
​ ​ ​ ​ ​ ​ ​ ​ ​ GCRSEF 2021 Ram Bhagat

S-PLNT-001
Reconstructing Satellite Remote Sensing Data with Deep

Learning Autoencoders for Fine-grained Ecoregional Soil
Moisture Predictions

Ram Bhagat
Guilderland High School, New York

Abstract

Soil moisture is a critical variable that regulates land-atmosphere interactions (e.g., via
evapotranspiration) and is directly linked with plant productivity and plant survival. Information
on soil moisture is crucial for designing appropriate irrigation strategies and increasing crop
yield. Additionally, long-term soil moisture coupled with climate information provides insight
into potential agricultural thresholds and risks.

Soil moisture data currently comes from satellite remote sensing. However, this data has
two issues. (1) Although satellites can provide global information, they are limited to coarse
spatial resolution (at the multi-kilometer scale), a scale too large to provide meaningful,
representative data. (2) Satellites are also unable to measure soil moisture in areas of dense
vegetation, snow cover, or extremely dry surfaces, resulting in gaps in the data.

Advances in Artificial Intelligence, called deep learning autoencoders have shown to
learn efficient compressions of data by minimizing the error between the compressed and
subsequently reconstructed output versus the original input. Since the compression forces the
autoencoder to learn only the essential latent features, the reconstruction ignores nonessential
variation such as random noise and missing gaps of data. By combining publicly available
datasets of satellite-derived soil moisture measurements from the European Space Agency
(ESA), fine-grained, gap-free soil moisture predictions are generated using the denoising
capabilities of a deep learning autoencoder.

This project reveals that the denoising deep autoencoder significantly improves the
spatial resolution of soil moisture in both simulated and real ecoregional data by an average of
39%, demonstrating a novel application for precision agriculture and crop yield optimization.

​ ​ ​ ​ ​ ​ ​ ​ ​ GCRSEF 2021 Ram Bhagat

1. Introduction

Agriculture has existed for thousands of years and yet humans still obtain unpredictable
and mixed crop results. One reason for this is the lack to adapt agricultural practices that fit the
environmental conditions caused by soil moisture. Soil moisture is the water stored in the soil,
which is influenced by factors such as precipitation, temperature, and soil characteristics; soil
moisture, therefore regulates the Earth’s plant land-atmosphere interactions [1]. Moreover, soil
moisture helps define how suitable a crop is to a biome. By measuring the moisture values in the
soil, we can predict droughts, design more precise and efficient irrigation systems, monitor
floods, and increase crop yields for a given year [2,3].

Soil moisture has been routinely measured since the 1980s. However, attempts at
capturing global soil moisture data have been a struggle because remote satellite sensing
technologies poorly measure soil moisture in areas of dense vegetation, snow cover, or extremely
dry surfaces. Additionally, due to the limitations of remote sensing satellites, this data is
measured at a coarse spatial resolution (at the multi-kilometer scale), a scale too large to provide
meaningful, representative data for agricultural interests. Several techniques have been proposed
for reconstructing/refining the data but often only result in specific regions having fine-grained
data [3].

Neural networks are mathematical models that can extract nonlinear relationships by
analyzing training examples. Initially, neural networks start out with a randomized set of weights
and biases, but as more and more training examples are provided, these weights and biases
become fine-tuned [4]. Neural networks can manifest in many neural architectures and models.
However, in recent literature, deep convolutional neural networks have demonstrated exceptional
ability in understanding high dimensional patterns in 2D matrix-based datasets [5]. Autoencoders
are special types of neural networks which rely on unsupervised learning to learn an
approximation to the identity function. Briefly, within an autoencoder neural network, an input is
passed through layers of compression known as the “encoding” phase to the “latent space
representation”, where a separate decoder model attempts to reconstruct the data through layers
of expansion. As the input goes through the compression of the encoding phase, the size gets
smaller, while trying to stay as similar to the original as possible. The method for trying to stay
as similar to the original as possible involves using activation functions to indicate what is and
what isn’t the important information. Eventually, it reaches a size where it can no longer be
compressed known as the latent space representation. Here, the encoder analyzes the given
image and learns to obtain non-linear relationships. The decoder phase contrasts the encoder
phase. Here, the size increases from the latent space representation through multiple upsampling
convolutional layers, eventually reconstructing the original input. Deep learning autoencoders
have shown to improve upon the standard Autoencoder and learn to compress data by
minimizing the error between the compressed and subsequently reconstructed output versus the
original input [6, 7]. Since the compression forces the autoencoder to learn only the essential

​ ​ ​ ​ ​ ​ ​ ​ ​ GCRSEF 2021 Ram Bhagat

latent features, the reconstruction ignores nonessential variation such as random noise and
missing gaps of data, serving a significant role in many denoising applications [6, 7, 8, 9].

2. Methodology and Materials

Data Extraction

The European Space Agency agency provided publicly available soil moisture datafiles with a
spatial resolution of 0.25 degrees and a temporal resolution of one day starting from the 1990s
[10]. The autoencoder was solely trained on the data collected by the European Agency for this
study. This study focuses primarily on soil moisture from every continent except Antarctica, due
to there being no findings of soil moisture by the satellite. This data was then divided into
smaller image samples using latitude and longitude because. For this project, a 120 x 120 grid
size, 240 x 240 grid, and 360 x 360 size were used for experimentation. Different grid sizes
provide the opportunity to analyze the autoencoder’s ability to understand and rescale complex
contextual soil moisture patterns from a local to a global scale.

Dataset Distribution

A training dataset is vital for the creation of any deep learning model. An autoencoder will
struggle to interpret reconstruct input soil moisture input arrays if it is trained on flawed datasets.
Flawed datasets can heavily influence the effectiveness of an autoencoder and lead to model
errors such as underfitting(when a machine learning model is not complex enough to accurately
capture relationships between a dataset’s features and a target variable). A testing dataset is
equally as important as a training dataset. Briefly, a testing dataset includes soil moisture data
that the model will not originally learn from during the training phase. The training dataset, thus,
allows for the evaluation of the autoencoder on unseen data and provides insight into the
generalization capabilities of the autoencoder.

In order for the autoencoder to develop the non-linear relationships, it must be trained
with soil moisture matrices with sufficient data. In order to filter out the soil moisture data with
and without data, a threshold was placed for each image to meet. If a given image had soil
moisture measurements of less than 8 %, then it is not added to the training dataset because it is
considered a sea point or coast point. This threshold value was calculated using supervised
principal median component analysis.

This training data (which consists of 80% of the complete dataset) is split into several
batches for the autoencoder to experiment from. The reason the training dataset is split into
several batches is that batches allow the autoencoder to handle large amounts of samples once at
a time.

A subset of the data (testing dataset) is withheld from the analysis for the autoencoder to
test the non-linear relationship it is developing. At the end of each epoch (the time it takes for an

​ ​ ​ ​ ​ ​ ​ ​ ​ GCRSEF 2021 Ram Bhagat

autoencoder to go through one batch of training data), the final reconstruction is compared to the
testing dataset using mean squared error, which is calculated as:

(1)​ 𝑀𝑆𝐸 = 1
𝑛

𝑖 = 1

𝑛

∑ (𝑌
𝑖

− 𝑌
𝑖
)2

Data Generation
When using satellite data, the number of matrices without any gaps is very small, and is difficult
to provide enough training data when only data with no gaps are used. Therefore, the aim is to
derive a reconstruction strategy that can cope with the large amounts of missing data typically
found in remote-sensing data.

To do this, large amounts of gaps were created on the training data. This was done by
locating a value within a given image and then taking all values within a distance of 15 degrees
latitude and 30 degrees longitude for 120x120 grids, 30 degrees latitude, and 60 degrees
longitude for 240x240 grids, and 45 degrees latitude and 90 degrees longitude for 360x360 grids.
Each element of the grid was set to a value of -9999, which was the NaN(Not a Number) value
formatted in the ESA soil moisture data.

Before going through the autoencoder, however, the datasets are transformed through
several operations to allow activation functions such as “ReLU”(rectified linear unit) and
“sigmoid” to work properly:

●​ Add 9999 to all values in every dataset (ReLU best handles data that is non-negative).
●​ Rescale the array by dividing the dataset by the maximum value in the dataset. This

transforms the dataset into values between 0 and 1, which is calculated as follows:
(2)​ 𝑥 = 𝑥/𝑚𝑎𝑥(𝑥)

●​ Reshape the array to include a new dimension to represent the number of channels within
the image (to allow the data to process through typical convolutional encoder layers).

The complete dataset is thus represented by an array of the size
. (𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑔𝑟𝑖𝑑 𝑠𝑖𝑧𝑒, 𝑔𝑟𝑖𝑑 𝑠𝑖𝑧𝑒, 1)

Model
The overall structure of the neural network is a convolutional auto-encoder. Its main building
blocks are convolutional layers which downsample the input during the encoding phase and
upsample the latent representation during the decoding phase. The number of encoding and
decoding layers in an autoencoder were symmetric to each other. The number of layers would
vary depending on the latitude and longitude dimension of each image. This is because the
encoding process would always divide the presented size by two, and so eventually the encoder
would reach an odd number where it is no longer compressible.

​ ​ ​ ​ ​ ​ ​ ​ ​ GCRSEF 2021 Ram Bhagat

Encoder
The encoder neural architecture starts with an input channel which receives a matrix of size

. Briefly, the convolutional operation is executed by (𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑔𝑟𝑖𝑑 𝑠𝑖𝑧𝑒, 𝑔𝑟𝑖𝑑 𝑠𝑖𝑧𝑒, 1)
summing the dot product of the input region by another matrix called the kernel. The kernel is a
matrix that consists of weights that can be used to discover features and document pattern
occurrences in a hierarchical-based procedure. The kernel in this case has a window size of 3x3
that convolves around the input. The stride of the kernel is 1 and it represents the distance the
kernel convolves between regions. Activation is used to normalize values, whereas pooling
summarizes feature maps for dimensionality reduction and documenting highly associated
values. In essence, the repeating structure of 16 total convolution and max-pooling layers passes
a compression pipeline that yields a latent representation of the input. During the training phase,
that is, backpropagation, the weights for the encoder kernels are optimized to reduce the
reconstruction loss.

Decoder
The decoder neural architecture starts with the latent representation, a matrix with a size of (15,
15, 16) for 240x240 and 120x120 training samples of a matrix with a size of (45, 45, 16) for
360x360 samples. The upsampling operation doubles the dimensions of the input and performs
an inverse convolution operation (defined previously in the encoder section). The reconstruction
layer is the final input of matrix size . (𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑔𝑟𝑖𝑑 𝑠𝑖𝑧𝑒, 𝑔𝑟𝑖𝑑 𝑠𝑖𝑧𝑒, 1)

The 120x120, 240x240, and 360x360 model summaries are presented in Tables I, II, and III,
respectfully. A graphical visualization of the model is underneath the Tables.

Table I: 120x120 Model Summary

Layer (type) Matrix Shape Parameters
===
Input (InputLayer) [(None, 120, 120, 1)] 0

Conv2d (Conv2D) (None, 120, 120, 16) 160

max_pooling2d (MaxPooling2D) (None, 60, 60, 16) 0

dropout (Dropout) (None, 60, 60, 16) 0

Conv2d (Conv2D) (None, 60, 60, 16) 2320

Max_pooling2d (MaxPooling2 (None, 30, 30, 16) 0

Dropout (Dropout) (None, 30, 30, 16) 0

Conv2d (Conv2D) (None, 30, 30, 16) 2320

Max_pooling2d (MaxPooling2 (None, 15, 15, 16) 0

Conv2d (Conv2D) (None, 15, 15, 16) 2320

Up_sampling2d (UpSampling2D) (None, 30, 30, 16) 0

​ ​ ​ ​ ​ ​ ​ ​ ​ GCRSEF 2021 Ram Bhagat

Dropout (Dropout) (None, 30, 30, 16) 0

Conv2d (Conv2D) (None, 30, 30, 16) 2320

Up_sampling2d (UpSampling2 (None, 60, 60, 16) 0

Dropout (Dropout) (None, 60, 60, 16) 0

Conv2d (Conv2D) (None, 60, 60, 16) 2320

Up_sampling2d (UpSampling2 (None, 120, 120, 16) 0

Conv2d (Conv2D) (None, 120, 120, 1) 145
===

Table II: 240x240 Model Summary
Layer (type) Output Shape Param #
===
Input (InputLayer) [(None, 240, 240, 1)] 0

Conv2d (Conv2D) (None, 240, 240, 16) 160

max_pooling2d (MaxPooling2 (None, 120, 120, 16) 0

dropout (Dropout) (None, 120, 120, 16) 0

conv2d (Conv2D) (None, 120, 120, 16) 2320

max_pooling2d (MaxPooling2 (None, 60, 60, 16) 0

conv2d (Conv2D) (None, 60, 60, 16) 2320

max_pooling2d (MaxPooling2 (None, 30, 30, 16) 0

conv2d (Conv2D) (None, 30, 30, 16) 2320

max_pooling2d (MaxPooling2 (None, 15, 15, 16) 0

conv2d (Conv2D) (None, 15, 15, 16) 2320

Up_sampling2d (UpSampling2 (None, 30, 30, 16) 0

Dropout (Dropout) (None, 30, 30, 16) 0

Conv2d (Conv2D) (None, 30, 30, 16) 2320

Up_sampling2d (UpSampling2 (None, 60, 60, 16) 0

Conv2d (Conv2D) (None, 60, 60, 16) 2320

Up_sampling2d (UpSampling2 (None, 120, 120, 16) 0

Conv2d (Conv2D) (None, 120, 120, 16) 2320

Up_sampling2d (UpSampling2 (None, 240, 240, 16) 0

Conv2d (Conv2D) (None, 240, 240, 1) 145
===

​ ​ ​ ​ ​ ​ ​ ​ ​ GCRSEF 2021 Ram Bhagat

Table III: 360x360 Model Summary
Layer (type) Output Shape Param #
===
Input (InputLayer) [(None, 360, 360, 1)] 0

Conv2d (Conv2D) (None, 360, 360, 16) 160

Max_pooling2d (MaxPooling (None, 180, 180, 16) 0
__
Dropout (Dropout) (None, 180, 180, 16) 0

Conv2d (Conv2D) (None, 180, 180, 16) 2320

Max_pooling2d (MaxPooling (None, 90, 90, 16) 0

Conv2d (Conv2D) (None, 90, 90, 16) 2320

Max_pooling2d (MaxPooling (None, 45, 45, 16) 0

Conv2d (Conv2D) (None, 45, 45, 16) 2320

Up_sampling2d (UpSampling (None, 90, 90, 16) 0

Dropout (Dropout) (None, 90, 90, 16) 0

Conv2d (Conv2D) (None, 90, 90, 16) 2320

Up_sampling2d (UpSampling (None, 180, 180, 16) 0

Conv2d (Conv2D) (None, 180, 180, 16) 2320

Up_sampling2d (UpSampling (None, 360, 360, 16) 0

Conv2d (Conv2D) (None, 360, 360, 1) 145
===

​ ​ ​ ​ ​ ​ ​ ​ ​ GCRSEF 2021 Ram Bhagat

Training the Model
The input dataset is randomly shuffled and partitioned into mini-batches of 256 matrices. The
loss function “mean square error” was used to train the autoencoder while being optimized with
“rmsprop”. Mean square error was used as the loss function because it provides a better
interpretation of the similarity between two-dimensional matrices than other loss functions that
might focus on correlations and variances. RMS prop is an optimized gradient function.
Furthermore, the model used Adam as its stochastic optimizer, and overfitting was addressed
with the use of dropout (with a probability of 0.3). Each model was trained for 25 epochs. The
results of the model were evaluated using k-fold cross-validation (k=5) and, for all datasets, were
evaluated on an 80:20 train-test split. The full model was implemented in Python with
Tensorflow 2.4.0 as the deep learning backend.

3. Results

As mentioned previously, the validation reconstruction loss of each model determines how
accurately the autoencoders were able to reconstruct the original dataset given only gapped and
noisy soil moisture data. The reconstruction loss was measured over each epoch during the
training session of each model. The reconstruction loss graphs are represented in the below
figure.

​ In addition to the reconstruction loss comparisons, the average percent change of
reconstruction output soil moisture data compared to the original test dataset soil moisture
datasets over a span of 1990-2020 was calculated using matrix element-wise analysis. The
calculated percent change was measured at +39%. The below figures represent samples that the
autoencoder predicted (the autoencoder never saw the original/ground truth data, it only uses the
given sample to predict the original data).

​ ​ ​ ​ ​ ​ ​ ​ ​ GCRSEF 2021 Ram Bhagat

6. Conclusions

This project presents a consistent way to handle missing data in satellite data using neural
networks. Specifically, a deep learning autoencoder neural architecture was exploited to generate
fine-grain predictions on noisy inputs. Three models were generated using different training size
inputs, 120x120, 240x240, and 260x360. The calculated percent change for the autoencoder’s
improvement in spatial resolution was measured at +39%. Additionally, the expected error
predicted by the neural network provides a good indication of the accuracy of the reconstruction.
Provided the success of this model, it is expected to be a critical tool in the advancement of
precision agriculture applications.

7. References

[1] Shafi, Uferah, et al. “Precision Agriculture Techniques and Practices: From Considerations to
Applications.” Sensors, vol. 19, no. 17, 2019, p. 3796., doi:10.3390/s19173796.
[2] Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision
Agriculture: A Review. Remote Sens. 2020, 12, 3136. https://doi.org/10.3390/rs12193136
[3] Kolassa, J.; Reichle, R.H.; Liu, Q.; Cosh, M.; Bosch, D.D.; Caldwell, T.G.; Colliander, A.;
Holifield Collins, C.; Jackson, T.J.; Livingston, S.J.; Moghaddam, M.; Starks, P.J. Data
Assimilation to Extract Soil Moisture Information from SMAP Observations. Remote Sens. 2017,
9, 1179. https://doi.org/10.3390/rs9111179
[4] Larry Hardesty | MIT News Office. “Explained: Neural Networks.” MIT News | Massachusetts
Institute of Technology, news.mit.edu/2017/explained-neural-networks-deep-learning-0414.
[5] A. Ajit, K. Acharya and A. Samanta, "A Review of Convolutional Neural Networks," 2020
International Conference on Emerging Trends in Information Technology and Engineering
(ic-ETITE), Vellore, India, 2020, pp. 1-5, doi: 10.1109/ic-ETITE47903.2020.049.
[6] Ashfahani, Andri, et al. “DEVDAN: Deep Evolving Denoising Autoencoder.” Neurocomputing,
vol. 390, 2020, pp. 297–314., doi:10.1016/j.neucom.2019.07.106.

https://doi.org/10.3390/rs12193136
https://doi.org/10.3390/rs9111179

​ ​ ​ ​ ​ ​ ​ ​ ​ GCRSEF 2021 Ram Bhagat

[7] Perera, Lokukaluge P., and B. Mo. “Ship Performance and Navigation Data Compression
and Communication under Autoencoder System Architecture.” Journal of Ocean Engineering
and Science, vol. 3, no. 2, 2018, pp. 133–143., doi:10.1016/j.joes.2018.04.002.
[8] He, Chengxun, et al. “TSLRLN: Tensor Subspace Low-Rank Learning with Non-Local Prior
for Hyperspectral Image Mixed Denoising.” Signal Processing, 2021, p. 108060.,
doi:10.1016/j.sigpro.2021.108060.
[9] Moradzadeh, Alireza, and N. R. Aluru. “Molecular Dynamics Properties without the Full
Trajectory: A Denoising Autoencoder Network for Properties of Simple Liquids.” The Journal of
Physical Chemistry Letters, vol. 10, no. 24, 2019, pp. 7568–7576.,
doi:10.1021/acs.jpclett.9b02820.
[10]“Soil Moisture ECV Product User Guide (PUG) Supporting Product Version v05.2
Deliverable ID: D4.2 Version 1.” Earth Observation Data Centre for Water Resources Monitoring
(EODC) GmbH, 29 May 2020.

