, where a separate decoder model attempts to reconstruct the data through layers 
of expansion. As the input goes through the compression of the encoding phase, the size gets 
smaller, while trying to stay as similar to the original as possible. The method for trying to stay 
as similar to the original as possible involves using activation functions to indicate what is and 
what isn’t the important information. Eventually, it reaches a size where it can no longer be 
compressed known as the latent space representation. Here, the encoder analyzes the given 
image and learns to obtain non-linear relationships. The decoder phase contrasts the encoder 
phase. Here, the size increases from the latent space representation through multiple upsampling 
convolutional layers, eventually reconstructing the original input. Deep learning autoencoders 
have shown to improve upon the standard Autoencoder and learn to compress data by 
minimizing the error between the compressed and subsequently reconstructed output versus the 
original input [6, 7]. Since the compression forces the autoencoder to learn only the essential 
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latent features, the reconstruction ignores nonessential variation such as random noise and 
missing gaps of data, serving a significant role in many denoising applications [6, 7, 8, 9].  
 

2. Methodology and Materials  
 

Data Extraction 
 
The European Space Agency agency provided publicly available soil moisture datafiles with a 
spatial resolution of 0.25 degrees and a temporal resolution of one day starting from the 1990s 
[10]. The autoencoder was solely trained on the data collected by the European Agency for this 
study. This study focuses primarily on soil moisture from every continent except Antarctica, due 
to there being no findings of soil moisture by the satellite. This data was then divided into 
smaller image samples using latitude and longitude because. For this project, a 120 x 120 grid 
size, 240 x 240 grid, and 360 x 360 size were used for experimentation. Different grid sizes 
provide the opportunity to analyze the autoencoder’s ability to understand and rescale complex 
contextual soil moisture patterns from a local to a global scale.  
 
Dataset Distribution  
 
A training dataset is vital for the creation of any deep learning model. An autoencoder will 
struggle to interpret reconstruct input soil moisture input arrays if it is trained on flawed datasets. 
Flawed datasets can heavily influence the effectiveness of an autoencoder and lead to model 
errors such as underfitting(when a machine learning model is not complex enough to accurately 
capture relationships between a dataset’s features and a target variable).  A testing dataset is 
equally as important as a training dataset. Briefly, a testing dataset includes soil moisture data 
that the model will not originally learn from during the training phase. The training dataset, thus, 
allows for the evaluation of the autoencoder on unseen data and provides insight into the 
generalization capabilities of the autoencoder.  

In order for the autoencoder to develop the non-linear relationships, it must be trained 
with soil moisture matrices with sufficient data. In order to filter out the soil moisture data with 
and without data, a threshold was placed for each image to meet. If a given image had soil 
moisture measurements of less than 8 %, then it is not added to the training dataset because it is 
considered a sea point or coast point. This threshold value was calculated using supervised 
principal median component analysis. 

This training data (which consists of 80% of the complete dataset) is split into several 
batches for the autoencoder to experiment from. The reason the training dataset is split into 
several batches is that batches allow the autoencoder to handle large amounts of samples once at 
a time. 

A subset of the data (testing dataset) is withheld from the analysis for the autoencoder to 
test the non-linear relationship it is developing. At the end of each epoch (the time it takes for an 
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autoencoder to go through one batch of training data), the final reconstruction is compared to the 
testing dataset using mean squared error, which is calculated as: 
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Data Generation 
When using satellite data, the number of matrices without any gaps is very small, and is difficult 
to provide enough training data when only data with no gaps are used. Therefore, the aim is to 
derive a reconstruction strategy that can cope with the large amounts of missing data typically 
found in remote-sensing data. 

To do this, large amounts of gaps were created on the training data. This was done by 
locating a value within a given image and then taking all values within a distance of 15 degrees 
latitude and 30 degrees longitude for 120x120 grids, 30 degrees latitude, and 60 degrees 
longitude for 240x240 grids, and 45 degrees latitude and 90 degrees longitude for 360x360 grids. 
Each element of the grid was set to a value of -9999, which was the NaN(Not a Number) value 
formatted in the ESA soil moisture data.    

Before going through the autoencoder, however, the datasets are transformed through 
several operations to allow activation functions such as “ReLU”(rectified linear unit) and 
“sigmoid” to work properly: 

 
●​ Add 9999 to all values in every dataset (ReLU best handles data that is non-negative). 
●​ Rescale the array by dividing the dataset by the maximum value in the dataset. This 

transforms the dataset into values between 0 and 1, which is calculated as follows: 
(2)​  𝑥 =  𝑥/𝑚𝑎𝑥(𝑥)

●​ Reshape the array to include a new dimension to represent the number of channels within 
the image (to allow the data to process through typical convolutional encoder layers). 
 

The complete dataset is thus represented by an array of the size 
.  (𝑠𝑎𝑚𝑝𝑙𝑒𝑠,  𝑔𝑟𝑖𝑑 𝑠𝑖𝑧𝑒,  𝑔𝑟𝑖𝑑 𝑠𝑖𝑧𝑒,  1)

 
Model 
The overall structure of the neural network is a convolutional auto-encoder. Its main building 
blocks are convolutional layers which downsample the input during the encoding phase and 
upsample the latent representation during the decoding phase. The number of encoding and 
decoding layers in an autoencoder were symmetric to each other. The number of layers would 
vary depending on the latitude and longitude dimension of each image. This is because the 
encoding process would always divide the presented size by two, and so eventually the encoder 
would reach an odd number where it is no longer compressible.  
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Encoder 
The encoder neural architecture starts with an input channel which receives a matrix of size 

. Briefly, the convolutional operation is executed by (𝑠𝑎𝑚𝑝𝑙𝑒𝑠,  𝑔𝑟𝑖𝑑 𝑠𝑖𝑧𝑒,  𝑔𝑟𝑖𝑑 𝑠𝑖𝑧𝑒,  1)
summing the dot product of the input region by another matrix called the kernel. The kernel is a 
matrix that consists of weights that can be used to discover features and document pattern 
occurrences in a hierarchical-based procedure. The kernel in this case has a window size of 3x3 
that convolves around the input. The stride of the kernel is 1 and it represents the distance the 
kernel convolves between regions. Activation is used to normalize values, whereas pooling 
summarizes feature maps for dimensionality reduction and documenting highly associated 
values. In essence, the repeating structure of 16 total convolution and max-pooling layers passes 
a compression pipeline that yields a latent representation of the input. During the training phase, 
that is, backpropagation, the weights for the encoder kernels are optimized to reduce the 
reconstruction loss.  
 
Decoder 
The decoder neural architecture starts with the latent representation, a matrix with a size of  (15, 
15, 16) for 240x240 and 120x120 training samples of a matrix with a size of (45, 45, 16) for 
360x360 samples. The upsampling operation doubles the dimensions of the input and performs 
an inverse convolution operation (defined previously in the encoder section). The reconstruction 
layer is the final input of matrix size .  (𝑠𝑎𝑚𝑝𝑙𝑒𝑠,  𝑔𝑟𝑖𝑑 𝑠𝑖𝑧𝑒,  𝑔𝑟𝑖𝑑 𝑠𝑖𝑧𝑒,  1)
 
The 120x120, 240x240, and 360x360  model summaries are presented in Tables I, II, and III, 
respectfully. A graphical visualization of the model is underneath the Tables. 
 
 
Table I: 120x120 Model Summary 
_________________________________________________________________ 
Layer (type)                 Matrix Shape              Parameters    
================================================================= 
Input  (InputLayer)         [(None, 120, 120, 1)]     0          
_________________________________________________________________ 
Conv2d (Conv2D)              (None, 120, 120, 16)      160        
_________________________________________________________________ 
max_pooling2d (MaxPooling2D) (None, 60, 60, 16)        0          
_________________________________________________________________ 
dropout (Dropout)            (None, 60, 60, 16)        0          
_________________________________________________________________ 
Conv2d  (Conv2D)            (None, 60, 60, 16)        2320       
_________________________________________________________________ 
Max_pooling2d  (MaxPooling2 (None, 30, 30, 16)        0          
_________________________________________________________________ 
Dropout  (Dropout)          (None, 30, 30, 16)        0          
_________________________________________________________________ 
Conv2d  (Conv2D)            (None, 30, 30, 16)        2320       
_________________________________________________________________ 
Max_pooling2d  (MaxPooling2 (None, 15, 15, 16)        0          
_______________________________________________________________ 
Conv2d  (Conv2D)            (None, 15, 15, 16)        2320       
_________________________________________________________________ 
Up_sampling2d (UpSampling2D) (None, 30, 30, 16)        0          
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_________________________________________________________________ 
Dropout  (Dropout)          (None, 30, 30, 16)        0          
_________________________________________________________________ 
Conv2d  (Conv2D)            (None, 30, 30, 16)        2320       
_________________________________________________________________ 
Up_sampling2d  (UpSampling2 (None, 60, 60, 16)        0          
_________________________________________________________________ 
Dropout  (Dropout)          (None, 60, 60, 16)        0          
_________________________________________________________________ 
Conv2d  (Conv2D)            (None, 60, 60, 16)        2320       
_________________________________________________________________ 
Up_sampling2d  (UpSampling2 (None, 120, 120, 16)      0          
_________________________________________________________________ 
Conv2d  (Conv2D)            (None, 120, 120, 1)       145        
================================================================= 

 
Table II: 240x240 Model Summary 
Layer (type)                 Output Shape              Param #    
================================================================= 
Input  (InputLayer)         [(None, 240, 240, 1)]     0          
_________________________________________________________________ 
Conv2d (Conv2D)           (None, 240, 240, 16)      160        
_________________________________________________________________ 
max_pooling2d (MaxPooling2 (None, 120, 120, 16)      0          
_________________________________________________________________ 
dropout (Dropout)          (None, 120, 120, 16)      0          
_______________________________________________________________ 
conv2d (Conv2D)           (None, 120, 120, 16)      2320       
_________________________________________________________________ 
max_pooling2d (MaxPooling2 (None, 60, 60, 16)        0          
_________________________________________________________________ 
conv2d (Conv2D)           (None, 60, 60, 16)        2320       
_________________________________________________________________ 
max_pooling2d (MaxPooling2 (None, 30, 30, 16)        0          
_________________________________________________________________ 
conv2d (Conv2D)           (None, 30, 30, 16)        2320       
_________________________________________________________________ 
max_pooling2d (MaxPooling2 (None, 15, 15, 16)        0          
_________________________________________________________________ 
conv2d (Conv2D)           (None, 15, 15, 16)        2320       
_________________________________________________________________ 
Up_sampling2d (UpSampling2 (None, 30, 30, 16)        0          
_________________________________________________________________ 
Dropout  (Dropout)          (None, 30, 30, 16)        0          
_________________________________________________________________ 
Conv2d   (Conv2D)           (None, 30, 30, 16)        2320       
_________________________________________________________________ 
Up_sampling2d  (UpSampling2 (None, 60, 60, 16)        0          
_________________________________________________________________ 
Conv2d  (Conv2D)           (None, 60, 60, 16)        2320       
_________________________________________________________________ 
Up_sampling2d  (UpSampling2 (None, 120, 120, 16)      0          
_________________________________________________________________ 
Conv2d  (Conv2D)           (None, 120, 120, 16)      2320       
_________________________________________________________________ 
Up_sampling2d  (UpSampling2 (None, 240, 240, 16)      0          
_________________________________________________________________ 
Conv2d  (Conv2D)           (None, 240, 240, 1)       145        
================================================================= 
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Table III: 360x360 Model Summary 
Layer (type)                 Output Shape              Param #    
================================================================= 
Input  (InputLayer)         [(None, 360, 360, 1)]     0          
_________________________________________________________________ 
Conv2d  (Conv2D)           (None, 360, 360, 16)      160        
_________________________________________________________________ 
Max_pooling2d  (MaxPooling (None, 180, 180, 16)      0          
________________________________________________________________ 
Dropout  (Dropout)          (None, 180, 180, 16)      0          
_________________________________________________________________ 
Conv2d  (Conv2D)           (None, 180, 180, 16)      2320       
_________________________________________________________________ 
Max_pooling2d  (MaxPooling (None, 90, 90, 16)        0          
_________________________________________________________________ 
Conv2d  (Conv2D)           (None, 90, 90, 16)        2320       
_________________________________________________________________ 
Max_pooling2d  (MaxPooling (None, 45, 45, 16)        0          
_________________________________________________________________ 
Conv2d  (Conv2D)           (None, 45, 45, 16)        2320       
_________________________________________________________________ 
Up_sampling2d  (UpSampling (None, 90, 90, 16)        0          
_________________________________________________________________ 
Dropout  (Dropout)          (None, 90, 90, 16)        0          
_________________________________________________________________ 
Conv2d  (Conv2D)           (None, 90, 90, 16)        2320       
_________________________________________________________________ 
Up_sampling2d  (UpSampling (None, 180, 180, 16)      0          
_________________________________________________________________ 
Conv2d  (Conv2D)           (None, 180, 180, 16)      2320       
_________________________________________________________________ 
Up_sampling2d  (UpSampling (None, 360, 360, 16)      0          
_________________________________________________________________ 
Conv2d  (Conv2D)           (None, 360, 360, 1)       145        
================================================================= 
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Training the Model 
The input dataset is randomly shuffled and partitioned into mini-batches of 256 matrices. The 
loss function “mean square error” was used to train the autoencoder while being optimized with 
“rmsprop”. Mean square error was used as the loss function because it provides a better 
interpretation of the similarity between two-dimensional matrices than other loss functions that 
might focus on correlations and variances. RMS prop is an optimized gradient function. 
Furthermore, the model used Adam as its stochastic optimizer, and overfitting was addressed 
with the use of dropout (with a probability of 0.3). Each model was trained for 25 epochs. The 
results of the model were evaluated using k-fold cross-validation (k=5) and, for all datasets, were 
evaluated on an 80:20 train-test split. The full model was implemented in Python with 
Tensorflow 2.4.0 as the deep learning backend. 
 

3. Results 
 
 

As mentioned previously, the validation reconstruction loss of each model determines how  
accurately the autoencoders were able to reconstruct the original dataset given only gapped and 
noisy soil moisture data. The reconstruction loss was measured over each epoch during the 
training session of each model. The reconstruction loss graphs are represented in the below 
figure. 

 
​ In addition to the reconstruction loss comparisons, the average percent change of 
reconstruction output soil moisture data compared to the original test dataset soil moisture 
datasets over a span of 1990-2020 was calculated using matrix element-wise analysis. The 
calculated percent change was measured at +39%.  The below figures represent samples that the 
autoencoder predicted (the autoencoder never saw the original/ground truth data, it only uses the 
given sample to predict the original data). 
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6. Conclusions 
 

This project presents a consistent way to handle missing data in satellite data using neural 
networks. Specifically, a deep learning autoencoder neural architecture was exploited to generate 
fine-grain predictions on noisy inputs. Three models were generated using different training size 
inputs, 120x120, 240x240, and 260x360.  The calculated percent change for the autoencoder’s 
improvement in spatial resolution was measured at +39%. Additionally, the expected error 
predicted by the neural network provides a good indication of the accuracy of the reconstruction. 
Provided the success of this model, it is expected to be a critical tool in the advancement of 
precision agriculture applications.  
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