DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE Mid Semester Examination – April-2024

Class: M.Tech. CSE Date: 11/11/24 Time:1 Hr.

Subject: MTCSEPC103 Advanced Operating Systems Marks: 20

Instructions to the Students:

- 1. All the questions are compulsory.
- 2. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question.
- 3. Assume suitable data wherever necessary and mention it clearly.

Q.1	Attempt all of the following	СО	BL	Marks
1)	How does an operating system manage resources to ensure efficient performance and user interaction? 1. To manage hardware resources 2. To write code for applications 3. To provide internet connectivity 4. To design user interfaces	103_1	L3	1
2)	Design an operating system architecture where the component that connects user applications to hardware resources is optimized for high-performance computing. 1. Kernel 2. Shell 3. Compiler 4. D) Device driver	103_1	L3	1
3)	Consider an operating system running multiple applications. Identify the primary unit of execution within the system A) Kernel B) Thread C) Process D) Task	103_1	L3	1
4)	Imagine you are designing an application that requires multiple processes to share data and resources efficiently. What is the term used to describe processes that can share resources and information, and how would you implement this feature in an operating system? A) Isolated processes B) Independent processes C) Cooperating processes D) Autonomous processes	103_1	L3	1
5)	Consider a system where multiple processes need to access shared resources simultaneously. Which solution is suitable to address the critical-section problem in concurrent programming? A) Peterson's Solution B) Randomized Solution C) Arbitrary Solution D) Coin toss Solution	103_1	L3	1

Vision of department: To lead in technical, quality education, innovation, research for development of sustainable & inclusive technology for the society.

6)	Imagine you are tasked with designing a multi-threaded application where several threads need to perform tasks simultaneously within the same process. Based on your understanding of threads and their characteristics, analyze the following statements and identify which one accurately describes how threads behave in such an environment. A) Threads have their own memory space. B) Threads share memory and resources with other threads within the same process. C) Threads cannot run concurrently. D) Threads are heavier than processes.	103_1	L3	1
Q.2	Attempt any Two of the following			
A)	Discuss design goals, policies and implementation of a typical operating system.	103_1	L3	3
B)	Define the concept of a critical section in concurrent programming. Describe the key requirements that must be met for a solution to the critical section problem to be effective. OR	103_1	L3	3
C)	Consider a scenario where multiple philosophers are seated at a table, each needing two forks to eat. Analyze the four necessary conditions for a deadlock to occur in the Dining Philosophers problem. Then, propose a solution for avoiding deadlock by eliminating one of these conditions. Explain how this modification would prevent deadlock from happening in this scenario.	103_1	L3	3
Q.3	Attempt any One of the following			
A)	Given a set of processes, each with its corresponding CPU burst time (in ms), analyze the following data and determine the most efficient scheduling algorithm (e.g., First Come First Serve, Shortest Job Next, Round Robin) to minimize overall waiting time and turnaround time. Justify your choice of scheduling algorithm and demonstrate how it applies to the given set of processes.	103_1	L3	8
	Process Burst Time Priority P1 10 3 P2 1 1 1 P3 2 3 P4 1 4 P5 5 2 The processes are assumed to have arrived in the order P1,P2,P3,P4,P5, all at time 0. a) Draw Gantt charts that illustrates the execution of these processes using the following scheduling algorithms: FCFS, SJF, non preemptive priority. b) What is the turnaround time of each process for each of the scheduling algorithms? c) What is the waiting time of each process for each of these scheduling algorithms?			

Vision of department: To lead in technical, quality education, innovation, research for development of sustainable & inclusive technology for the society.

			OR				
B)	P3, P4), and scheduling algo time for these time quantum process, and o	a time quantum corithm to determine processes. After con affects the waiti	burst times for four process of 2 ms, apply the Roun the average waiting time appleting the scheduling, exing time and response tency of the Round Robin ithms.	d Robin (RR) and response plain how the ime for each	103_1	L3	8
	Process	Burst Time	Arrival Time]			
	P1	5 ms	0 ms				
	P2	4 ms	1 ms				
	P3	2 ms	2 ms				
	P4	1 ms	4 ms				

End

Vision of department: To lead in technical, quality education, innovation, research for development of sustainable & inclusive technology for the society.

Model Answer

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE Mid Semester Examination – April-2024

Class: S.Y. B. Tech. CSE Date: 22/4/2024 Time:1 Hr.

Subject: Operating Systems (BTCOC402))

Marks: 20

Subje	ect: Operating Systems (BICOC402)) Warks: 20	
Q.1	Attempt all of the following	Marks
-	How does an operating system manage resources to ensure efficient performance and user interaction?	1
	A) To manage hardware resources	
	B) To write code for applications C) To provide internet connectivity	
	D) To design user interfaces	
	Answer: A) To manage hardware resources	
	Design an operating system architecture where the component that connects user applications to hardware resources is optimized for high-performance computing.	1
	A) Kernel	
	B) Shell	
	C) Compiler	
	D) Device driver	
	Answer: A) Kernel	
	Consider an operating system running multiple applications. Identify the primary unit of execution within the system.	1
	A) Kernel	
	B) Thread	
	C) Process	
	D) Task	
	Answer : C) Process	
	Imagine you are designing an application that requires multiple processes to share data and resources efficiently. What is the term used to describe processes that can share resources and information, and how would you implement this feature in an operating system?	1
	A) Isolated processes	
	B) Independent processes	
	C) Cooperating processes	
	D) Autonomous processes	
	Answer c) Cooperating processes	
	D) Autonomous processes	

Vision of department: To lead in technical, quality education, innovation, research for development of sustainable & inclusive technology for the society.

	WILL 17 1 1/1 1/1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1	1
5)	Which solution is used to address the critical-section problem in concurrent programming? A) Peterson's Solution	1
	<i>'</i>	
	B) Randomized Solution	
	C) Arbitrary Solution	
	D) Coin toss Solution	
	Answer: A) Peterson's Solution	
6)	Which of the following is true about threads?	1
	i. Threads have their own memory space.	
	ii. Threads share memory and resources with other threads within the same process.	
	iii. Threads cannot run concurrently.	
	iv. Threads are heavier than processes.	
	Answer: B) Threads share memory and resources with other threads within	
	the same process.	
Q.2	Attempt any Two of the following	
A)	Ans- The design of an operating system is a broad and complex topic that touches on	3
)	many aspects of computer science. This article will cover the design of operating systems	(1 marks
	in general and then focus on the implementation aspect.	
	Design Goals: (1 Mark)	each)
	Design goals are the objectives of the operating system. They must be met to fulfill design	
	requirements and they can be used to evaluate the design. These goals may not always be	
	technical, but they often have a direct impact on how users perceive their experience with	
	an operating system. While designers need to identify all design goals and prioritize them,	
	they also need to ensure that these goals are compatible with each other as well as	
	compatible with user expectations or expert advice	
	The process of identifying design goals, conflicts, and priorities is often referred to as	
	"goal-driven design." The goal of this approach is to ensure that each design decision is	
	made with the best interest of users and other stakeholders in mind.	
	Mechanisms and Policies: (1 Mark)	
	An operating system is a set of software components that manage a computer's resources	
	and provide overall system management.	
	Mechanisms and policies are the two main components of an operating system.	
	Mechanisms handle low-level functions such as scheduling, memory management, and	
	interrupt handling; policies handle higher-level functions such as resource management,	
	security, and reliability. A well-designed OS should provide both mechanisms and policies	
	for each component in order for it to be successful at its task:	
	Mechanisms should ensure that applications have access to appropriate hardware	
	resources (seats). They should also make sure that applications don't interfere with each	
	other's use of these resources (for example through mutual exclusion). Policies determine how processes will interact with one another when they're running	
	simultaneously on multiple CPUs within a single machine instance – what processor	
	affinity should occur during multitasking operations? Should all processes be allowed	
	access simultaneously or just those belonging specifically within group 'A'?'	
	These are just some of the many questions that policies must answer. The OS is	
	responsible for enforcing these mechanisms and policies, as well as handling exceptions	
	when they occur. The operating system also provides a number of services to applications,	
	such as file access and networking capabilities.	
	The operating system is also responsible for making sure that all of these tasks are done	
	efficiently and in a timely manner. The OS provides applications with access to the	
	underlying hardware resources and ensures that they're properly utilized by the	

Vision of department: To lead in technical, quality education, innovation, research for development of sustainable & inclusive technology for the society.

application. It also handles any exceptions that occur during execution so that they don't cause the entire system to crash. Implementation(1 Mark) Implementation is the process of writing source code in a high-level programming language, compiling it into object code, and then interpreting (executing) this object code by means of an interpreter. The purpose of an operating system is to provide services to users while they run applications on their computers. The design and implementation of an operating system is a complex process that involves many different disciplines. The goal is to provide users with a reliable, efficient, and convenient computing environment, so as to make their work more efficient. Ans-Define (1 Mark) 3 B) **Critical Section** refers to the segment of code or the program which tries to access (2 marks or modify the value of the variables in a shared resource. explanation) (1 marks fig.) do { entry section critical section exit section remainder section } while (TRUE); Figure 6.1 General structure of a typical process P₁. Solutions to critical section problem (2 Marks) **Mutual Exclusion** - If process P_i is executing in its critical section, then no other processes can be executing in their critical sections 2. **Progress** - If no process is executing in its critical section and there exist some processes that wish to enter their critical section, then the selection of the processes that will enter the critical section next cannot be postponed indefinitely 3. **Bounded Waiting** - A bound must exist on the number of times that other processes are allowed to enter their critical sections after a process has made a request to enter its critical section and before that request is granted Assume that each process executes at a nonzero speed No assumption concerning **relative speed** of the n processes 3 C) Ans-Four conditions : (1 Mark) Mutual exclusion, hold and wait, circular wait and no prepmption Solution to dining philosopher problem: (2 Marks)

Vision of department: To lead in technical, quality education, innovation, research for development of sustainable & inclusive technology for the society.

Solution to Dining-Philosophers Problem

- One simple solution is to represent each chopstick with a semaphore.
- A philosopher tries to grab a chopstick by executing a wait() operation on that semaphore.
- He releases his chopsticks by executing the signal() operation on the appropriate semaphores.
- Thus, the shared data are semaphore chopstick[5];
- where all the elements of chopstick are initialized to 1.

Solution to Dining-Philosophers Problem...

- semaphore chopstick[5];
- do {
- wait(chopstick[i]);
 wait(chopstick[(i+1) % 5]);
- /* eat for awhile */
- signal(chopstick[i]);
- signal(chopstick[(i+1) % 5]);
- /* think for awhile */
- } while (true);

8

(2 Marks

Each difference)

Q.3 Attempt any One of the following

A) Ans-

FCFS

Gantt	Chart			
P1	P2	Р3	P4	P5
10	11	13	14	19

Criteria: Non preemptive

Arrival for all is 0

7.11.11.41.15.41.15.5								
Process	ВТ	priority	СТ	TAT	WT	RT		
P1	10	3	10	10	0	0		
P2	1	1	11	11	10	10		
Р3	2	3	13	13	11	11		
P4	1	4	14	14	13	13		
P5	5	2	19	19	14	14		

Average WT= 9.6 ms

SJF

Gantt Chart

P2	P4	Р3	P5	P1
1	2	4	9	29

Case: if arrival time is same, then FCFS is used to break the tie.

Criteria: Non preemptive

Consider burst

Arrival for all is 0

time

Process	BT	priority	СТ	TAT	WT	RT
P1	10	3	29	29	19	
P2	1	1	1	1	0	
Р3	2	3	4	4	2	
P4	1	4	2	2	1	
P5	5	2	9	9	4	

Average

WT=5.2ms

Non-Preemptive priority

Gantt Chart

P2	P5	P1	Р3	P4

Vision of department: To lead in technical, quality education, innovation, research for development of sustainable & inclusive technology

			-		o break the	e tie.			
Criteri	a: Non pre			IORITY					
ا مسندها ا	م دا الم								
				TAT) A / T	D.T.			
						KI			
<u> </u>	5	2	6	6	1				
	_								
				OR					
Ans-									8
RR									
Gantt C	hart(ready	queue)							
P1	P2	P3	P1	P4	P2	P1			
2			4						
Gantt Ch	art(Runnin	g Queue)							
P1	P2	Р3	P1	P4	P2	P1			
2	4	6	8	9	11	12			
Crita	ria: nreemi	ntive	Time	Ouantum:	2ms				
						ed at end.			
P4	1	4	9	5	4	4			
Average \	WT= 4.75	'							
	Arrival for Process P1 P2 P3 P4 P5 Ave WT=8 Ans- RR Gantt Ch P1 2 Gantt Ch P1 2 Crite Rule: Put Process P1 P2 P3 P4	Case: if arrival Criteria: Non pred Arrival for all is 0 Process BT P1 10 P2 1 P3 2 P4 1 P5 5 Average WT=8.2ms Ans- RR Gantt Chart(ready P1 P2 2 Gantt Chart(Runnin P1 P2 2 4 Criteria: preem Rule: Put arraivall as Process BT P1 3 P2 4 P3 2	Case: if arrival time is same Criteria: Non preemptive, 0 Consider Arrival for all is 0 times by the process BT priority P1 10 3 P2 1 1 P3 P3 P4 P5	Case: if arrival time is same, then FC Criteria: Non preemptive, 0 IS HIGH PR Consider burst Arrival for all is 0 Process BT priority CT P1 10 3 16 P2 1 1 1 1 P3 2 3 18 P4 1 4 19 P5 5 2 6 Average WT=8.2ms Ans- RR Gantt Chart(ready queue) P1 P2 P3 P1 2 4 Gantt Chart(Running Queue) P1 P2 P3 P1 2 4 6 8 Criteria: preemptive Time Rule: Put arraivall as per clock first, them Process BT AT CT P1 3 0 12 P2 4 1 11 P3 2 2 6 6 P4 1 4 9	Case: if arrival time is same, then FCFS is used to Criteria: Non preemptive, 0 IS HIGH PRIORITY Consider burst Arrival for all is 0 Process BT Priority CT TAT P1 10 3 16 16 P2 1 1 1 1 1 P3 2 3 18 18 P4 1 4 19 19 P5 5 2 6 6 Average WT=8.2ms OR Ans- RR Gantt Chart(ready queue) P1 P2 P3 P1 P4 2 4 Gantt Chart(Running Queue) P1 P2 P3 P1 P4 P4 Criteria: preemptive Rule: Put arraivall as per clock first, them premmptee Process BT AT CT TAT P1 3 0 12 12 P2 4 P4 P1 P3 P3 P3 P4 P4 P5 Frocess BT AT CT TAT P1 A P1 A P3 P3 P4 P4 P4 P4 P4 P4 P4 P4	Case : if arrival time is same, then FCFS is used to break the Criteria: Non preemptive, 0 IS HIGH PRIORITY Consider burst Arrival for all is 0 time Process BT priority CT TAT WT P1 10 3 16 16 6 P2 1 1 1 1 1 1 0 P3 2 3 18 18 16 P4 1 4 19 19 19 18 P5 5 2 6 6 1 Average WT=8.2ms OR Ans- RR Gantt Chart(ready queue) P1 P2 P3 P1 P4 P2 2 4 6 8 9 11 Criteria: preemptive Time Quantum: 2ms Rule: Put arraivall as per clock first, them premmpted is attached process BT AT CT TAT WT P1 3 0 12 12 7 P2 4 1 11 10 6 P3 2 2 6 4 2 P4 1 4 9 5 4	Case : if arrival time is same, then FCFS is used to break the tie. Criteria: Non preemptive, 0 IS HIGH PRIORITY Consider burst Arrival for all is 0 time Process	Case : if arrival time is same, then FCFS is used to break the tie. Criteria: Non preemptive, 0 IS HIGH PRIORITY Consider burst Arrival for all is 0 time Process BT priority CT TAT WT RT P1 10 3 16 16 6 P2 1 1 1 1 1 0 0 P3 2 3 18 18 16 16 P4 1 4 19 19 19 18 P5 5 2 6 6 1 Average WT=8.2ms OR Ans- RR Gantt Chart(ready queue) P1 P2 P3 P1 P4 P2 P1 2 4 Gantt Chart(Running Queue) P1 P2 P3 P1 P4 P2 P1 2 4 6 8 9 11 12 Criteria: preemptive Time Quantum: 2ms Rule: Put arraivall as per clock first, them premmpted is attached at end. Process BT AT CT TAT WT RT P1 3 0 12 12 7 0 P2 4 1 111 10 6 1 P3 2 2 6 4 2 2 2 P4 1 1 1 1 10 6 1 P3 2 2 6 4 4 2 2 2 P4 1 1 1 1 10 6 1	Case : if arrival time is same, then FCFS is used to break the tie. Criteria: Non preemptive, 0 IS HIGH PRIORITY Consider burst Arrival for all is 0

Vision of department: To lead in technical, quality education, innovation, research for development of sustainable & inclusive technology for the society.