

Xavier High School Micronesia Physics Curriculum

UBD Quarters 1-4

Major Topics Covered/ Guiding Questions:

- Notation, Units and Measurements
- Motion in 1D
- Gravity and Mechanical Energy
- 2D Motion.
- Forces, Momentum and Impulses
- Rotational Kinematics
- Work, Energy, and Power
- Thermodynamics
- Charges, Electric Fields and Electrostatics
- Basic Electronics
- Oscillations and Waves
- Sound
- Light

Materials/Resources (Please specify if these are distributed to each individual student, given to groups of students, posted online for all students, or just to be used by teacher):

- Access to textbook, either physical copy or online PDF (each student)
- Access to graphing calculator, either through physical calculator or Desmos app (each student)
- Projector
- Notebook and Folder exclusively for Physics

Skills students will develop:

- Properly use a scientific calculator
- Set up kinematic equations and explain their variables for motion in 1D, 2D, and rotational motion
- Define and conceptualize motions, forces, and general mechanics spatially.
- Compound or rearrange formulas to solve for an unknown
- Converting units
- Understanding Newton's first three Laws of Motion
- Define and conceptualize Work, Energy, and Power
- Define and conceptualize the relationship between Heat, Energy, and Force
- Define and conceptualize how Electricity and basic circuitry works.
- Define and conceptualize waves, particularly in regards to Sound and Light

By the end of the year students will be able to _____ (must be measurable by assessments)

- Know the three fundamental units of physics (time, mass, and distance) and be able to convert those units to multiple other forms, whether they be metric or imperial.
- Define and conceptualize motions, forces, and general mechanics spatially.
- Verbally, visually, and through written means, explain the actions and mechanics of an object or force.
- Define and apply some of the laws that govern nature (gravity, inertia, electromagnetism, forces, constants, thermodynamics, temperature, phases of materials, vibrations and frequencies, sound, color, light, atomic laws, etc.)
- Be able to find unknowns in kinematic equations with no less than three variables.
- Conduct lab research, write a report including a hypothesis

Major Topics Covered/Guiding Questions:

- Notation, Units and Measurements
- Motion in 1D
- Gravity and Mechanical Energy

Materials/Resources (Please specify if these are distributed to each individual student, given to groups of students, posted online for all students, or just to be used by teacher):

- Access to textbook, either physical copy or online PDF (each student)
- Access to graphing calculator, either through physical calculator or Desmos app (each student)
- Projector
- Notebook and Folder exclusively for Physics

Skills students will develop:

- Properly use a scientific calculator
- Set up kinematic equations and explain their variables for motion in 1D
- Define and conceptualize motions, forces, and general mechanics spatially.
- Compound or rearrange formulas to solve for an unknown
- Converting units

By the end of the quarter students will be able to _____ (must be measurable by assessments):

- Convert between imperial and metric units to properly solve equations
- Use the five kinematic equations to solve for acceleration, velocity, time, and displacement
- Describe the difference between scalar and vector quantities
- Define hypothesis and be able to construct them
- Be able to relate information between Displacement/Time Graphs and Velocity/Time Graphs

Major Topics Covered/Guiding Questions:

- 2D Motion
- Dynamics
- Forces, Momentum and Impulses
- Rotational Motion
- Torque, Angular Momentum and Rolling

Skills students will develop:

- Properly use a scientific calculator
- Set up kinematic equations and explain their variables for motion in 2D and rotational motion
- Define and conceptualize motions, forces, and general mechanics spatially.
- Compound or rearrange formulas to solve for an unknown
- Converting units
- Understanding Newton's first three Laws of Motion
- Understanding Linear Momentum
- Understanding Elastic and Inelastic Collisions

Materials/Resources (Please specify if these are distributed to each individual student, given to groups of students, posted online for all students, or just to be used by teacher):

- Access to textbook, either physical copy or online PDF (each student)
- Access to graphing calculator, either through physical calculator or Desmos app (each student)
- Projector
- Notebook and Folder exclusively for Physics

By the end of the quarter students will be able to _____ (must be measurable by assessments):

- List Newton's first three Laws of Motion
- Describe how Force relates to previously learned kinematic equations
- Be able to use force to solve questions relating to the five kinematic equations
- Solve Vector Addition problems
- Solve Inclined Planes problems
- Solve Projectile Motion problems
- Be able to use the 5 rotational kinematic equations to solve for angle of rotation, angular velocity, angular acceleration, and standard kinematic values

Major Topics Covered/Guiding Questions:

- Work, Energy and Power
- Thermodynamics
- Oscillations and Waves
- Simple Harmonic Motion

Skills students will develop:

- Define and conceptualize Work, Energy, and Power
- Define and conceptualize the relationship between Heat, Energy, and Force
- Define and conceptualize waves
- Define Simple Harmonic Motion

Materials/Resources (Please specify if these are distributed to each individual student, given to groups of students, posted online for all students, or just to be used by teacher):

- Access to textbook, either physical copy or online PDF (each student)
- Access to graphing calculator, either through physical calculator or Desmos app (each student)
- Projector
- Notebook and Folder exclusively for Physics

By the end of the quarter students will be able to ______ (must be measurable by assessments):

- Be able to solve Ideal Mechanical Advantage problems
- Define efficiency for simple machines and what hinders that efficiency
- Describe and calculate Work and Power
- Apply the Work-Energy Theorem
- Explain the Law of Conservation of Energy
- Explain the Zeroth, First, and Second Laws of Thermodynamics
- Describe the workings of Heat Pumps, Heat Engines, and Refrigerators
- Distinguish between the types of waves (Pulse/Periodic, Transverse/Longitudinal)
- Distinguish between the period, frequency, wavelength, and amplitude, and velocity of waves
- Use Hooke's Law to solve Simple Harmonic Motion equations

Major Topics Covered/Guiding Questions:

- Sound
- Light
- Charges, Electric Fields and Electrostatics
- Magnetism and Making Electricity
- Basic Electronics

Materials/Resources (Please specify if these are distributed to each individual student, given to groups of students, posted online for all students, or just to be used by teacher):

- Access to textbook, either physical copy or online PDF (each student)
- Access to graphing calculator, either through physical calculator or Desmos app (each student)
- Projector
- Notebook and Folder exclusively for Physics

Skills students will develop:

- Define and conceptualize how Electricity and basic circuitry works.
- Define and conceptualize waves, particularly in regards to Sound and Light

By the end of the quarter students will be able to _____ (must be measurable by assessments):

- Relate properties of waves to soundwaves
- Describe and explain sonic booms and the Doppler Effect
- Describe pitch and loudness
- Explain the Decibel Scale
- Explain natural frequencies and harmonics
- Relate properties of waves to lightwaves
- Define the electromagnetic spectrum and describe it in terms of frequencies and wavelengths
- Describe the behavior of electromagnetic radiation
- Describe positive and negative electric charges
- Characterize materials as conductors or insulators based on their electrical properties
- Describe electric polarization and charging by induction
- Describe Coulomb's Law
- Explain the properties of capacitors and dielectrics
- Describe Ohm's Law
- Interpret circuit diagrams and diagram basic circuit elements
- Interpret circuit diagrams with parallel resistors