Question 1 of 3

Recall that pseudocode is an informal, English-like language that describes an
algorithm. In Lecture 0, David showed the following pseudocode for finding Mike Smith
in a phone book.

Pick up phone book
Open to middle of phone book
Look at page
If Smith is on page
Call Mike
Else if Smith is earlier in book
Open to middle of left half of book
Go back to line 3
9 Else if Smith is later in book
10 Open to middle of right half of book
11 Go back to line 3
12 Else
13 Quit

ONOUVUT A WN R

a) Write pseudocode for an algorithm that would identify the tallest person in a
room.
b) What is the running time of your algorithm in Big O notation?
o Hint: if your algorithm has one or more loops, how many times do the
loops execute if there are N people in the room?

Answers

a)

TODO

b) TODO



Question 2 of 3

Recall from lecture how we implemented a phone book in C using the below struct.

typedef struct

string name;
string number;
person;

a) Why was it arguably better design to use one array of structs than to use two
arrays, one to store names and one to store phone numbers?

b) Imagine you were to use the above struct to implement an app for your
contacts, like the one on your mobile phone. What are two additional fields might
you want to add to the struct, and what should their types be?

Answers

a) TODO
b) TODO



Question 3 of 3

Imagine that you have an unsorted collection of items (maybe they're notes for class, or
a collection of old receipts) that you expect you'll need to search. When might it make
more sense to sort the collection of items first before searching, and when might it make
more sense to leave the collection unsorted?

Hint: Consider algorithmic efficiency. What's the cost (i.e., running time) of linear
search? Of binary search? Of sorting?

Answers

TODO



	Question 1 of 3 
	Answers 

	Question 2 of 3 
	Answers 

	Question 3 of 3 
	Answers 


