# Navigating the Human-Al Transition: A Strategic Analysis of Work, Value, and Purpose in the 21st Century

### Section 1: The Evolving Definition of 'Irreplaceable' Work

The advent of advanced Artificial Intelligence (AI) represents a fundamental inflection point in the history of labor, compelling a radical re-evaluation of what constitutes valuable, and ultimately irreplaceable, human work. The discourse is rapidly moving beyond the familiar paradigm of automating routine physical tasks, which characterized the robotics revolution, to confront the profound impact of AI on cognitive labor. This new technological wave challenges the long-held assumption that higher education and specialized knowledge are reliable bulwarks against obsolescence. The analysis indicates that the new frontier of human value is shifting away from task execution and knowledge recall towards a suite of higher-order cognitive, creative, and emotional capabilities that define human ingenuity.

### 1.1. Beyond Automation: The New Criteria for Human Value

The primary structural shift occurring in the global labor market is the redefinition of "vulnerable work" from tasks that are manual and routine to those that are cognitive and routine. The proficiency of generative AI and Large Language Models (LLMs) in understanding, processing, and generating sophisticated natural language has rendered a wide array of high-skill, white-collar professions significantly exposed to automation. This marks a stark departure from previous technological disruptions.

Initial economic analyses provide a clear, if preliminary, measure of this impact. In developed economies such as South Korea, studies suggest that approximately 10% to 12% of all domestic jobs are highly susceptible to replacement by current generative AI models. The

roles most immediately at risk include translators, administrative staff, reporters, and secretaries—professions centered on the manipulation and synthesis of information.<sup>2</sup> This trend is not confined to specific sectors but represents a broad-based transformation. A landmark analysis by McKinsey & Company reveals a dramatic acceleration in automation potential, estimating that between 60% and 70% of all employee work *activities* can now be automated with current and near-future technologies. This is a substantial increase from previous estimates, driven almost entirely by Al's enhanced capabilities in natural language understanding, which directly target the core functions of knowledge work.<sup>1</sup>

This dynamic inverts the traditional risk profile of automation. Unlike industrial robots and earlier software, which primarily displaced blue-collar and lower-skilled clerical workers, Al's impact is disproportionately felt by high-income, high-education professionals. Concurrently, roles requiring sophisticated physical dexterity and direct interpersonal service remain, for the time being, more difficult and less cost-effective to automate.<sup>3</sup> This creates a novel socio-economic challenge, where the very credentials that once guaranteed career stability are now markers of potential vulnerability.

The underlying cause of this shift is the effective commodification of knowledge as a standalone economic asset. The core function of generative AI is to process, synthesize, and generate information by drawing upon vast, continuously updated datasets—a function that is functionally identical to the foundational definition of "knowledge work". Professions such as translation, legal discovery, financial analysis, and even a significant portion of software development are, at their core, sophisticated forms of information processing. Consequently, the possession of a large body of specialized knowledge is no longer a defensible economic moat for an individual professional. The AI system has access to a larger, more current, and more rapidly searchable knowledge base. This leads to an inescapable conclusion: human value in the professional sphere is migrating from the act of *knowing* information to the *application* of that information in ways that are not reducible to algorithmic pattern recognition. The new, durable criteria for what makes a professional "irreplaceable" are not based on what one knows, but rather on how one thinks, relates, creates, and strategizes with the knowledge that AI now provides as a utility.

### 1.2. The Augmentation Paradigm: Al as a Collaborative Partner

The most significant and immediate opportunities for value creation will not emerge from a zero-sum competition between humans and AI, but from the development of symbiotic, collaborative partnerships. In this augmentation paradigm, AI functions as a powerful cognitive tool that amplifies human intellect, automates routine cognitive tasks, and frees professionals to concentrate on activities that require strategic judgment, creative

problem-solving, and deep interpersonal engagement.

This collaborative model is already taking shape across numerous critical industries:

- Healthcare: All algorithms excel at analyzing vast quantities of medical data, such as radiological images or genomic sequences, to detect disease patterns or identify potential drug targets with a speed and accuracy that can surpass human capabilities. This allows human medical professionals to delegate the data-intensive aspects of diagnosis and research, enabling them to focus on complex patient consultations, holistic treatment planning, and the empathetic delivery of care.<sup>5</sup>
- Manufacturing and Logistics: In complex operational environments, hierarchical AI agents are being deployed to manage and optimize entire systems, from coordinating robotic arms on a production line to managing air traffic control or balancing energy distribution in a smart grid. In this model, humans transition from performing repetitive physical or logistical tasks to roles involving system design, strategic oversight, and handling novel exceptions that fall outside the AI's programming.<sup>5</sup>
- Finance and Sales: Al systems can analyze immense volumes of market data to inform investment decisions or sift through customer data to qualify sales leads with high efficiency. This augments the capabilities of human experts, who can then dedicate their time to high-level financial strategy, building long-term client relationships, and negotiating complex deals.<sup>5</sup>

The widespread adoption of this augmentation model implies a profound, second-order effect on the very nature of professional work: a "re-professionalization" of many fields. As AI systems systematically automate the routine, administrative, and data-heavy components of a profession—such as legal document review, writing boilerplate code, or compiling market reports—they strip away the functional "drudgery" of the role. This process allows, and indeed forces, human professionals to dedicate a greater proportion of their time and energy to the core, high-value aspects of their disciplines: nuanced strategic thinking for lawyers, creative architectural design for programmers, and empathetic, patient-centered care for doctors.

This shift effectively elevates the nature of the profession itself. It demands a higher and more consistent level of critical thinking, creativity, and interpersonal skill from the human practitioner. The title of "doctor" or "lawyer" may remain the same, but the day-to-day work becomes more intellectually demanding and fundamentally more human-centric. This will necessitate a significant and continuous upskilling of the workforce, even for those whose jobs are not eliminated but are instead transformed by their new Al partners.

### Section 2: The Workforce of Tomorrow: New Roles and

### **Core Competencies**

The AI-driven transformation of the labor market is a process of creative destruction, where the displacement of established job roles is being counterbalanced by the emergence of entirely new professions and a fundamental revaluation of essential human competencies. This section maps the contours of this new employment landscape, identifying the specific roles that are poised for growth and defining the durable, future-proof skills required to thrive in an economy increasingly shaped by intelligent systems. This analysis provides a strategic guide for individuals navigating their careers, educational institutions designing curricula, and policymakers crafting workforce development strategies.

#### 2.1. Emergent Professions in the Al Ecosystem

The narrative of mass technological unemployment, while a valid long-term concern, is currently overshadowed by a more immediate and dynamic reality of job transformation and creation. The World Economic Forum (WEF), in its comprehensive "Future of Jobs Report," projects that while millions of jobs centered on routine tasks will be displaced over the next five years, an even greater number of new roles will be created. This net positive growth will be concentrated in fields directly related to technology, data, and the green energy transition.<sup>3</sup>

The new professions emerging can be categorized into several key domains within the expanding AI ecosystem:

- Direct AI Development and Management Roles: At the core of the new economy are the professionals who build, train, and maintain AI systems. AI and Machine Learning Specialists, Data Analysts, Data Scientists, and Big Data Specialists consistently rank as the fastest-growing professions globally. The recent explosion in the capability of LLMs has also created an immediate and acute demand for a new role: the Prompt Engineer, a specialist skilled in crafting the precise instructions needed to elicit optimal performance from generative AI models.<sup>6</sup>
- Al Application and Integration Roles: A vast secondary market is developing for experts who can bridge the gap between AI technology and business application. AI Consultants will be essential for guiding organizations through their digital transformation journeys, helping them identify opportunities and implement AI solutions effectively.<sup>6</sup> As AI becomes a primary interface for customer and employee interaction, UI/UX Designers specializing in human-AI interaction will be critical for creating intuitive and efficient systems.<sup>5</sup>

- Governance, Trust, and Security Roles: The pervasive integration of AI into society creates a corresponding need for roles dedicated to its safe and ethical governance. As AI systems become targets for malicious actors, AI Security Specialists will be in high demand to protect against novel threats.<sup>6</sup> The potential for algorithmic bias and other unintended consequences necessitates the creation of roles like AI Ethicists and AI Auditors to ensure systems are fair, transparent, and accountable.<sup>5</sup> Furthermore, the rise of sophisticated AI-generated misinformation (deepfakes) will create a demand for "AI Generation Detectives" or digital forensics experts tasked with verifying the authenticity of digital content.<sup>6</sup>
- AI-Adjacent and Technology-Enabled Roles: The WEF report highlights that major secular trends, such as the green energy transition, are unfolding in parallel with the AI revolution and are themselves significant drivers of job creation. Roles like Renewable Energy Engineers and Electric Vehicle Specialists are among the fastest-growing professions. These fields are heavily reliant on AI for tasks like optimizing energy grids, designing efficient batteries, and developing autonomous vehicle systems, creating a synergy between technological and environmental goals.<sup>9</sup>

The structural nature of this shift is starkly illustrated by comparing the jobs projected to grow most rapidly with those facing the steepest decline.

Table 1: The Shifting Job Landscape (2025-2030)

| Top 15 Fastest-Growing Professions                | Top 10 Fastest-Declining Professions              |
|---------------------------------------------------|---------------------------------------------------|
| 1. Big Data Specialists                           | 1. Data Entry Clerks                              |
| 2. Fintech Engineers                              | 2. Bank Tellers and Related Clerks                |
| 3. Al and Machine Learning Specialists            | 3. Material-Recording and Stock-Keeping<br>Clerks |
| 4. Software and Applications Developers           | 4. Door-to-Door Sales Workers, News<br>Vendors    |
| 5. Security Management Specialists                | 5. Administrative and Executive Secretaries       |
| 6. Data Warehousing Specialists                   | 6. Legal Secretaries                              |
| 7. Autonomous and Electric Vehicle<br>Specialists | 7. Printing and Related Trades Workers            |

| 8. UI/UX Designers                          | 8. Legal Officials       |
|---------------------------------------------|--------------------------|
| 9. Light Truck or Delivery Services Drivers | 9. Postal Service Clerks |
| 10. Internet of Things (IoT) Specialists    | 10. Telemarketers        |
| 11. Data Analysts and Scientists            |                          |
| 12. Environmental Engineers                 |                          |
| 13. Information Security Analysts           |                          |
| 14. DevOps Engineers                        |                          |
| 15. Renewable Energy Engineers              |                          |

Source: Synthesized from World Economic Forum, "Future of Jobs Report 2025" 9

This juxtaposition provides a clear, data-driven directive for strategic planning. For policymakers and educators, it signals an urgent need to phase out vocational training programs focused on obsolete, routine administrative tasks and to aggressively invest in new curricula for technology, data analytics, and green engineering. For individuals, it serves as a powerful career guidance tool, starkly illustrating the diminishing economic value of repetitive information processing and the ascending value of complex analytical, technological, and sustainability-focused skills.

### 2.2. The Future-Proof Skillset: Cultivating Human-Centric Capabilities

While technical proficiency in AI-related fields is in high demand, an exclusive focus on these skills would be a strategic error. The rapid pace of technological change means that today's cutting-edge programming language or software platform could be obsolete in a decade. The most durable and valuable skills in the AI era are not specific technical abilities but rather meta-cognitive and social-emotional competencies. These are the uniquely human capabilities that AI cannot easily replicate and that enable individuals to effectively learn new technologies, collaborate with both AI and other humans, and navigate a world of unprecedented complexity.

A broad consensus is emerging from research institutions, future-of-work analysts, and thought leaders around a core set of these future-proof skills:

- Analytical and Critical Thinking: In a world saturated with information, much of it
  Al-generated, the ability to question, analyze, and critically evaluate data and sources is
  paramount. This includes the skill of identifying potential biases in Al outputs and making
  reasoned judgments based on incomplete or conflicting information.<sup>12</sup>
- Creativity and Innovation: While AI can generate novel combinations based on existing data, true creativity—the ability to formulate new questions, generate genuinely original ideas, and solve non-routine problems with imaginative solutions—remains a key human advantage.<sup>12</sup>
- Emotional Intelligence and Social Skills: This encompasses a range of abilities, including self-awareness, self-regulation, empathy, effective communication, and collaboration. As AI handles more analytical tasks, the human role will increasingly center on leading teams, negotiating with stakeholders, and building relationships—all of which depend on high emotional intelligence.<sup>13</sup>
- **Digital Literacy and AI Fluency:** This does not necessarily mean being able to code, but rather possessing a foundational understanding of how AI systems work, their core capabilities, their inherent limitations, and their ethical implications. This literacy is essential for using AI tools effectively and responsibly.<sup>12</sup>
- Adaptability and Lifelong Learning: The single most important meta-skill is the ability and mindset to continuously learn, unlearn, and relearn. The static career path is being replaced by a dynamic journey of continuous upskilling and reskilling to keep pace with technological change.<sup>12</sup>
- Philosophical and Ethical Thinking: As humans are tasked with designing, deploying, and overseeing powerful AI systems, the ability to grapple with complex moral questions, make value-based judgments, and design ethical safeguards becomes a critical competency, not just for philosophers but for engineers, managers, and policymakers.<sup>15</sup>

The rise of these competencies signals the collapse of the traditional dichotomy between "hard" (technical) and "soft" (interpersonal) skills. In the past, career paths were often seen as belonging to one track or the other. This distinction is becoming increasingly irrelevant. An effective AI Specialist, a quintessentially "hard skill" role, must possess strong critical thinking to debug flawed algorithms and creativity to devise new applications for the technology. They must also have strong communication skills to explain their complex work to non-technical stakeholders. Conversely, a business leader employing "soft skills" like emotional intelligence will be ineffective without a sufficient degree of digital literacy to understand how AI tools are transforming their industry and impacting their team's workflow. The most valuable professionals of the future will be those who can seamlessly integrate both technical acumen and human-centric capabilities. The strategic imperative for education and professional development is clear: the goal is not to choose between STEM and the humanities, but to cultivate individuals who are fluent in both.

Table 2: Core Competencies for the AI Era

| Competency                         | Description                                                                                                                                                          | Why It's Al-Resistant                                                                                                                                                                                                                       |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Critical Thinking                  | The ability to analyze information objectively, identify logical fallacies, recognize biases (including in AI outputs), and make reasoned, evidence-based judgments. | Al can process data and identify patterns but lacks true contextual understanding, common-sense reasoning, and the ability to make value-based judgments in novel or ambiguous situations.                                                  |
| Emotional Intelligence             | The capacity to be aware of, control, and express one's emotions, and to handle interpersonal relationships judiciously and empathetically.                          | Al can simulate empathy by recognizing emotional cues in text or voice, but it does not possess genuine consciousness or subjective feelings. It cannot build authentic trust or navigate complex, nuanced social dynamics.                 |
| Creativity & Originality           | The ability to generate novel, imaginative, and valuable ideas, solutions, and artistic expressions that are not simple derivations of existing data.                | Generative AI is fundamentally recombinatory, creating new outputs based on patterns in its training data. It struggles with true "out-of-the-box" thinking, conceptual breakthroughs, and understanding the cultural "why" behind an idea. |
| Adaptability & Learning<br>Agility | The mindset and capability to embrace change, learn new skills quickly, and apply knowledge in constantly evolving                                                   | Al systems are typically trained for specific tasks and are not inherently adaptable to entirely new domains without extensive                                                                                                              |

|                  | environments.                                                                                                                                              | retraining. Humans possess<br>a superior general<br>intelligence and ability to<br>transfer learning across<br>contexts.                                                                                          |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ethical Judgment | The ability to navigate complex moral dilemmas, apply ethical principles, and consider the societal consequences of actions and technological deployments. | Ethics are rooted in human values, consciousness, and societal contracts. Al can be programmed with ethical rules, but it cannot engage in genuine moral reasoning or take true responsibility for its decisions. |

Source: Synthesized from analyses in 12

### Section 3: The Human Imperative: Empathy, Service, and Societal Value

As Al's proficiency in analytical and routine cognitive tasks grows, the domains where human capabilities remain paramount are thrown into sharper relief. These are the realms of deep interpersonal connection, nuanced emotional understanding, and high-stakes, personalized service. This section investigates the fundamental limitations of Al in replicating genuine empathy and explores the resulting economic and societal implications. The analysis suggests the emergence of a "human premium," where services delivered with authentic human touch will not only persist but command greater value in an increasingly automated world.

### 3.1. The Last Mile of Empathy: Analyzing the Boundaries of Al in Emotional Labor

While AI can be programmed to recognize and simulate emotional expressions with increasing sophistication, it fundamentally lacks the core components of genuine empathy:

consciousness, subjective experience (qualia), and a deep, intuitive grasp of complex human contexts. This creates a hard, and likely permanent, ceiling on its ability to perform roles that require true emotional labor. This phenomenon is a modern extension of "Moravec's paradox," the observation in robotics that tasks requiring high-level reasoning (like playing chess) are easy for computers, while tasks requiring sensorimotor skills and intuitive, real-world understanding (like folding laundry) are extremely difficult.<sup>17</sup> Emotional and social intelligence represents the cognitive equivalent of this paradox.

The limitations of AI in this domain are both technical and philosophical:

- Technical Inaccuracy and Lack of Context: Current AI emotion recognition technologies, which analyze facial expressions, vocal tonality, or text sentiment, are often brittle and inaccurate. Their performance degrades significantly when faced with cultural differences in emotional expression, individual personality variations, and the inherent complexity of human feeling, which cannot be reliably reduced to a few biometric signals.<sup>19</sup> Crucially, AI lacks the ability to understand the deep, often contradictory context behind an emotional state. It cannot, for instance, easily distinguish between tears of joy and tears of grief, a distinction that is trivial for a human observer.<sup>22</sup>
- Ethical Risks in Sensitive Applications: The deployment of AI in fields requiring deep empathy, such as mental health counseling, has revealed dangerous failure modes. AI chatbots, designed to be supportive, have been reported to uncritically mirror and amplify users' negative thoughts, or in the most extreme cases, even encourage self-harm or suicide. This is because they lack the critical judgment, ethical grounding, and fundamental duty of care that are the bedrock of human therapeutic practice. While some studies show that AI can be perceived as highly empathetic in short-term interactions, this is a sophisticated simulation that can break down catastrophically when faced with a genuine human crisis. 25
- The Inherent Experiential Gap: The depth of human emotional and social intelligence is
  the product of millions of years of evolution, shaped by the demands of survival in
  complex social groups. This intricate, embodied intelligence is not something that can be
  easily reverse-engineered or replicated by current machine learning architectures, which
  are fundamentally pattern-matching systems, however advanced.<sup>18</sup>

This profound empathy deficit in AI creates a paradoxical effect in the labor market. As more routine customer service, administrative, and transactional tasks are automated by bots, direct human-to-human professional interactions become rarer and, therefore, more valuable. The very efficiency of AI in handling simple, high-volume queries acts as a filter, ensuring that the problems escalated to human agents are, by definition, the most complex, ambiguous, emotionally charged, and non-routine. When a customer finally reaches a human representative after navigating an automated system, their expectation for genuine understanding, creative problem-solving, and empathetic resolution is significantly higher. Therefore, the proliferation of AI does not eliminate the need for emotional labor; it concentrates this labor at the highest levels of difficulty and makes it more critical than ever

to business success. The future will likely require *fewer* customer service agents overall, but those who remain will need to be *more highly skilled* in empathy, communication, and complex problem-solving, creating a new class of elite "relationship managers" and a clear premium on emotional intelligence.

### 3.2. The Human Premium: Quantifying the Value of Human-Delivered Services

There is compelling, albeit early, evidence that consumers recognize the unique value of human interaction and are willing to pay a premium for it, particularly in high-stakes, personalized, or emotionally significant contexts. This willingness to pay creates a viable economic model for human-centric jobs to thrive alongside, and in differentiation from, Al-driven services.

Market research indicates that a significant majority of consumers—as high as 60% in some studies—are willing to pay more for access to premium, human-led customer service rather than rely solely on automated channels. This preference is rooted in the belief that human agents are better equipped to handle complexity, provide personalized solutions, and offer genuine empathy. This phenomenon can be partially explained by behavioral economics. Studies on the "pain of paying" have shown that the method of payment itself influences a consumer's willingness to spend; the abstract nature of credit cards, for example, makes it easier to spend larger amounts compared to the tangible act of handing over cash. A pleasant, effective, and empathetic human interaction can similarly mitigate the psychological "pain" of a purchase, making a higher price point feel more justified and valuable.

However, consumer perception is nuanced and context-dependent. For certain impersonal tasks, AI is not only accepted but may even be preferred. Research has shown that when providing personal data, consumers may feel *less* of a sense of privacy invasion and psychological pressure when interacting with an AI interface (like a tablet) than with a human employee. This is attributed to the perception that the AI has less agency or "power" to judge or misuse the information.<sup>28</sup> In contrast, in fields where authenticity and connection are the core product, such as influencer marketing, human creators continue to drive significantly higher rates of engagement and trust compared to their virtual, AI-generated counterparts.<sup>29</sup>

This evidence points toward an impending bifurcation of the service economy. All is on track to become the default delivery mechanism for mass-market, low-cost, efficiency-driven services, such as automated call centers, fast-food kiosks, and basic financial transactions. In response, human-delivered service, with its associated higher labor costs, is being repositioned as a premium or luxury offering. Examples include bespoke travel planning, high-end personal shopping, in-depth financial advisory services, and, of course,

psychotherapy and coaching.

This market segmentation presents a critical strategic choice for businesses: they must either compete on the basis of the efficiency, scale, and low cost of AI, or on the basis of the quality, personalization, and emotional connection of human touch. The "middle ground"—offering mediocre, impersonal human service at a moderate price—will likely be squeezed out by both superior AI alternatives and more valuable premium human services. This trend also raises a significant question of social equity. If access to empathetic human help in critical fields like healthcare, education, and legal aid becomes a premium service, it could exacerbate existing inequalities, creating a world where the affluent can afford human care while the majority are served by automated systems.

## Section 4: Systemic Adaptation: Reimagining Education and Social Contracts

The profound and rapid changes wrought by AI necessitate equally profound and deliberate adaptations at the societal level. The existing systems for education and social welfare, largely designed for the stable industrial economy of the 20th century, are inadequate for the dynamic and uncertain landscape of the 21st. Managing the Human-AI transition successfully requires a fundamental re-engineering of how we educate future generations and a radical rethinking of the social contracts that provide security and opportunity for all citizens. This section analyzes pioneering reforms in education and different models for social safety nets, providing a blueprint for building a more resilient and equitable future.

### 4.1. Re-engineering Education for an Al-Native Generation

The current dominant model of education, characterized by standardized curricula, age-based cohorts, and a primary focus on knowledge transfer and memorization, is a relic of the industrial age. It was designed to produce a workforce with a uniform set of skills for a relatively static economy. This model is now fundamentally misaligned with the needs of the AI era, which demands not knowledge retention, but creativity, critical thinking, and the capacity for continuous, adaptive learning. A paradigm shift in education is not merely beneficial; it is an urgent necessity.

Nations around the world are beginning to experiment with new educational models, with two distinct philosophical approaches emerging, exemplified by Finland and Singapore:

- The Finnish "Humanist" Model: Finland, long regarded as an educational leader, has adopted a cautious and holistic approach to technology in the classroom. The national strategy emphasizes a foundation of trust, equity, and student well-being. While AI tools are integrated where they provide clear value—for instance, as assistive technologies for students with learning difficulties—the primary focus is not on technology for its own sake. Instead, the curriculum prioritizes the development of uniquely human skills that are essential for navigating an AI-driven world: sophisticated media literacy, the critical thinking required to evaluate AI-generated information, and robust social-emotional learning to foster resilience and mental health. This human-centric philosophy is reflected in Finland's national AI strategy, which explicitly aims to leverage AI not just for economic growth, but for the improvement of overall citizen well-being.
- The Singaporean "Technologist" Model: In contrast, Singapore has embraced a more structured, proactive, and technology-forward strategy. Recognizing AI as a critical component of its future economy, the nation has launched ambitious initiatives like the "AI@NIE" project, which aims to integrate AI competencies into all teacher training programs by 2026. Singapore is systematically developing a comprehensive K-12 AI curriculum (through programs like AI for Kids and AI for Students) and has established clear ethical frameworks to guide the use of AI in educational settings. The pedagogical focus is on leveraging technology to create personalized learning pathways through adaptive systems that cater to individual student needs and paces.

Beyond national strategies, the pedagogical approach itself is evolving. The focus is shifting from rote learning to project-based, collaborative inquiry where AI is used as a powerful tool for research, creation, and problem-solving. This includes innovative methods like using game design principles to teach computational thinking and problem-solving skills <sup>37</sup> and deploying AI-powered tutoring systems to provide students with instant, personalized feedback and adaptive learning challenges.<sup>38</sup>

At first glance, the Finnish and Singaporean models may appear to be in opposition—one prioritizing humanistic defense against technology's downsides, the other embracing technological fluency as a core competency. However, they are not mutually exclusive; they represent two essential, complementary sides of a truly future-ready education. The Finnish model emphasizes the *why* of Al—teaching students how to think critically and ethically about its role in society. The Singaporean model emphasizes the *what* and *how*—providing the technical literacy needed to build and use the tools of the future. The optimal education system for the Al era must synthesize both. It requires the structured technical curriculum of Singapore to ensure students are empowered creators, not just passive consumers, of technology. Simultaneously, it needs the deep focus on critical thinking, ethics, and social-emotional learning championed by Finland to ensure that they wield these powerful tools wisely, humanely, and toward beneficial ends. One without the other is a partial and ultimately inadequate preparation for the world to come.

### 4.2. Architecting Resilient Social Safety Nets

The scale and velocity of job displacement and transformation driven by AI render traditional social safety nets, such as time-limited unemployment benefits, insufficient. These systems were designed for cyclical unemployment in a stable economy, not for systemic, technology-driven structural change. New models are urgently needed that provide not only a baseline of financial security but also clear pathways for continuous learning, social contribution, and the maintenance of purpose in a world where the nature of work is in flux.

Several distinct models for a next-generation social safety net are currently being debated and tested globally:

- Universal Basic Income (UBI): This model proposes providing a regular, unconditional cash payment to all citizens, regardless of their employment status. The largest and most prominent real-world experiment was conducted in Finland from 2017-2018. The final results were consistent and revealing: UBI had a negligible impact on increasing employment rates. However, it produced significant and measurable improvements in recipients' self-reported mental health, well-being, confidence, and sense of security.<sup>39</sup> The interpretation of the employment data is complicated by the fact that the Finnish government simultaneously introduced contradictory "activation" policies that increased conditionality for other benefits, potentially muddying the results.<sup>42</sup>
- Social Dialogue and Lifelong Learning (The German Model): Germany offers a different approach with its "Labor 4.0" initiative. This is not a cash transfer program but a framework for continuous, structured social dialogue involving the government, powerful industry associations, and labor unions. The goal is to collectively anticipate and manage the digital transition by proactively adapting job roles, investing in workforce retraining, and modernizing vocational education systems. This model is built upon Germany's long-standing and robust foundation of professional education and apprenticeship, focusing on upskilling and adapting the existing workforce to new technological realities rather than simply compensating them for job loss.
- Targeted Support and Modernized Insurance: A more incremental approach involves enhancing and modernizing existing systems. This includes expanding the eligibility and duration of unemployment insurance to cover a wider range of workers, including those in the gig economy. It also involves creating sophisticated, often AI-powered, national platforms for personalized, just-in-time reskilling. These platforms can assess an individual's skills, identify emerging job opportunities, and provide curated pathways to relevant training and certification programs. It is included and included approach involves enhancing the eligibility and duration of unemployment insurance in the eligibility and duration of unemployment insurance to cover a wider range of workers, including those in the gig economy. It also involves creating sophisticated, often AI-powered, national platforms for personalized, just-in-time reskilling. These platforms can assess an individual's skills, identify emerging job opportunities, and provide curated pathways to relevant training and certification programs.

The results of the UBI experiments provide a critical lesson: financial stability alone does not automatically lead to economic re-engagement. Job loss is not merely an economic crisis for

an individual; it is often a crisis of identity, purpose, and social connection. A safety net that provides only money may fail to address these crucial psychological and social dimensions. The German "Labor 4.0" model, by contrast, implicitly recognizes this by focusing on maintaining the individual's role as a skilled and valued contributor to the economy through a process of continuous adaptation and social consensus.

This suggests that the most effective and humane social safety net for the AI era will not be a single policy but an integrated, multi-layered system. Such a system would require a strong financial foundation—whether through a form of basic income, a modernized unemployment insurance system, or other mechanisms—to provide essential security and reduce the anxiety of transition. Crucially, this financial layer must be coupled with a robust and accessible infrastructure for lifelong learning and purpose—such as the German social dialogue model or universally accessible retraining platforms—to provide individuals with a tangible path forward. One component without the other is a partial solution that addresses either the economic or the psychological need, but fails to address the full human cost of technological displacement.

**Table 4: Social Safety Net Models: A Comparative Analysis** 

| Model                           | Core Mechanism                                                                                                                        | Key Findings /<br>Outcomes                                                                                                                           | Strengths &<br>Weaknesses                                                                                                                                                           |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Universal Basic<br>Income (UBI) | Unconditional, regular cash transfer to all citizens.                                                                                 | Finland Experiment: Significantly improved mental health, well-being, and security. Minimal to no positive effect on employment rates. <sup>40</sup> | Strengths: Simple to administer, reduces poverty, removes stigma, provides autonomy.  Weaknesses: High fiscal cost, may not incentivize work, does not directly address skill gaps. |
| German "Labor<br>4.0"           | Tripartite social dialogue between government, industry, and labor unions to co-manage digital transition through vocational training | High degree of social consensus, strong focus on proactive upskilling and preserving a skilled workforce identity. <sup>43</sup>                     | Strengths: Inclusive, preserves work identity, fosters collaboration, directly tackles skill mismatch. Weaknesses:                                                                  |

|                                       | and workforce<br>adaptation.                                                                                       |                                                                                                                                                                  | Complex to implement, requires high social trust and strong institutions.                                                                                                                   |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enhanced<br>Insurance &<br>Retraining | Modernizing existing unemployment insurance and creating national platforms for targeted, just-in-time reskilling. | Varies by implementation; can be effective if retraining is closely linked to market demand. Relies on existing but often outdated infrastructure. <sup>47</sup> | Strengths: Builds on existing systems, can be targeted and cost-effective.  Weaknesses: Can be bureaucratic, may carry stigma, risks training for obsolete jobs if not dynamically updated. |

# Section 5: The New Frontiers of Governance: Creativity and Ethics

The rise of AI creates novel and profound governance challenges that strain existing legal and ethical frameworks. This section confronts two of the most critical frontiers: the ownership and rights associated with AI-generated creative works, and the establishment of robust ethical principles to guide and constrain algorithmic decision-making. Navigating these frontiers successfully is essential for fostering innovation while protecting fundamental human rights and societal values.

### 5.1. Authorship and Artistry in the Age of Algorithms

The legal concept of copyright, which has for centuries been built on the foundation of human creativity and intellectual labor, is being fundamentally challenged by the advent of generative AI. AI systems can now produce sophisticated text, images, and music that are often indistinguishable from human-created works, raising a critical question: who, if anyone, is the

"author"? In response, nations are beginning to develop divergent regulatory and legal frameworks, creating a complex, uncertain, and potentially fragmented global landscape for intellectual property (IP).

A comparative analysis of major jurisdictions reveals competing philosophies:

- United States: The U.S. Copyright Office (USCO) has adopted a firm and clear "human authorship" doctrine. Official guidance states that a work generated solely by an AI system, without meaningful creative intervention from a human, is not eligible for copyright protection. Copyright can only be granted to the human-created elements of a work in which AI was used as a tool, much like a camera or a word processor. The mere act of writing a text prompt is generally considered insufficient to meet the threshold for authorship.<sup>49</sup> This position is grounded in long-standing legal precedent and has been affirmed in federal court, most notably in the *Thaler v. Perlmutter* case, which denied copyright to an image created by an AI without human guidance.<sup>49</sup>
- **European Union:** The EU has approached the issue not primarily through the lens of authorship, but through transparency and the rights of existing data owners. The landmark EU AI Act imposes significant transparency obligations on the providers of general-purpose and generative AI models. They are required to produce detailed summaries of the copyrighted data used to train their systems. Crucially, the legal framework also respects the right of copyright holders to explicitly "opt-out" of having their publicly available data used for the purpose of Text and Data Mining (TDM), giving creators a mechanism to prevent their works from being ingested by AI models. <sup>53</sup>
- China: The legal landscape in China is more fluid and appears to be evolving in a direction that is more favorable to protecting AI-generated content. Some influential court rulings, such as a decision by the Beijing Internet Court, have suggested that AI-generated outputs *can* be protected by copyright, provided there is sufficient human intellectual investment and creative choice involved in the creation process (e.g., through detailed, iterative prompting and careful selection of the final output). This creates a more flexible and potentially lower standard for "authorship" than the strict U.S. approach. <sup>56</sup>
- Canada: The Canadian Intellectual Property Office has historically shown a greater openness to non-human authors, at one point approving a copyright registration that listed an AI application as a co-author, suggesting a legal framework that may not strictly require human creativity.<sup>56</sup>

These divergent approaches are not merely technical legal differences; they represent competing regulatory philosophies with significant strategic implications. The conservative U.S. model prioritizes the protection of traditional human creators and provides legal certainty, but it may slow the commercialization of purely AI-generated media. The EU model prioritizes consumer rights, creator control over existing data, and corporate transparency, but it could create high compliance costs and data-sourcing challenges for AI developers. The more permissive Chinese model appears designed to incentivize the rapid development and

commercial deployment of its domestic AI industry by granting its outputs the valuable protection of IP law. This divergence could lead to a form of "regulatory arbitrage," where AI companies choose to develop and headquarter their operations in jurisdictions with the most favorable IP laws, potentially creating "AI IP Havens" that attract talent and investment at the expense of regions with more restrictive regimes.

Table 3: Global Approaches to AI & Copyright

| Jurisdiction   | Core Principle                                                                                                         | Key Regulations /<br>Rulings                                                                               | Implication for AI<br>Developers                                                                                                                          |
|----------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| United States  | Human Authorship Doctrine: Copyright requires a human author. Al is a tool, not a creator.                             | USCO Guidance on<br>AI; <i>Thaler v.</i><br><i>Perlmutter</i> court<br>decision. <sup>49</sup>             | Must document and prove significant, creative human contribution to the final work. Simple prompting is not enough.                                       |
| European Union | Transparency & Data Rights: Focus on the legality of training data and creator control.                                | EU AI Act: Mandates disclosure of training data summaries; respects TDM opt-outs. <sup>54</sup>            | High compliance<br>burden related to<br>data sourcing and<br>transparency. Must<br>respect creator<br>opt-outs,<br>potentially limiting<br>training data. |
| China          | Incentivizing Al Innovation: Potential for copyright protection based on human intellectual investment in the process. | Beijing Internet<br>Court ruling<br>recognizing<br>copyright in an<br>AI-generated<br>image. <sup>56</sup> | Potential to secure copyright protection for AI-generated outputs, creating commercial assets and incentivizing development.                              |

### 5.2. The Algorithmic Dilemma: Al as Both Solution and Problem in

#### **Ethics**

Al presents a profound ethical paradox. On one hand, it holds the potential to overcome certain ingrained human biases by making decisions based on data rather than prejudice. On the other hand, it can introduce new, systemic, and often invisible biases at an unprecedented scale. Effective governance requires moving beyond a simplistic "good vs. bad" framing to a sophisticated risk-management approach that acknowledges Al as a powerful but flawed tool.

Al's capacity to create and amplify ethical problems is well-documented:

- Algorithmic Bias: Al systems learn from the data they are trained on. If that data reflects historical societal biases, the Al will learn, codify, and perpetuate those biases. A prominent example is Amazon's experimental Al recruiting tool, which was scrapped after it was found to penalize resumes containing the word "women's" because it had been trained on a decade of predominantly male resumes.<sup>58</sup> Similarly, early image recognition algorithms notoriously mislabeled people of color at higher rates due to unrepresentative training datasets.<sup>59</sup>
- Accountability Gaps: When an autonomous system makes a harmful decision, determining liability becomes a complex legal and ethical challenge. In fatal accidents involving autonomous vehicles operating in self-driving mode, the question of responsibility is distributed among the vehicle's owner (who may have been inattentive), the car manufacturer, and the developer of the AI software. This "accountability gap" creates a legal gray area that existing frameworks are ill-equipped to handle.<sup>58</sup>
- Privacy Invasion and Manipulation: Al-powered services, from virtual assistants to recommendation engines, function by collecting and analyzing vast quantities of personal data. This creates significant risks of surveillance, data breaches, and the misuse of personal information for manipulative purposes, such as hyper-targeted advertising that exploits psychological vulnerabilities.<sup>59</sup>

The core of the ethical challenge lies in the systemic nature of AI risk. When a single human recruiter is biased, they may unfairly affect dozens or even hundreds of candidates over their career. When a biased AI recruiting algorithm is deployed by a multinational corporation, it can systematically and consistently discriminate against millions of candidates, often without any clear mechanism for appeal or recourse. Similarly, a single human driver's error causes one tragic accident. A single flaw in an autonomous vehicle's control algorithm could, in theory, cause thousands of identical accidents simultaneously across an entire fleet.

Therefore, the ethical stakes with AI are of a different order of magnitude than with previous technologies. An error is no longer an isolated incident; it is a potential systemic failure. This reality renders the traditional approach of "correcting mistakes after they happen" dangerously inadequate. Governance must shift to a proactive, pre-deployment model. This requires rigorous auditing of datasets for bias, demanding transparency in how algorithms

make decisions, and implementing robust risk mitigation and testing protocols *before* a high-stakes AI system is released into the world.

## Section 6: Conclusion: Redefining the Meaning of Work in a Post-Labor Future

The preceding analysis has mapped the multifaceted transformation of labor, society, and governance in the face of advanced AI. It has shown that the very definition of "irreplaceable" work is shifting from knowledge possession to creative and empathetic application; that new professions are emerging as old ones fade; that our educational and social support systems require fundamental re-engineering; and that we face novel challenges in law and ethics. Synthesizing these findings leads to the most profound question of all: if AI eventually performs the majority of the labor required for economic production and human survival, how will humanity define its purpose and value?

The potential automation of most traditional labor forces a necessary and urgent re-evaluation of the concept of "work" itself. For centuries, and particularly since the Industrial Revolution, human identity in many cultures has been inextricably linked to one's job. Labor has been the primary mechanism for securing income, structuring daily life, building social connections, and deriving a sense of self-worth and contribution. <sup>62</sup> The AI revolution threatens to deliberately and permanently uncouple this historical link between labor, income, and identity.

This uncoupling should not be viewed solely as a threat, but as a monumental opportunity. Much of modern labor, when viewed through a philosophical lens, can be understood as a form of "alienated labor." In this state, the worker is disconnected from the final product of their efforts, has little autonomy over the process, and engages in the activity not as a form of self-expression but as an instrumental means to survival. All has the potential to automate precisely these alienated, repetitive, and soul-crushing aspects of labor on a global scale.

By freeing humanity from the necessity of instrumental labor for survival, AI could enable a great societal pivot. The focus of human activity could shift from "jobs"—the often-coerced participation in economic production—to "work" in its broadest and most noble sense: the voluntary and passionate pursuit of mastery, creativity, community, and self-actualization. This new conception of work would encompass activities that are currently undervalued or uncompensated by the market economy: fundamental scientific research, the creation of art and music, the nurturing of children and care for the elderly, the building of strong communities, the pursuit of lifelong learning, and the cultivation of deep interpersonal

#### relationships.

The primary obstacle to this future is not technological, but socio-political and cultural. Realizing this vision requires the deliberate construction of new societal systems. It demands the robust social safety nets discussed in Section 4.2 to provide the unconditional economic security that allows people to pursue non-market work. It requires the new educational paradigm outlined in Section 4.1, which cultivates creativity and critical thinking rather than training for obsolete jobs. Most importantly, it requires a profound cultural re-evaluation of what constitutes a "valuable" and "productive" life, moving beyond narrow economic metrics to a more holistic understanding of human flourishing.

The analysis presented in this report leads to a final, overarching conclusion. The evidence shows that routine tasks, cognitive activities, and entire professions are being automated. It also shows that the most durable, valuable, and AI-resistant human qualities are creativity, critical thought, emotional intelligence, and ethical judgment. These are the qualities that define our species, not typically exercised in the confines of a "job," but fundamental to the human experience as expressed through art, science, philosophy, and care. If AI can provide for our material needs, then the central "work" of humanity will be to use these unique capabilities to push the boundaries of knowledge, culture, and compassion. The meaning of work will be redefined away from economic production and towards human flourishing. This is the ultimate challenge, and the profound promise, of the AI era. The future of work is not a job.

#### 참고 자료

- 1. 맥킨지(McKinsey), 생성형 AI의 경제적 잠재력에 대한 보고서 발간 ..., 10월 8, 2025에 액세스, https://discuss.pytorch.kr/t/mckinsey-ai-66p-pdf/1843
- 2. 설마 내 일자리도?...AI가 대체 가능한 직업 뭐길래 화들짝 한국경제, 10월 8, 2025에 액세스, <a href="https://www.hankyung.com/article/202412196904i">https://www.hankyung.com/article/202412196904i</a>
- 3. AI와 일자리의 미래 PwC, 10월 8, 2025에 액세스, <a href="https://www.pwc.com/kr/ko/insights/issue-brief/samilpwc\_ai-jobs-future.pdf">https://www.pwc.com/kr/ko/insights/issue-brief/samilpwc\_ai-jobs-future.pdf</a>
- 4. 2025년 AI의 인간 일자리 대체 원년되나···"점진적 대체후 급작스레" 테크42, 10월 8, 2025에 액세스, https://www.tech42.co.kr/2025%EB%85%84-ai%EC%9D%98-%EC%9D%B8%EA%B0%84-%EC%9D%BC%EC%9E%90%EB%A6%AC-%EB%8C%80%EC%B2%B4-%EC%9B%90%EB%85%84%EB%90%98%EB%82%98%C2%B7%C2%B7%C2%B7%EC%A0%90%EC%A7%84%EC%A0%81-%EB%8C%80/
- 5. 인공지능과 인간의 협업: 미래의 직업 변화 코드잇, 10월 8, 2025에 액세스, https://www.codeit.kr/tutorials/20057/%EC%9D%B8%EA%B3%B5%EC%A7%80% EB%8A%A5%EA%B3%BC%20%EC%9D%B8%EA%B0%84%EC%9D%98%20%ED %98%91%EC%97%85%3A%20%EB%AF%B8%EB%9E%98%EC%9D%98%20%EC %A7%81%EC%97%85%20%EB%B3%80%ED%99%94
- 6. AI로 인해 새로 생겨날 7가지 직업 | 피플앤잡 Daum, 10월 8, 2025에 액세스, <a href="https://v.daum.net/v/6VuCQ2iHdv">https://v.daum.net/v/6VuCQ2iHdv</a>

- 7. AI 에이전트의 실제 사례 36가지 Botpress, 10월 8, 2025에 액세스, https://botpress.com/ko/blog/real-world-applications-of-ai-agents
- 8. 고객 서비스의 미래는 AI와 인간의 협업 SAP Korea 뉴스센터, 10월 8, 2025에 액세스,
  - https://news.sap.com/korea/2022/08/%EA%B3%A0%EA%B0%9D-%EC%84%9C%EB%B9%84%EC%8A%A4%EC%9D%98-%EB%AF%B8%EB%9E%98%EB%8A%94-ai%EC%99%80-%EC%9D%B8%EA%B0%84%EC%9D%98-%ED%98%91%EC%97%85/
- 9. 세계경제포럼(WEF) 미래의 일자리 보고서 요약 4차산업혁명센터, 10월 8, 2025에 액세스.
  - https://koreago.net/wp-content/uploads/2025/01/250121\_-future-of-jobs-%EC%9A%94%EC%95%BD-2.pdf
- 10. [AI넷] [WEF, 2025년 미래 일자리 보고서: 가장 빠르게 성장하고 감소하는 일자리] 가장 빠르게 성장하는 직업 3개는 빅데이터 전문가, 핀테크 엔지니어, AI 및 머신 러닝 전문가, 10월 8, 2025에 액세스, http://www.ainet.link/18396
- 11. AI 시대 직업, 유망한 직업 vs 대체될 직업 AI 히어로즈, 10월 8, 2025에 액세스, https://aiheroes.ai/community/196
- 12. AI 시대에 꼭 필요한 역량 갖추기 | 아이스크림 홈런, 10월 8, 2025에 액세스, http://home-learn.kr/newsroom/news/A/2315
- 13. AI시대 직장인 6가지 필수 자질 유컴패니온 홈페이지, 10월 8, 2025에 액세스, https://www.ucomp.co.kr/story/story\_detail?story\_gubun=v&story\_type=Newslett er&story\_no=225
- 14. [발언대] 나날이 발전하는 AI 시대, 우리가 갖추어야 할 역량은?, 10월 8, 2025에 액세스, https://news.unn.net/news/articleView.html?idxno=579805
- 15. 인공지능(AI)이 바꾸는 직업의 미래에 갖춰야 할 필수 생존능력 **3**가지 원더스랩, 10월 **8**, 2025에 액세스, <a href="https://wonderslab.kr/32/?bmode=view&idx=19660893">https://wonderslab.kr/32/?bmode=view&idx=19660893</a>
- 16. 주현재 칼럼: AI 시대의 미래 유망 직업 찾기 HealthEco.Media, 10월 8, 2025에 액세스, http://healtheco.media/news/article.html?no=23313
- 17. AI의 습격… 일자리는 많아질까? 줄어들까? | 나라경제 | KDI 경제교육·정보센터, 10월 8, 2025에 액세스, https://eiec.kdi.re.kr/publish/naraView.do?fcode=00002000040000100008&cidx =10889&sel year=2017&sel month=02&pp=20&pg=1
- 18. AI 시대, 미래의 노동자는 어떠한 역량이 필요할까? ::: Webzine :::, 10월 8, 2025에 액세스, https://webzine.mynewsletter.co.kr/newsletter/kcplaa/202203-4/4.pdf
- 19. 인공지능과 인간의 감정 인식 코드잇, 10월 8, 2025에 액세스, <a href="https://www.codeit.kr/tutorials/20154/%EC%9D%B8%EA%B3%B5%EC%A7%80%EB%8A%A5%EA%B3%BC%20%EC%9D%B8%EA%B0%84%EC%9D%98%20%EA%B0%90%EC%A0%95%20%EC%9D%B8%EC%8B%9D">https://www.codeit.kr/tutorials/20154/%EC%9D%B8%EA%B3%B5%EC%A7%80%EB%8B%B0%84%EC%9D%98%20%EA%B0%90%EC%A0%95%20%EC%9D%B8%EC%8B%9D</a>
- 20. AI와 감정 인식: 새로운 기술 패러다임의 구축 Goover, 10월 8, 2025에 액세스, <a href="https://seo.goover.ai/report/202503/go-public-report-ko-f43f7d9d-a4b9-415a-ae3f-071b73329289-0-0.html">https://seo.goover.ai/report/202503/go-public-report-ko-f43f7d9d-a4b9-415a-ae3f-071b73329289-0-0.html</a>
- 21. Al 기반 감성증강 10대 유망 서비스 탐색 한국전자통신연구원, 10월 8, 2025에 액세스, https://ksp.etri.re.kr/ksp/plan-report/file/664.pdf
- 22. 인공지능이 일자리 대체에서 감정지능이 부족해 생긴 사례 | 물어봐 AI 요즘IT, 10월 8, 2025에 액세스,

- https://yozm.wishket.com/magazine/questions/share/0nZr71VwOhaUYFfn/
- 23. "내 '최애'와 감정 교감"...전 세계가 빠진 페르소나 AI, 윤리적 문제 없을까, 10월 8, 2025에 액세스, <a href="https://zdnet.co.kr/view/?no=20241101152117">https://zdnet.co.kr/view/?no=20241101152117</a>
- 24. 어떨 땐 맞고, 어떨 땐 틀리다...생성형 AI와 심리 상담 찬반 팽팽 한국경제, 10월 8, 2025에 액세스, https://www.hankyung.com/article/2023061233241
- 25. Al 심리 상담, 정말 안전할까? 장점과 한계 총정리! | [podcast] 펠라고스 episode 14, 10월 8, 2025에 액세스, https://www.youtube.com/watch?v=OgiGeiNRuNI
- 26. 24% 비용 절감의 비밀... 기업들이 앞다투어 도입하는 AI 고객 서비스의 실체, 10월 8, 2025에 액세스, https://aimatters.co.kr/news-report/ai-report/17735/
- 27. [행동경제학으로 보는 세상(91)] 합리적인 소비를 원한다면 신용카드를 잘라라, 10월 8, 2025에 액세스,
  - https://www.newsquest.co.kr/news/articleView.html?idxno=100383
- 28. [DBR]고객정보 수집, 인간보다 AI가 할 때 덜 민감하게 느껴 동아일보, 10월 8, 2025에 액세스,
  - https://www.donga.com/news/Economy/article/all/20250817/132193586/2
- 29. Al vs 인간 인플루언서, 수익 차이 무려 46배... 2025년 마케팅 트렌드 전자신문, 10월 8, 2025에 액세스,
  - https://m.etnews.com/20250912000212?obj=Tzo4OiJzdGRDbGFzcyl6Mjp7czo3OiJyZWZlcmVyljtOO3M6NzoiZm9yd2FyZCl7czoxMzoid2VilHRvlG1vYmlsZSl7fQ%3D%3D
- 30. 핀란드 스마트교육... 현재와 미래 사이언스타임즈, 10월 8, 2025에 액세스, <a href="https://www.sciencetimes.co.kr/nscvrg/view/menu/256?searchCategory=227&nscvrgSn=109528">https://www.sciencetimes.co.kr/nscvrg/view/menu/256?searchCategory=227&nscvrgSn=109528</a>
- 31. 핀란드 AI 및 디지털 교육 정책의 명암(明暗) 새로운 비상과 심화된 디지털 불평등, 10월 8, 2025에 액세스, <a href="https://21erick.org/column/13531/">https://21erick.org/column/13531/</a>
- 32. [기고] 디지털과 인공지능(AI)을 바라보는 핀란드 교육계의 관점, 한국과 무엇이 다른가 ②, 10월 8, 2025에 액세스,
  - http://www.kedu.news/bbs/board.php?bo table=news&wr id=3927
- 33. 핀란드의 인간중심 디지털플랫폼정부 한국지능정보사회진흥원, 10월 8, 2025에 액세스.
  - https://www.nia.or.kr/common/board/Download.do?bcldx=24729&cbldx=39485&fileNo=2
- 34. [창간 5주년 특집] 탄운셍 싱가포르 국립교육원 센터장 "AI 교육, 본질은 사람", 10월 8, 2025에 액세스, https://www.newstheai.com/news/articleView.html?idxno=7887
- 35. 연구보고서 | 한국교육개발원, 10월 8, 2025에 액세스,
  - https://www.kedi.re.kr/khome/main/research/selectPubForm.do?plNum0=15660
- 36. (PDF) An Analysis and Implications of the Al lifelong learning system in Singapore, 10월 8, 2025에 액세스,
  - https://www.researchgate.net/publication/366730683\_An\_Analysis\_and\_Implications\_of\_the\_Al\_lifelong\_learning\_system\_in\_Singapore
- 37. 인공지능 시대의 교육 혁신: 도전, 사례 및 해결 방안 Goover, 10월 8, 2025에 액세스.
  - https://seo.goover.ai/report/202504/go-public-report-ko-1ccdc178-b425-4b30-8 50c-f71c17b803af-0-0.html
- 38. AX 시대의 교육 혁신: 에듀테크에서 AI 활용 사례 클라썸 블로그, 10월 8. 2025에

- 액세스, https://ko.blog.classum.com/ax-edutech
- 39. 핀란드 기본소득실험 1차 결과 상세보기|사회 | 주오이시디 대한민국 대표부 -외교부, 10월 8, 2025에 액세스, https://overseas.mofa.go.kr/oecd-ko/brd/m\_20807/view.do?seq=64&srchFr=&srch

To=&srchWord=&srchTp=&multi\_itm\_seq=0&itm\_seq\_1=0&itm\_seq\_2=0&compan y\_cd=&company\_nm=

- 40. [최종보고서] '핀란드 기본소득 실험' 결과 개요, 10월 8, 2025에 액세스, https://basicincomekorea.org/overview\_the-final-results-of-the-finnish-basic-income-experiment-2017-2018/
- 41. e세계농업\_제5호\_핀란드\_기본소득실험의\_결과와\_정책적\_시사점\_최한수.pdf 한국농촌경제연구원, 10월 8, 2025에 액세스, https://www.krei.re.kr/namo/binary/files/000016/e%EC%84%B8%EA%B3%84%EB%86%8D%EC%97%85\_%EC%A0%9C5%ED%98%B8\_%ED%95%80%EB%9E%80%EB%93%9C\_%EA%B8%B0%EB%B3%B8%EC%86%8C%EB%93%9D%EC%8B%A4%ED%97%98%EC%9D%98\_%EA%B2%B0%EA%B3%BC%EC%99%80\_%EC%A0%95%EC%B1%85%EC%A0%81\_%EC%8B%9C%EC%82%AC%EC%A0%90\_%EC%B5%9C%ED%95%9C%EC%88%98.pdf
- 42. 보편적 복지국가에서 보편적 기본소득으로? 핀란드 기본소득 정책 실험의 최종 결과와 함의\*, 10월 8, 2025에 액세스, https://journal.kci.go.kr/jssk/archive/articlePdf?artild=ART002677944
- 43. 사회적 대화 프로세스의 관점에서 본 독일의 산업 4.0과 노동 4.0 글로벌정치연구 KISS, 10월 8, 2025에 액세스, <a href="https://kiss.kstudy.com/Detail/Ar?key=3653226">https://kiss.kstudy.com/Detail/Ar?key=3653226</a>
- 44. 독일의 산업 4.0과 노동 4.0 한겨레, 10월 8, 2025에 액세스, https://www.hani.co.kr/arti/area/honam/1196075.html
- 45. Deutschland ist... Industrie 4.0 Deutsche Botschaft Seoul, 10월 8, 2025에 액세스, <a href="https://seoul.diplo.de/blob/2261768/7804a7f439435aa4627f61821cc06dd3/bomag54-data.pdf">https://seoul.diplo.de/blob/2261768/7804a7f439435aa4627f61821cc06dd3/bomag54-data.pdf</a>
- 46. 독일의 인더스트리 4.0과 노동 4.0에 관한 논의 | 국내연구자료 | KDI 경제교육·정보센터, 10월 8, 2025에 액세스, https://eiec.kdi.re.kr/policy/domesticView.do?ac=0000140164
- 47. 새로운 위험에 대응한 사회안전망 구축 KDI 한국개발연구원 연구, 10월 8, 2025에 액세스, https://www.kdi.re.kr/research/reportView?pub\_no=17517
- 48. AI 시대의 일자리 변화와 정책 대응 전략 한국지능정보사회진흥원, 10월 8, 2025에 액세스, https://www.nia.or.kr/common/board/Download.do?bcldx=28454&cbldx=82618&fil
  - https://www.nia.or.kr/common/board/Download.do?bcldx=28454&cbldx=82618&fileNo=4
- 49. AI 저작권 보호, 어디까지 가능할까...美 저작권청 보고서 지디넷코리아, 10월 8, 2025에 액세스, <a href="https://zdnet.co.kr/view/?no=20250131100933">https://zdnet.co.kr/view/?no=20250131100933</a>
- 50. 미국 저작권청(U.S. Copyright Office)의 2025년 AI 저작권 보고서 살펴보기 디지털새싹, 10월 8, 2025에 액세스, https://www.xn--2z1bz5tdvbiwlf4j.com/131
- 51. 미국 저작권청, "AI 산출물, 사람이 기여한 부분만 저작권 인정" IPDaily, 10월 8, 2025에 액세스,
  - https://www.ipdaily.co.kr/2025/02/01/18/15/03/37685/%EB%AF%B8%EA%B5%AD-%EC%A0%80%EC%9E%91%EA%B6%8C%EC%B2%AD-ai-%EC%82%B0%EC%B6 %9C%EB%AC%BC-%EC%82%AC%EB%9E%8C%EC%9D%B4-%ED%95%9C-%EB

- %B6%80%EB%B6%84%EB%A7%8C-%EC%A0%80%EC%9E%91%EA%B6%8C/
- 52. 2025년 제1호-[미국] 저작권청, 「저작권과 인공지능」제2부 보고서 발표(손휘용) > 저작권동향(상세) > 저작권동향(판례) > 자료 > 한국저작권위원회, 10월 8, 2025에 액세스.
  - https://www.copyright.or.kr/information-materials/trend/the-copyright/view.do?brdctsno=53928&pageIndex=7¬iceYn=&brdclasscodeList=&etc2=&etc1=&searchText=&searchKeyword=&brdclasscode=&nationcodeList=&searchTarget=ALL&nationcode=
- 53. 유럽연합 인공지능법(EU Al Act) 제정의 저작권법적 시사점\* \*\* 인하대학교 법학전문대학원, 10월 8, 2025에 액세스,
  - https://ils.inha.ac.kr/bbs/ils/3464/120199/download.do
- 54. 유럽연합(EU) 인공지능법안(Al Act)과 저작권법 한국저작권위원회, 10월 8, 2025에 액세스,
  - https://www.copyright.or.kr/information-materials/trend/the-copyright/download.do?brdctsno=52561&brdctsfileno=22595
- 55. 유럽의회, 「AI법」가결 < 유럽연합(EU) < 법제동향 < 동향 보고서 | 세계법제정보센터, 10월 8, 2025에 액세스, <a href="https://world.moleg.go.kr/web/dta/lgslTrendReadPage.do?CTS\_SEQ=52117&AST\_SEQ=96">https://world.moleg.go.kr/web/dta/lgslTrendReadPage.do?CTS\_SEQ=52117&AST\_SEQ=96</a>
- 56. 인공지능/저작권 나무위키:대문, 10월 8, 2025에 액세스, <a href="https://namu.wiki/w/%EC%9D%B8%EA%B3%B5%EC%A7%80%EB%8A%A5/%EC%A0%80%EC%9E%91%EA%B6%8C">https://namu.wiki/w/%EC%9D%B8%EA%B3%B5%EC%A7%80%EB%8A%A5/%EC%A0%80%EC%9E%91%EA%B6%8C</a>
- 57. "AI로 만들었으면서 저작권은 무슨"...中 법원 "창작물 아닌 아이디어 수준" 매일경제, 10월 8, 2025에 액세스, <a href="https://www.mk.co.kr/news/it/11301139">https://www.mk.co.kr/news/it/11301139</a>
- 58. 사례돋보기 인공지능의 역습 국민권익위원회, 10월 8, 2025에 액세스, <a href="https://www.acrc.go.kr/briefs/201901/html/sub2.html">https://www.acrc.go.kr/briefs/201901/html/sub2.html</a>
- 59. 9.인공지능 윤리(중급) Part 2. AI 윤리 문제 사례 AI4School, 10월 8, 2025에 액세스, <a href="http://ai4school.org/?page\_id=2781">http://ai4school.org/?page\_id=2781</a>
- 60. [핫클립] 인공지능 윤리적 이슈 사례 / YTN 사이언스 YouTube, 10월 8, 2025에 액세스, https://www.youtube.com/watch?v=LIDAYy34dKY
- 61. 인공지능 윤리적 딜레마 예시 | 물어봐 AI 요즘IT 위시켓, 10월 8, 2025에 액세스, https://yozm.wishket.com/magazine/guestions/share/1ziVEbhfxl6AOcTR/
- 62. 노동에 대한 새로운 철학 | 토마스 바셰크 교보문고, 10월 8, 2025에 액세스, https://product.kyobobook.co.kr/detail/S000001079747
- 63. 노동에 대한 새로운 철학 | 토마스 바셰크 알라딘, 10월 8, 2025에 액세스, https://www.aladin.co.kr/shop/wproduct.aspx?ltemId=45296721
- 64. [조용우 시사칼럼] 노동절, 노동에 대한 철학적 고찰 시사매거진, 10월 8, 2025에 액세스, <a href="https://www.sisamagazine.co.kr/news/articleView.html?idxno=504127">https://www.sisamagazine.co.kr/news/articleView.html?idxno=504127</a>