기존 간 질환이 있는 환자를 위한 관절 건강 보조제 종합 분석: 글루코사민의 안전하고 효과적인 대안 평가

제 1부: 글루코사민의 딜레마: 간 건강에 대한 위험성 이해

관절 건강, 특히 퇴행성 관절염 관리를 위해 건강 보조제를 고려할 때, 글루코사민은 가장 널리 알려지고 빈번하게 사용되는 성분 중 하나입니다. 그러나 특정 기저 질환을 가진 개인, 특히 만성 간 질환을 앓고 있는 환자에게 글루코사민의 안전성 프로파일은 신중한 재평가를 요구합니다. 본 섹션에서는 글루코사민의 일반적인 효능부터 시작하여, 간 독성 사례 보고, 그리고 B형 간염 바이러스(HBV) 보유자 및 지방간 질환자에게 제기되는 특수하고 중대한 위험에 이르기까지, 글루코사민 섭취를 중단하고 대안을 모색해야 하는 과학적 근거를 심층적으로 분석합니다.

1.1. 퇴행성 관절염 관리에서 글루코사민의 전통적 역할

글루코사민은 퇴행성 관절염으로 인한 통증 완화를 목적으로 널리 사용되는 일반의약품(OTC) 식이 보충제입니다.¹ 그 작용 기전은 글루코사민이 아미노당으로서 인체 내 관절 연골과 활액의 자연적인 구성 성분이라는 사실에 기반합니다.¹ 글루코사민은 글리코사미노글리칸(GAGs)의 생화학적 합성에 필수적인 전구체 역할을 하며, 이는 연골의 구조적 완전성을 유지하는 데 중요합니다.⁴

이러한 생화학적 역할 때문에 글루코사민 보충이 손상된 연골의 복구를 돕고 통증을 완화할 수 있을 것이라는 가설이 제기되었습니다. 그러나 그 효능에 대한 임상 연구 결과는 일관되지 않으며, 일부 통제된 시험에서는 유의미한 개선 효과를 입증하지 못하는 등 상충된 결과를 보여주었습니다.¹ 그럼에도 불구하고, 많은 환자들이 관절 통증 완화를 위해 글루코사민을 일상적으로 섭취하고 있습니다.

1.2. 문서화된 간 독성: 드문 사례 보고에서 임상적 우려까지

글루코사민의 광범위한 사용에도 불구하고, 대규모 통제 시험에서는 심각한 간 독성이 보고되지 않는 경우가 많습니다.³ 그러나 이러한 일반적인 안전성 인식과는 별개로, 임상적으로 명백한 간 손상을 유발한 글루코사민 관련 사례 보고가 다수 발표되면서 우려가 제기되고 있습니다.¹

보고된 간 손상의 특징은 다음과 같습니다:

- 손상 패턴: 일반적으로 글루코사민 제제 복용 시작 후 1주에서 4주 사이에 발생하며, 간세포 손상형 또는 혼합형 간염의 형태로 나타납니다.³
- 임상 증상: 황달, 전신 소양감(가려움증), 피로감, 권태감 등이 포함될 수 있습니다.1
- 중증도: 간 손상의 심각성은 혈청 효소 수치의 경미하고 무증상적인 상승에서부터, 임상적으로 명백한 간염, 그리고 드물게는 치명적인 급성 간부전에 이르기까지 매우 다양하게 보고되었습니다.³

이러한 간 손상이 글루코사민 자체에 의한 것인지, 아니면 규제되지 않은 보충제에 포함된 다른 허브 성분이나 오염물질에 의한 것인지에 대한 논쟁은 여전히 존재합니다.² 글루코사민은 단순한 아미노당으로 수백만 명이 사용하고 있기에, 간 손상 보고가 매우 드물다는 점은 사실입니다.³ 하지만 특정 사례들에서 글루코사민 복용 중단 후 간 기능이 신속하게 회복되는 일관된 패턴이 관찰된 것은, 글루코사민과 간 손상 사이의 인과 관계를 강력하게 시사합니다.¹

이러한 위험성 때문에 미국 머크 매뉴얼(MSD Manual)과 클리블랜드 클리닉(Cleveland Clinic)과 같은 공신력 있는 의료 정보 기관에서는 간 질환 환자의 경우 글루코사민 섭취를 피하거나 주의해야 한다고 명시하고 있습니다.⁸ 특히, 만성 간 질환 환자 151명을 대상으로 한 연구에서는 글루코사민 또는 콘드로이친을 섭취한 환자 23명 중 2명(약 8.7%)에서 간 손상이 발생한 것으로 나타나, 기저 간 질환이 있는 경우 위험이 더욱 증가할 수 있음을 보여주었습니다.¹²

1.3. B형 간염 보유자의 중대한 위험: 바이러스 복제 촉진 증거

글루코사민이 B형 간염(HBV) 보유자에게 제기하는 위험은 단순한 간 독성 가능성을 넘어섭니다. 이는 글루코사민이 바이러스 자체의 활동에 직접적으로 영향을 미칠 수 있다는 구체적이고 기전적인 증거에 기반합니다. 2019년 국제 학술지 *오토파지(Autophagy)*에 발표된 연구는 이 위험의 심각성을 명확히 보여주었습니다.¹⁴ 이 연구에서 밝혀진 핵심 내용은 다음과 같습니다:

- 직접적인 기전: 글루코사민은 B형 간염 바이러스(HBV)의 복제를 유의미하게 촉진하는 것으로 나타났습니다. 이는 일반적인 독성 반응이나 알레르기 반응이 아닌, 글루코사민의 특이적인 생물학적 작용입니다.¹⁴
- 이중 효과(Dual Effects): 글루코사민은 두 가지 주요 경로를 통해 바이러스 복제를 돕습니다.
 - 1. 자가포식 분해 억제 (Suppression of Autophagic Degradation):
 자가포식(autophagy)은 세포 내 불필요하거나 손상된 구성 요소를 분해하여
 제거하는 '세포 청소' 과정입니다. 정상적인 경우, 이 과정은 침입한 바이러스를
 분해하는 역할도 합니다. 그러나 글루코사민은 이 자가포식 분해 과정을
 억제하여, 바이러스가 파괴되지 않고 생존하도록 돕습니다.¹⁴
 - 2. MTORC1 신호 전달 억제 (Inhibition of MTORC1 Signaling): 글루코사민은 MTORC1이라는 신호 전달 복합체를 억제합니다. 이는 역설적으로 자가포식소(autophagosome) 형성을 더욱 유도하는 결과를 낳습니다. 즉, 바이러스가 숨어서 복제할 수 있는 '안식처'를 더 많이 만들어주는 셈입니다.¹⁴

이 연구의 저자들은 "만성 바이러스 감염 환자가 경구로 글루코사민을 섭취할 경우, 바이러스 복제가 강화될 잠재적 위험이 있다"고 명확하게 결론 내렸습니다.¹⁴ 이 과학적 발견은 B형 간염 환자 및 보유자가 글루코사민을 절대 복용해서는 안 된다는 강력한 경고의 근거가 됩니다.¹⁵ 이는 글루코사민이 단순히 간에 부담을 주는 수준을 넘어, 기저 질환인 B형 간염 자체를 악화시킬 수 있음을 의미하기 때문입니다.

1.4. 지방간 질환에 대한 영향: 대사 스트레스와 지방 축적

지방간(hepatic steatosis) 환자에게도 글루코사민 섭취는 잠재적인 위험을 내포합니다. 일부 연구와 보고에 따르면, 고용량의 글루코사민은 간세포에 대사적 스트레스를 가중시켜 지방간을 악화시킬 수 있습니다.⁷

그 기전은 다음과 같이 설명될 수 있습니다:

- 소포체 스트레스 유발 (Endoplasmic Reticulum Stress): 높은 수준의 글루코사민은 세포 내 소포체(ER)에 스트레스를 유발할 수 있습니다. 이러한 소포체 스트레스는 당뇨병성 합병증뿐만 아니라, 간 내 지방 축적, 즉 지방간의 발병 및 악화와 관련이 있는 것으로 알려져 있습니다.7
- 간 내 지방 축적 촉진: 하루 2,000mg 이상의 고용량 글루코사민 섭취는 간세포에 대한 대사적 스트레스를 증가시키고, 간 내 지방 축적을 촉진하여 간 기능 저하를 유발할 수 있다는 주장이 제기되었습니다. 15 일부 사용자들은 글루코사민 보충제

1.5. 전문가 결론: 고위험군 개인의 대안 모색 필요성

이상의 증거들을 종합해 볼 때, 글루코사민에 대한 위험 평가는 개인의 건강 상태에 따라 달라져야 합니다. 건강한 일반인의 경우, 글루코사민으로 인한 심각한 간 손상 위험은 매우 낮고 드문 특이체질성 반응일 수 있습니다. 그러나 B형 간염 보유자에게는 바이러스 복제를 직접 촉진하는 명백하고 기전적인 위험이 존재하며, 지방간 환자에게는 질환을 악화시킬 수 있는 대사적 부담이 가해질 수 있습니다.

따라서 B형 간염 보유자이거나 지방간을 진단받은 노년층 및 여성의 경우, 관절 건강을 위해 글루코사민을 섭취하는 것은 잠재적 이익보다 위험이 훨씬 크다고 판단됩니다. 글루코사민 섭취를 중단하고 더 안전하며 효과적인 대안을 찾는 것은 단순한 선호의 문제가 아니라, 기저 간 질환의 악화를 방지하기 위한 의학적으로 타당하고 현명한 결정입니다.

제 2부: 주요 대안 성분 심층 분석: MSM, 콜라겐, 보스웰리아

글루코사민이 제기하는 간 건강상의 위험을 고려할 때, 효과적이면서도 안전한 대안을 찾는 것은 매우 중요합니다. 본 섹션에서는 사용자가 추천받은 세 가지 주요 대안 성분인 MSM(메틸설포닐메탄), 콜라겐, 보스웰리아에 대해 심층적으로 분석합니다. 각 성분의 관절 건강에 대한 작용 기전, 체내 흡수율 및 생체이용률, 그리고 가장 중요한 간 안전성 및 B형 간염, 지방간 환자에 대한 영향을 과학적 근거를 바탕으로 체계적으로 평가합니다.

2.1. MSM (메틸설포닐메탄): 간 보호 효과를 지닌 항염증 성분

MSM은 식이유황으로도 알려진 유기 황 화합물로, 관절 건강 보조제 시장에서 글루코사민의 강력한 대안으로 부상하고 있습니다. 특히 간 질환을 가진 환자에게는 단순한 대안을 넘어, 잠재적인 치료적 이점까지 제공할 수 있는 성분으로 주목받고 있습니다.

2.1.1. 관절 지원을 위한 작용 기전

MSM은 인체 내에서 세 번째로 풍부한 미네랄인 황(sulfur)의 주요 공급원입니다.¹⁶ 황은 건강한 뼈, 관절, 콜라겐, 글루코사민 등 결합 조직의 형성에 필수적인 '구성 요소' 역할을합니다.¹⁶ MSM의 관절 건강 개선 효과는 다음과 같은 다각적인 기전에 의해 발휘됩니다.

- 강력한 항염증 작용: MSM은 염증 반응의 핵심 조절자인 핵인자 카파비(NF-κB)의 활성을 억제합니다.¹⁷ 이를 통해 종양괴사인자-알파(TNF-α) 및 인터루킨-6(IL-6)와 같은 전신 염증과 관련된 염증성 사이토카인의 생성을 감소시킵니다.¹⁷ 이는 관절염의 근본 원인 중 하나인 만성 염증을 효과적으로 제어하는 데 기여합니다.
- 항산화 효과: MSM은 인체의 '마스터 항산화제'로 불리는 글루타치온(glutathione)의 수치를 높이는 것으로 나타났습니다.²⁰ 글루타치온은 산화 스트레스로부터 세포와 조직을 보호하는 데 중추적인 역할을 하므로, MSM은 관절 조직의 손상을 예방하고 회복을 돕습니다.
- 진통(통증 완화) 효과: MSM은 통증 자극이 신경 섬유(C-fibers)를 통해 뇌로 전달되는 것을 차단하는 능력이 있습니다.⁴이 직접적인 진통 효과는 관절염 환자가 겪는 통증을 완화하는 데 도움을 줍니다.

다수의 임상 연구에서 MSM은 퇴행성 관절염 환자의 통증, 부기, 뻣뻣함을 유의미하게 감소시키고 신체 기능을 개선하는 효과를 입증했습니다.¹⁶

2.1.2. 생체이용률 및 최적 섭취량

MSM은 경구 섭취 시 체내에 신속하게 흡수되며, 혈액-뇌 장벽(blood-brain barrier)을 통과할 수 있을 정도로 생체이용률이 높은 것으로 알려져 있습니다.²⁸

- 안전성 및 내약성: MSM은 미국 식품의약국(FDA)으로부터 '일반적으로 안전하다고 인정되는 물질(GRAS)'로 승인받았으며, 하루 4~6g의 높은 용량으로 장기간 섭취해도 대부분의 사람들에게 잘 견디는 것으로 나타났습니다.¹⁶ 가장 흔한 부작용은 경미한 위장 장애이며, 이는 용량을 줄이면 사라지는 경향이 있습니다.⁴
- 권장 섭취량: 연구에서 효과를 보인 일반적인 섭취량은 하루 1.5g에서 6g 사이이며, 종종 하루 2~3회로 나누어 복용합니다.16

2.1.3. 지방간 질환에서의 간 안전성 및 유익성 증거

MSM의 가장 주목할 만한 장점은 간에 안전할 뿐만 아니라, 오히려 적극적으로 유익할 수 있다는 점입니다. 이는 지방간이라는 특정 기저 질환을 가진 사용자에게 매우 중요한 고려사항입니다.

- 지방간 개선 효과: 2023년에 발표된 최신 연구들은 MSM이 대사기능장에 관련 지방간 질환(MAFLD)을 **개선(ameliorates)**한다는 강력한 증거를 제시했습니다.³²
- 작용 기전: MSM은 AMPK/mTOR/ULK1 신호 전달 경로를 통해 세포의 '청소' 과정인 자가포식 흐름(autophagic flux)을 향상시킵니다. 이 과정을 통해 간세포에 축적된 지방과 손상된 단백질을 효과적으로 제거하는 데 도움을 줍니다.³² 이는 지방간의 근본적인 병태생리를 개선할 수 있는 잠재력을 의미합니다.
- 간 보호 및 항암 가능성: 동물 연구에서 MSM은 여러 독소로부터 간을 보호하는 효과(hepatoprotective effect)를 보였습니다. 19 더 나아가, 간암 세포주를 대상으로 한 연구에서는 MSM이 간 종양의 발달을 억제하고 세포 사멸(apoptosis)을 유도하는 것으로 나타났습니다. 34 만성 간 질환이 간암의 주요 위험 인자임을 고려할 때, 이는 매우 의미 있는 발견입니다.

결론적으로, MSM은 관절 건강 개선 효과가 입증되었을 뿐만 아니라, B형 간염 보유 및 지방간 환자에게 매우 우수한 안전성 프로파일을 제공합니다. 특히 지방간 개선에 대한 직접적인 유익성은 MSM을 단순한 대안을 넘어, 관절과 간 건강을 동시에 관리할 수 있는 시너지 효과를 가진 최적의 선택지로 만듭니다.

2.2. 콜라겐 펩타이드: 구조적 구성 요소

콜라겐은 인체에서 가장 풍부한 단백질로, 피부, 뼈, 힘줄, 인대뿐만 아니라 관절 연골의핵심적인 구조적 지지체입니다. 실제로 관절 연골의 약 75%, 인대와 힘줄의 80%가콜라겐으로 구성되어 있습니다.³⁵ 따라서 콜라겐 보충은 관절 건강을 위한 논리적인접근법으로 여겨집니다.

2.2.1. 작용 기전: 가수분해 콜라겐과 비변성 2형 콜라겐의 차이

콜라겐 보충제는 크게 두 가지 형태로 나뉘며, 각각 다른 기전을 통해 작용합니다.

● 가수분해 콜라겐 (Hydrolyzed Collagen / Collagen Peptides): 이 형태는 콜라겐 단백질을 효소 등으로 잘게 분해하여 작은 아미노산 사슬(펩타이드)로 만든 것입니다.³⁶ 주요 아미노산은 글리신(glycine), 프롤린(proline), 하이드록시프롤린(hydroxyproline)입니다.³⁶ 이 작은 펩타이드들은 체내에 흡수되어 혈액을 통해 관절 연골 조직에 도달하고 축적될 수 있습니다.³⁵ 그곳에서 연골 세포(chondrocytes)를 자극하여 콜라겐과 프로테오글리칸 같은 연골 세포외기질(ECM)의 생성을 촉진하는 '구성 요소 공급' 방식으로 작용하는 것으로 보입니다.³⁵ 콜라겐 유형에 따라 주로 작용하는 부위가 다른데, 1형과 3형은 피부와 일반 조직에,

2형 콜라겐은 특히 관절 연골에 특화되어 있습니다.36

● 비변성 2형 콜라겐 (Undenatured Type II Collagen / UC-II): 이 형태는 열이나 산으로 처리하지 않아 원래의 삼중 나선 구조를 유지하고 있는 '자연 상태'의 콜라겐입니다. 주로 닭가슴 연골에서 추출됩니다.³⁶ UC-II는 소량(보통 하루 40mg)을 섭취하며, '경구 관용(oral tolerance)'이라는 면역 매개 기전을 통해 작용하는 것으로 알려져 있습니다.³⁵ 즉, 소장에서 면역 체계가 비변성 2형 콜라겐을 '학습'하게 하여, 관절에 있는 우리 몸 자신의 2형 콜라겐을 공격하지 않도록 유도합니다. 이는 자가면역 반응을 줄여 관절 염증을 완화하는 방식입니다.³⁵

2.2.2. 흡수율에 있어 분자량과 제형의 결정적 역할

콜라겐의 효과를 논할 때 가장 중요한 요소는 흡수율입니다. 자연 상태의 거대 분자 콜라겐은 소화관에서 거의 흡수되지 않습니다. 42 따라서 효과적인 콜라겐 보충을 위해서는 가수분해를 통해 분자량을 낮춘 제품을 선택하는 것이 필수적입니다.

- 분자량(Dalton): 분자량의 크기를 나타내는 단위인 달톤(Da) 수치가 낮을수록 체내 흡수율이 기하급수적으로 높아집니다. 예를 들어, 한 연구에서는 분자량 500 Da의 저분자 콜라겐이 1,000 Da 콜라겐보다 구강 점막 세포에서 흡수율이 약 3배 더 높았다고 보고했습니다.⁴4
- 원료 및 가공: 일반적으로 어류에서 유래한 피쉬 콜라겐은 육류 유래 콜라겐보다 더 작은 분자량으로 가공하기 용이하여 높은 흡수율을 보입니다. 45 일부 자료에 따르면, 잘 가공된 저분자 피쉬 콜라겐 펩타이드의 체내 흡수율은 84~90%에 달하는 반면, 족발이나 도가니탕 같은 식품 속 동물성 콜라겐의 흡수율은 2%에 불과할 수 있습니다. 45
- 제형: 액상 형태의 콜라겐은 정제(알약) 형태가 거쳐야 하는 일부 소화 과정을 우회하여 더 빠른 흡수와 높은 생체이용률을 보일 수 있습니다. 48

2.2.3. 안전성 프로파일 명확화: 식이 콜라겐과 병적인 간 섬유화

간 질환 환자가 '콜라겐'이라는 단어를 들었을 때 가질 수 있는 가장 큰 오해는 이것이 간섬유화(liver fibrosis)를 악화시키지 않을까 하는 우려입니다. 간 섬유화는 만성 간염(예: B형 간염)이나 지방간염으로 인해 간 조직이 손상되고, 그 자리에 콜라겐과 같은세포외기질이 비정상적으로 과도하게 축적되어 간이 딱딱하게 굳어가는 병리적과정입니다.⁵⁰

여기서 결정적인 사실을 명확히 할 필요가 있습니다. 식이 보충제로 섭취하는 가수분해 콜라겐은 간 섬유화를 유발하거나 악화시키지 않습니다.

식이 보충제로 섭취하는 가수분해 콜라겐은 간 섬유화를 유발하거나 악화시키지 않습니다 그 이유는 다음과 같습니다.

- 1. 소화 및 분해; 경구로 섭취된 콜라겐 펩타이드는 위장관에서 아미노산과 매우 작은 펩타이드 단위로 완전히 분해되어 흡수됩니다. 42
- 2. 전신적 활용: 이렇게 흡수된 아미노산과 펩타이드는 혈액을 통해 전신으로 운반되어 피부, 뼈, 근육, 그리고 관절 연골 등 다양한 조직에서 새로운 단백질을 합성하는 '재료'로 사용됩니다.⁵³
- 3. 직접적 침착 없음: 이 아미노산들이 간으로 이동하여 병적인 섬유 조직으로 직접 침착되는 일은 일어나지 않습니다. 간 섬유화는 간 손상에 대한 인체의 비정상적인 상처 치유 반응의 결과이지, 외부에서 섭취한 콜라겐이 쌓여서 생기는 현상이 아닙니다.

현재까지의 연구 자료에서 경구 콜라겐 보충제 섭취가 간 손상을 유발했다는 증거는 발견되지 않았습니다. 따라서 콜라겐은 간 질환 환자에게 중립적이고 안전한(neutral and safe) 프로파일을 가진 것으로 평가됩니다.

2.3. 보스웰리아 세라타: 강력한 식물성 항염증제

보스웰리아(인도 유향)는 수천 년간 인도 전통 의학인 아유르베다에서 관절염을 포함한 각종 염증성 질환 치료에 사용되어 온 나무 수지입니다.⁵⁴ 현대 과학은 보스웰리아의 이러한 전통적인 사용을 뒷받침하는 강력한 항염증 기전을 밝혀냈습니다.

2.3.1. 염증 경로를 표적으로 하는 작용 기전

보스웰리아의 핵심 활성 성분은 보스웰릭산(boswellic acids), 특히 아세틸-11-케토-베타-보스웰릭산(AKBA)입니다.⁵⁵ 보스웰리아의 관절 건강 개선 효과는 다음과 같은 독특하고 강력한 항염증 기전에 기반합니다.

- 5-리폭시게나제(5-LOX) 억제: 보스웰리아의 가장 특징적인 기전은 류코트리엔(leukotrienes)이라는 강력한 염증 매개 물질의 생성을 차단하는 것입니다. 이는 5-리폭시게나제(5-LOX)라는 효소를 억제함으로써 이루어지는데, 이는 이부프로펜과 같은 일반적인 비스테로이드성 소염진통제(NSAIDs)가 표적으로 하지 않는 경로입니다.⁵⁴
- 다중 염증 경로 차단: 5-LOX 억제 외에도, 보스웰릭산은 COX(Cyclooxygenase) 효소와 NF-κB 신호 전달 체계를 억제하여 프로스타글란딘과 같은 다른 염증 매개체의 생성도 줄일 수 있습니다.⁵⁴
- 연골 보호 효과: 보스웰리아는 염증을 억제할 뿐만 아니라, 기질 금속단백분해효소(MMP-3)와 같은 연골 분해 효소의 활성을 억제하여 연골이 파괴되는 것을 직접적으로 막아줍니다.⁵⁴

2.3.2. 생체이용률 문제와 현대적 제형 솔루션

보스웰리아의 가장 큰 단점은 표준 추출물의 낮은 생체이용률입니다. 보스웰릭산, 특히 AKBA는 물에 잘 녹지 않는 소수성 물질이어서 경구 섭취 시 체내 흡수율이 매우 낮습니다.⁶⁰ 이 때문에 일부 연구에서 결과가 미미하게 나타나거나 효과를 보기 위해 고용량이 필요했습니다.

그러나 현대 제제 기술은 이 문제를 극복할 수 있는 다양한 해결책을 제시했습니다.

- 지질 기반 전달 시스템: 보스웰리아를 레시틴과 같은 인지질과 결합시킨 파이토솜(Phytosome®) 제형(예: Casperome®)이나 고체 지질 펠릿 형태로 만들면, 지용성인 보스웰릭산의 장내 흡수율과 조직 내 농도를 극적으로 향상시킬 수 있습니다.⁶⁰
- 흡수 증진제와의 병용: 흑후추 추출물인 피페린(piperine)은 간에서 보스웰릭산을 분해하는 효소(CYP450)의 작용을 억제하여, 보스웰릭산이 체내에 더 오래 머물고 혈중 농도를 높이는 데 도움을 줍니다.⁶¹
- 최신 제형 기술: 페누그릭(호로파) 점액을 이용한 자가유화 하이드로겔(예: FenuMat®)과 같은 새로운 기술은 보스웰리아의 용해도와 흡수율을 크게 개선하여 임상적 효과를 증대시킬 수 있습니다.⁶⁴

2.3.3. 간 안전성 및 간 질환에서의 치료적 잠재력 증거

보스웰리아는 MSM과 마찬가지로 간 질환 환자에게 매우 유리한 안전성 프로파일을 가지고 있으며, 치료적 잠재력까지 보여줍니다.

- 높은 간 안전성: 미국 국립보건원(NIH)의 간 독성 데이터베이스인 LiverTox는 보스웰리아를 **"E 등급(임상적으로 명백한 간 손상을 유발할 가능성이 거의 없음)"**으로 평가했습니다. 광범위한 사용에도 불구하고 혈청 효소 수치 상승이나 간 손상 사례와 명확하게 연결되지 않았다고 명시하고 있습니다.66
- 간 보호 효과: 다수의 동물 연구에서 보스웰리아는 사염화탄소(CCl4)와 같은 독성 물질로 유발된 간 손상에 대해 항산화, 항염증, 항섬유화 작용을 통해 **간을 보호하는 효과(hepatoprotective effect)**를 나타냈습니다.⁵⁵
- 지방간 및 대사 질환 개선: 최근 연구들은 보스웰릭산(특히 AKBA)이 비알코올성 지방간 질환(NAFLD) 및 비알코올성 지방간염(NASH)을 완화할 수 있음을 보여주었습니다. 이는 간 내 지방 축적, 염증, 섬유화를 감소시키고 인슐린 저항성을 개선하는 기전을 통해 이루어집니다.⁶⁸ 또한 제2형 당뇨병 환자를 대상으로 한 연구에서는 보스웰리아 보충이 간 효소(SGPT, SGOT) 수치를 유의미하게 감소시키는 것으로 나타났습니다.⁶⁹

결론적으로, 보스웰리아는 강력한 항염증 작용으로 관절 건강에 기여하면서도, 간에 대한 안전성이 매우 높고 지방간과 같은 대사성 간 질환에 긍정적인 영향을 미칠 수 있는 유망한 대안입니다. 다만, 그 효과를 극대화하기 위해서는 흡수율이 개선된 제형의 제품을 선택하는 것이 매우 중요합니다.

제 3부: 광범위한 치료적 접근: 주목할 만한 기타 보충제 평가

관절 및 간 건강을 위한 보충제를 고려할 때, MSM, 콜라겐, 보스웰리아 외에도 시장에서 널리 알려져 있거나 과학적 근거가 축적된 다른 성분들을 함께 평가하는 것은 보다 완전하고 균형 잡힌 시각을 제공합니다. 본 섹션에서는 오메가-3 지방산, 강황(커큐민), 히알루론산을 분석하여, 이들이 B형 간염 보유 및 지방간 환자에게 적합한 선택지인지, 아니면 피해야 할 대상인지를 명확히 규명합니다.

3.1. 오메가-3 지방산: 관절과 간 건강을 위한 기초 보충제

오메가-3 지방산, 특히 생선 기름이나 해조류에서 추출하는 EPA(에이코사펜타엔산)와 DHA(도코사헥사엔산)는 단순한 관절 보조제를 넘어 전신 건강, 특히 간 건강에 중요한 역할을 하는 필수 영양소입니다.

3.1.1. 관절 건강에 대한 기전

오메가-3의 관절 건강 개선 효과는 주로 강력한 항염증 작용에 기인합니다.

- 항염증 경로 조절: 오메가-3 지방산은 체내에서 염증을 촉진하는 오메가-6 지방산과 경쟁하여, 염증 반응을 약화시키는 프로스타글란딘과 류코트리엔을 생성하도록 유도합니다. 더 중요한 것은, 오메가-3가 레졸빈(resolvins)과 프로텍틴(protectins)이라는 특수한 염증 해결 매개 물질로 전환된다는 점입니다. 이 물질들은 단순히 염증을 억제하는 것을 넘어, 염증 반응을 적극적으로 '해결'하고 조직의 회복을 촉진합니다.⁷²
- 관절 윤활 및 연골 보호: 오메가-3는 관절의 윤활유 역할을 하는 활액(synovial fluid)의 건강을 개선하여 관절의 움직임을 부드럽게 하고 마찰을 줄입니다. 72 또한 염증성 사이토카인을 감소시켜 연골이 파괴되는 것을 막아줍니다. 75

3.1.2. 간 건강에 대한 유익성

오메가-3는 간 질환 환자에게 매우 중요한 이점을 제공합니다. 이는 오메가-3를 단순한 관절 보조제가 아닌, 간 건강 관리의 핵심 요소로 고려해야 하는 이유입니다.

- 지방간(NAFLD/NASH) 개선: 수많은 연구에서 오메가-3 보충이 비알코올성 지방간 질환(NAFLD) 환자의 간 내 지방을 유의미하게 감소시키는 것으로 나타났습니다. ⁷⁶ 또한 메타 분석 결과, 간 효소 수치(특히 GGT)를 개선하는 데 효과적이었습니다. ⁷⁶
- B형 간염 관련 간암 환자에서의 긍정적 효과: B형 간염 바이러스(HBV) 관련 간세포암으로 간 절제술을 받은 환자들을 대상으로 한 연구에서, 오메가-3를 보충한 그룹은 대조군에 비해 수술 후 감염률이 낮았고, 간 기능 회복이 더 우수했습니다. 이는 오메가-3가 염증성 사이토카인(IL-6, TNF-α)의 생성을 억제했기 때문으로 분석되었습니다.⁷⁹ 이는 HBV 보유자에게 오메가-3가 안전할 뿐만 아니라, 잠재적으로 유익할 수 있음을 시사하는 매우 중요한 결과입니다.

• 간 질환 발생 위험 감소: 대규모 데이터를 분석한 연구에서는 오메가-3 보충이 전반적인 간 질환의 발생 위험을 줄일 수 있다는 가능성을 제시했습니다.80

3.1.3. 안전성 및 원료 선택

오메가-3는 일반적으로 매우 안전하지만, 고용량 섭취 시 혈액 응고를 지연시킬 수 있어 와파린과 같은 항응고제를 복용하는 경우 전문가와 상담이 필요합니다.⁸¹ 제품 선택 시에는 중금속 및 환경오염물질로부터 안전성을 검증받은(예: IFOS 인증) 고품질 원료를 사용했는지 확인하는 것이 중요합니다.⁸²

3.2. 강황(커큐민): 고위험 대안에 대한 경고적 분석

강황의 주성분인 커큐민은 강력한 항염증 효과로 인해 관절염 보조제로 큰 인기를 얻고 있습니다. 그러나 간 질환 환자에게는 그 위험성이 효능을 상회할 수 있어 신중한 접근이 요구됩니다.

3.2.1. 관절 건강에 대한 기전

커큐민의 항염증 작용은 과학적으로 잘 입증되어 있습니다. 커큐민은 NF-κB, COX-2와 같은 염증 경로를 차단하여 염증 매개 물질의 생성을 억제합니다.⁸³ 일부 연구에서는 퇴행성 관절염 통증 완화에 있어 이부프로펜과 비슷한 효과를 보인다고 보고되기도 했습니다.⁸⁶

3.2.2. 간에 대한 위험성

과거에는 커큐민이 간을 보호하는 효과가 있다고 알려졌으나 ⁸⁵, 최근 몇 년간 심각한 간 손상 사례들이 보고되면서 안전성에 대한 인식이 크게 바뀌었습니다.

• 급성 간 손상 보고: 미국 국립보건원(NIH)의 LiverTox 데이터베이스는 강황 및 커큐민

제품이 **"수십 건의 임상적으로 명백한 급성 간 손상 사례"**와 관련이 있으며, 미국에서 약초 및 식이 보충제로 인한 간 손상의 가장 흔한 원인 중 하나가 되었다고 명시하고 있습니다.⁸⁸

- 예측 불가능한 특이체질성 반응: 커큐민으로 인한 간 손상은 용량 의존적이라기보다는 예측 불가능한 특이체질성(idiosyncratic) 반응으로 보입니다. 최근 연구에서는 특정 인간 백혈구 항원(HLA) 유전형인 HLA-B*35:01과의 강한 연관성이 발견되었는데, 이는 면역학적 기전이 관여할 수 있음을 시사합니다.⁸⁸ 즉, 특정 유전적 소인을 가진 사람에게서 심각한 면역 반응을 유발할 수 있다는 의미입니다.
- 심각한 결과: 보고된 간 손상은 경미한 수준을 넘어 급성 간부전, 간 이식, 심지어 사망에 이르는 심각한 사례들을 포함합니다.⁸⁸ 이러한 위험은 흡수율을 높인 고생체이용률 커큐민 제품에서 더 높게 나타나는 경향이 있습니다.

비록 일부 연구에서 커큐민이 지방간 환자의 간 효소 수치를 낮춘다는 결과도 있지만 ⁹⁰, 기저 간 질환을 가진 환자에게 예측 불가능하고 치명적일 수 있는 특이체질성 간 손상의 위험은 잠재적 이점을 훨씬 능가합니다.

3.2.3. 결론

강황(커큐민)은 관절 통증에는 효과적일 수 있으나, 간 건강에는 심각하고 예측 불가능한 위험을 초래할 수 있는 대표적인 예입니다. 따라서 B형 간염 보유 및 지방간 환자에게는 절대 권장되지 않는 선택지입니다.

3.3. 히알루론산: 관절 윤활제와 간 섬유화 지표의 복합적 역할

히알루론산(HA)은 관절 활액의 자연적인 구성 성분으로, 관절을 부드럽게 하고 충격을 흡수하는 역할을 합니다.⁹¹이 때문에 퇴행성 관절염 치료에 널리 사용되지만, 간 질환환자에게는 그 사용이 복잡한 문제를 야기할 수 있습니다.

3.3.1. 관절 건강에 대한 기전

히알루론산은 주로 관절강 내 주사 형태로 사용되어, 부족해진 활액의 점탄성을 회복시키고 윤활 작용을 강화합니다.⁹² 경구용 히알루론산 보충제도 존재하지만, 그 효과에 대한 과학적 근거는 주사제에 비해 아직 부족하고 일관되지 않습니다.⁹⁶

3.3.2. 간 질환에서의 난제

히알루론산이 간 질환 환자에게 문제가 되는 지점은 그것이 간 독성을 유발하기 때문이 아니라, 간 기능의 중요한 지표로 사용되기 때문입니다.

- 간에서의 대사: 히알루론산은 혈액 속에서 주로 간에 의해 제거(대사)됩니다. 97
- 간 섬유화의 바이오마커: 만성 간 질환(예: B형 간염, 지방간염)으로 인해 간 기능이 저하되고 간 섬유화나 간경변이 진행되면, 간의 히알루론산 제거 능력이 떨어집니다.
 그 결과, 혈청 내 히알루론산 농도가 비정상적으로 상승하게 됩니다.⁹⁷
- 임상적 활용: 이러한 원리 때문에, 혈청 히알루론산 수치는 B형 간염, NAFLD 등다양한 만성 간 질환 환자에서 간 섬유화의 중증도를 비침습적으로 진단하고 추적관찰하는 **중요한 바이오마커(생체 지표)**로 널리 사용됩니다. 99

3.3.3. 결론

경구용 히알루론산 보충제를 섭취하는 것이 직접적으로 간 손상을 일으킨다고 알려져 있지는 않습니다. 그러나 간 질환 환자가 이를 섭취할 경우, 혈중 히알루론산 수치가 상승하여 의사가 환자의 실제 간 섬유화 정도를 정확하게 평가하는 데 심각한 혼란을 초래할 수 있습니다. 경구제의 효능이 아직 명확히 입증되지 않은 점과 이러한 임상적 복잡성을 고려할 때, 히알루론산은 간 질환 환자를 위한 관절 건강 보조제로 권장되지 않습니다.

제 4부: 종합, 비교 분석 및 실행 가능한 권장 사항

지금까지의 심층 분석을 바탕으로, 본 섹션에서는 평가된 모든 보충제들의 효능과 안전성을 종합적으로 비교하고, B형 간염 보유 및 지방간이라는 특정 조건을 가진 사용자를 위한 명확하고 실행 가능한 계층적 권장 사항을 제시합니다. 최종적으로는 안전한 보충제 선택을 위한 전문가의 조언으로 마무리합니다.

4.1. 평가된 모든 보충제의 효능 및 안전성 비교 프로파일

각 보충제의 복잡한 정보를 한눈에 파악하고 직관적으로 비교할 수 있도록, 핵심적인 평가 기준에 따라 모든 성분을 요약한 비교표는 다음과 같습니다. 이 표는 본 보고서의 전체 분석을 실용적인 의사결정 도구로 종합한 것입니다.

표 1: 간 질환 환자를 위한 관절 건강 보충제 비교 요약

평가 항목	글루코사민	MSM (식이유황)	가수분해 콜라겐 펩타이드	보스웰리아	오메가 -3 지방산	강황 (커큐민)
관절에 대한 주된 기전	연골 구성 성분 공급	하 산화, 항 산화, 진통, 황 고급	연골 구성 성분(아미 노산) 공급	강력한 항염증 (5-LOX 억제), 연골 보호	강력한 항염증 (염증 해결 촉진)	강력한 항염증 (NF-κB, COX-2 억제)
관절 효능에 대한 증거	보통 (결과 상충)	높음	높음 (적절한 제형 선택 시)	높음 (흡수율 개선 제형 선택 시)	높음	높음
생체이용률 및 제형 필요성	· 한	높음 (자체 흡수율 우수)	제형 의존적 (저분자량 가수분해 필수)	제형 의존적 (흡수율 개선 기술 필수)	양호 (품질 및 정제도 중요)	제형 의존적 (흡수율 개선 기술 필수)
일반적인 간 안전성 프로파일	위험 (간 손상 사례 보고)	안전 및 유익 (간 보호 효과)	안전 (중립적 프로파일)	안전 및 유익 (간 보호 효과)	안전 및 유익 (간 보호 효과)	심각한 위험 (예측불가 급성 간손상)
B형 간염(HBV)	명백한 위험	안전 / 중립 (직접적	안전 / 중립	안전 / 중립	잠재적 유익 (수술	고위험 (특이체질

에 대한 영향	(바이러스 복제 촉진) ¹⁴	영향 보고 없음)			후 간 기능 개선) ⁷⁹	성 간독성 위험)
지방간 (NA FLD)에 대한 영향	잠재적 위험 (대사 스트레스, 지방 축적) 7	명백한 유익 (지방간 개선 효과 입증) ³²	안전 / 중립	명백한 유익 (지방간 개선 효과 입증) ⁶⁸	명백한 유익 (지방간 개선 효과 입증) ⁷⁶	고위험 (특이체질 성 간독성 위험)
종합 권장 등급	Tier 3 (권장하지 않음)	Tier 1 (최우선 권장)	Tier 2 (고려 가능)	Tier 1 (최우선 권장)	Tier 1 (최우선 권장)	Tier 3 (권장하지 않음)

4.2. 보충제 선택을 위한 계층적 권장 사항

위의 종합적인 분석과 비교표를 바탕으로, B형 간염 보유 및 지방간이 있는 노년층 여성을 위한 보충제 선택 권장 사항을 다음과 같이 세 단계로 제시합니다.

Tier 1: 가장 유리한 위험-혜택 프로파일 (최우선 권장)

- 해당 성분: MSM(식이유황), 흡수율 개선 보스웰리아, 오메가-3 지방산
- 근거: 이 세 가지 성분은 **이중 혜택(dual benefit)**을 제공합니다. 첫째, 과학적으로 입증된 항염증 기전을 통해 관절 통증과 기능을 효과적으로 개선합니다. 둘째, 간에 안전할 뿐만 아니라, 사용자의 특정 기저 질환인 지방간을 개선하는 데 잠재적으로 치료적인 효과를 보인다는 강력한 증거가 있습니다. 오메가-3의 경우 HBV 관련 간암 환자의 수술 후 회복에도 긍정적인 영향을 미쳤습니다. 따라서 이들은 단순한 대안을 넘어, 관절과 간 건강을 동시에 관리할 수 있는 가장 이상적인 선택지입니다.

Tier 2: 신중한 고려 후 선택 가능 (고려 가능)

- 해당 성분: 저분자량 가수분해 콜라겐 펩타이드 (특히 2형)
- 근거: 콜라겐은 관절 연골의 구조적 지지에 필수적인 '구성 요소'를 공급하는 데 효과적이며, 간에 대한 안전성 프로파일은 중립적입니다. 그러나 Tier 1 성분들처럼

간 건강에 직접적인 치료적 이점을 제공하지는 않습니다. 또한, 그 효과는 전적으로 올바른 제형 선택에 의존적입니다. 반드시 '가수분해 펩타이드' 형태의 '저분자량(low molecular weight, 예: 1,000 Da 이하)' 제품, 특히 관절에 특화된 2형 콜라겐을 선택해야만 유의미한 효과를 기대할 수 있습니다.

Tier 3: 불리한 위험 프로파일로 인해 권장하지 않음 (섭취 금지)

- 해당 성분: 글루코사민, 강황(커큐민), 히알루론산
- 근거:
 - 글루코사민: B형 간염 바이러스 복제를 직접 촉진하고 지방간을 악화시킬 수 있는 명백하고 기전적인 위험 때문에 절대적으로 피해야 합니다.
 - 강황(커큐민): 관절염 효능에도 불구하고, 예측 불가능하며 잠재적으로 치명적인 급성 간 손상의 위험이 보고되었으므로 기저 간 질환 환자에게는 매우 위험한 선택입니다.
 - 히알루론산: 간 섬유화의 중요한 임상 지표로 사용되므로, 보충제로 섭취 시 환자의 상태를 정확히 평가하는 데 심각한 혼란을 야기할 수 있습니다. 경구제의 효능 또한 불확실하므로 권장되지 않습니다.

4.3. 최종 전문가 지침: 의료 상담 및 제품 품질의 중요성

본 보고서는 과학적 근거에 기반한 포괄적인 정보를 제공하지만, 개인의 치료 계획을 대체할 수는 없습니다. 다음의 최종 지침을 반드시 준수해야 합니다.

- 의료 전문가와의 필수적인 상담: 새로운 건강 보조제를 시작하기 전, 특히 B형 간염, 지방간과 같은 만성 질환이 있고 다른 약물을 복용 중인 경우에는 반드시 담당 간 전문의(hepatologist) 또는 주치의와 상담해야 합니다. 이는 개인의 건강 상태에 가장 적합한 선택을 하고, 기존 치료 약물과의 잠재적 상호작용(예: 오메가-3와 항응고제 ⁸², 보스웰리아와 특정 간 대사 약물 ¹⁰²)을 관리하기 위해 필수적인 과정입니다.
- 제품 품질의 중요성: 어떤 보충제를 선택하든, 신뢰할 수 있는 제조업체에서 생산하고 제3자 기관의 순도 및 함량 검사를 거친 고품질 제품을 선택하는 것이 매우 중요합니다. 이는 일부 글루코사민 간 손상 사례에서 의심되었던 오염물질의 위험을 최소화하고³, 제품에 표기된 성분과 함량이 정확히 들어있음을 보장받는 유일한 방법입니다.

결론적으로, 글루코사민에 대한 우려는 타당하며, B형 간염 보유 및 지방간 환자를 위한 더 안전하고 효과적인 대안은 분명히 존재합니다. 특히 MSM, 흡수율 개선 보스웰리아, 오메가-3는 관절 건강을 넘어 간 건강에도 시너지 효과를 낼 수 있는 유망한 선택지입니다. 이 보고서에서 제공된 정보를 바탕으로 의료 전문가와 심도 있는 논의를 통해 가장 안전하고 현명한 건강 관리 결정을 내리시길 바랍니다.

Works cited

- 1. Acute liver injury associated with glucosamine dietary supplement PMC, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC4544092/
- 2. Hepatotoxicity associated with glucosamine and chondroitin sulfate in patients with chronic liver disease ResearchGate, accessed July 16, 2025, https://www.researchgate.net/publication/256189992 Hepatotoxicity associated with glucosamine and chondroitin sulfate in patients with chronic liver diseas e
- 3. Glucosamine LiverTox NCBI Bookshelf, accessed July 16, 2025, https://www.ncbi.nlm.nih.gov/books/NBK547949/
- 4. The science behind MSM Glucosamine Chondroitin Kala Health, accessed July 16, 2025,
 - https://www.kalahealth.eu/the-science-behind-msm-glucosamine-chondroitin/
- 5. 최근 11년간 글루코사민 건기식 이상사례'44건'...'전신권태감'-'황달'-'간독성'등順, accessed July 16, 2025,
 - http://m.dailymedipharm.com/news/articleView.html?idxno=43955
- 6. www.ncbi.nlm.nih.gov, accessed July 16, 2025, https://www.ncbi.nlm.nih.gov/books/NBK547949/#:~:text=The%20severity%20of%20the%20liver,be%20severe%20and%20even%20fatal.
- 7. Glucosamine linked to liver failure Prescribing Advice for GPs, accessed July 16, 2025, https://www.prescriber.org.uk/2008/03/glucosamine-linked-to-liver-failure/
- 8. Glucosamine Special Subjects MSD Manual Consumer Version, accessed July 16, 2025, https://www.msdmanuals.com/home/special-subjects/dietary-supplements-and-vitamins/glucosamine
- Glucosamine Supplement: Uses & Side Effects Cleveland Clinic, accessed July 16, 2025, https://my.clevelandclinic.org/health/drugs/18486-glucosamine-capsules-or-table-ts
- Glucosamine Chondroitin Supplement: Uses & Side Effects Cleveland Clinic, accessed July 16, 2025, https://my.clevelandclinic.org/health/drugs/19075-glucosamine-chondroitin-caps ules-or-tablets
- 11. 글루코사민 특별 주제 MSD 매뉴얼 일반인용, accessed July 16, 2025, https://www.msdmanuals.com/ko/home/%ED%8A%B9%EB%B3%84-%EC%A3%B C%EC%A0%9C/%EC%8B%9D%EC%9D%B4-%EB%B3%B4%EC%B6%A9%EC%A0 %9C-%EB%B0%8F-%EB%B9%84%ED%83%80%EB%AF%BC/%EA%B8%80%EB%

A3%A8%EC%BD%94%EC%82%AC%EB%AF%BC

- 12. Hepatotoxicity associated with glucosamine and chondroitin sulfate in patients with chronic liver disease PMC, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC3752575/
- 13. Hepatotoxicity associated with glucosamine and chondroitin sulfate in patients with chronic liver disease PubMed, accessed July 16, 2025, https://pubmed.ncbi.nlm.nih.gov/23983444/
- 14. Glucosamine promotes hepatitis B virus replication through its dual effects in suppressing autophagic degradation and inhibiting MTORC1 signaling PubMed, accessed July 16, 2025, https://pubmed.ncbi.nlm.nih.gov/31204557/
- 15. 초기 간경화, B형간염, 지방간에 추천하지 않는 영양제 10가지는? YouTube, accessed July 16, 2025, https://www.youtube.com/watch?v=8gSNU79Yqv8
- 16. MSM | Uses, side-effects Versus Arthritis, accessed July 16, 2025, https://versusarthritis.org/about-arthritis/complementary-and-alternative-treatments/types-of-complementary-treatments/msm/
- 17. Methylsulfonylmethane (MSM): Biological Mechanisms and Clinical Applic You matter, accessed July 16, 2025, https://youmatter.mx/en/blogs/matter/methylsulfonylmethane-msm-mecanismos-biologicos-y-aplicaciones-clinicas
- 18. 관절 건강 보조제로 알려진 MSM 파헤치기 잠백이 카드뉴스, accessed July 16, 2025, https://jambaekee.com/article/%EB%89%B4%EC%8A%A4/5/366709/
- 19. MSM supplements: What it is, benefits & recommended dosage | BIOGENA International, accessed July 16, 2025, https://biogena.com/en/products/msm
- 20. Top 8 Health Benefits of MSM Supplements Healthline, accessed July 16, 2025, https://www.healthline.com/nutrition/msm-supplements
- 21. 뉴욕 타임즈가 극찬한 관절 영양제 식이유황 MSM 효능 부작용 복용량 체크하기, accessed July 16, 2025, https://www.dangyoung.com/contents/27
- 22. 4 Benefits of MSM (Methylsulfonylmethane) Rejuvenated, accessed July 16, 2025, https://rejuvenated.com/blog/what-are-the-health-benefits-of-msm/
- 23. 관절을 위한 MSM식이유황 효능과 효과 부작용 파헤쳐봅니다! 광동생활건강, 맑은365 매거진, accessed July 16, 2025, https://m.skyclear365.com/article/%EA%B1%B4%EA%B0%95%EB%8F%84%EA%B 0%90%F0%9F%93%98/7/8856/
- 24. Is Methylsulfonylmethane (MSM) effective for treating joint pain? Dr.Oracle, accessed July 16, 2025, https://www.droracle.ai/articles/152499/utility-of-methylsulfonylmethane-for-joint-pain
- 25. MSM (methylsulfonylmethane) health benefits: Joint pain and more Medical News Today, accessed July 16, 2025, https://www.medicalnewstoday.com/articles/324544
- 26. 식이 유황 『MSM 』관절 건강을 지키는 맞춤 비책 TV CHOSUN 221208 방송 YouTube, accessed July 16, 2025, https://www.youtube.com/watch?v=85rptXeBmV8
- 27. MSM이란 무엇인가? 효능부터 임상 사례까지 완벽 정리 | 염창환 박사 의학 강의, accessed July 16, 2025,

- https://www.youtube.com/watch?v=H7vnk_T0I9s&pp=0gcJCfwAo7VqN5tD
- 28. Methylsulfonylmethane Wikipedia, accessed July 16, 2025, https://en.wikipedia.org/wiki/Methylsulfonylmethane
- 29. What is MSM? Health Benefits & Uses of Methylsulfonylmethane, accessed July 16, 2025, https://www.water-for-health.co.uk/blogs/blog/what-is-msm-health-benefits-uses-of-methylsulfonylmethane
- 30. Methylsulfonylmethane: Applications and Safety of a Novel Dietary Supplement PMC, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC5372953/
- 31. MSM (Methylsulfonylmethane): Uses and Risks WebMD, accessed July 16, 2025, https://www.webmd.com/vitamins-and-supplements/msm-methylsulfonylmethan-e-uses-and-risks
- 32. Methylsulfonylmethane ameliorates metabolic-associated fatty liver disease by restoring autophagy flux via AMPK/mTOR/ULK1 signaling pathway, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC10720622/
- 33. Methylsulfonylmethane ameliorates metabolic-associated fatty liver disease by restoring autophagy flux via AMPK/mTOR/ULK1 signaling pathway PubMed, accessed July 16, 2025, https://pubmed.ncbi.nlm.nih.gov/38099147/
- 34. Methylsulfonylmethane suppresses hepatic tumor development through activation of apoptosis PMC, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC3934636/
- 35. Collagen Supplementation for Joint Health: The Link between Composition and Scientific Knowledge PMC PubMed Central, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC10058045/
- 36. Can Collagen Supplements Help Arthritis?, accessed July 16, 2025, https://www.arthritis.org/health-wellness/treatment/complementary-therapies/supplements-and-vitamins/can-collagen-supplements-help-arthritis
- 37. 무릎 오래 쓰려면 핵심 성분 콜라겐 챙기고 허벅지 앞 근육 강화 헬스중앙, accessed July 16, 2025, https://ihealthmedia.joins.com/news/articleView.html?idxno=27166
- 38. [콜라겐의 진실] ③ 콜라겐 '관절건강'에도 필요하다 매경헬스, accessed July 16, 2025, https://www.mkhealth.co.kr/news/articleView.html?idxno=62014
- 39. Does Collagen Powder Work for Joint Health? NowPatient, accessed July 16, 2025, https://nowpatient.com/blog/does-collagen-powder-work-for-joint-health
- 40. Collagen The Nutrition Source Harvard University, accessed July 16, 2025, https://nutritionsource.hsph.harvard.edu/collagen/
- 41. The beneficial effects of collagen peptides on joint health Ledvard, accessed July 16, 2025, https://www.ledvard-sport.com/en/Blog/the-beneficial-effects-of-collagen-peptides-on-joint-health/
- 42. Collagen: What It Is, Types, Function & Benefits Cleveland Clinic, accessed July 16, 2025, https://my.clevelandclinic.org/health/articles/23089-collagen
- 43. 콜라겐 종류 완벽 정리! 1형, 2형, 3형 차이와 선택 가이드 드시모네몰, accessed July 16, 2025, https://www.desimone.co.kr/magazineView/85883
- 44. Comparing Molecular Weight Dependent Absorption Rates of Collagen in Oral

- Mucosal and Epidermis/dermis Tissue Models :: Journal of Food Hygiene and Safety ::, accessed July 16, 2025,
- http://foodsafety.or.kr/journal/article.php?code=91318
- 45. 요거트 속에 '흡수율 90%' 저분자 콜라겐이 쏙~! 헬스경향, accessed July 16, 2025, https://www.k-health.com/news/articleView.html?idxno=46657
- 46. m.healthcaren.com, accessed July 16, 2025, <a href="https://m.healthcaren.com/news/news_article_yong.jsp?mn_idx=433960#:~:text="mailto://www.news_article_yong.jsp?mn_idx=433960#:~:text="
- 47. 분자크기 작을수록 흡수율1...저분자 피쉬콜라겐 펩타이드 선택 방법은? 헬스케어N, accessed July 16, 2025, https://m.healthcaren.com/news/news article yong.jsp?mn idx=433960
- 48. [카드뉴스] 관절건강기능식품, 난 이렇게 고른다! '엠에스엠(MSM)' 제품 현명한 선택법, accessed July 16, 2025,
 - https://www.k-health.com/news/articleView.html?idxno=73701
- 49. 저분자피쉬콜라겐 깐깐하게 고르는 법 오니스트 Blog, accessed July 16, 2025, https://ownist.kr/article/blog/8/664/
- 50. Collagen deposition in the liver is strongly and positively associated with T1rho elongation while fat deposition is associated with T1rho shortening: an experimental study of methionine and choline-deficient (MCD) diet rat model PubMed Central, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC7596395/
- 51. Targeting collagen expression in alcoholic liver disease PMC, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC3103805/
- 52. 만성 B형 간염 환자 간조직의 제☑형 Collagen, Laminin, 및 Fibronectin의 발현과 임상검사 성적과의 비, accessed July 16, 2025, https://www.kjg.or.kr/journal/download_pdf.php?spage=786&volume=33&number =6
- 53. Do collagen, omega-3 and whey supplements help your bones? UC Davis Health, accessed July 16, 2025, https://health.ucdavis.edu/news/health-wellness/do-collagen-omega-3-and-whey-supplements-help-your-bones/2025/01
- 54. Frankincense (Boswellia serrata) Restorative Medicine, accessed July 16, 2025, https://restorativemedicine.org/library/monographs/frankincense/
- 55. Boswellia Serrata, A Potential Antiinflammatory Agent: An Overview PMC, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC3309643/
- 56. 관절 건강에 좋은 영양제는? 보스웰리아에 대해 뉴트리몰, accessed July 16, 2025, https://newtreemall.co.kr/magazine/view?id=custom_bbs2&seq=144591
- 57. 관절에 좋다는 '이것', 보스웰리아에 대해 제대로 알아보기 하이닥, accessed July 16, 2025, https://news.hidoc.co.kr/news/articleView.html?idxno=21578
- 58. [영양제 알려주는 닥터] 보스웰리아, 효능에서 한계까지 건강다이제스트, accessed July 16, 2025, http://www.ikunkang.com/news/articleView.html?idxno=37970

- 59. Evaluating the Anti-Osteoarthritis Potential of Standardized Boswellia serrata Gum Resin Extract in Alleviating Knee Joint Pathology and Inflammation in Osteoarthritis-Induced Models MDPI, accessed July 16, 2025, https://www.mdpi.com/1422-0067/25/6/3218
- 60. Enhanced absorption of boswellic acids by a lecithin delivery form (Phytosome (R)) of Boswellia extract ResearchGate, accessed July 16, 2025, https://www.researchgate.net/publication/232647565_Enhanced_absorption_of_b oswellic acids by a lecithin delivery form Phytosome R of Boswellia extract
- 61. Enhanced Bioavailability of Boswellic Acid by Piper Iongum: A Computational and Pharmacokinetic Study PMC PubMed Central, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC7770183/
- 62. (PDF) Lipid based approach for bioavailability enhancement of boswellia serrata, accessed July 16, 2025, https://www.researchgate.net/publication/359537386_Lipid_based_approach_for_bioavailability_enhancement_of_boswellia_serrata
- 63. Quality, bioavailability and clinical application of a new lecithin delivery system of Boswellia serrata extract Thieme Connect, accessed July 16, 2025, https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0035-15 65299
- 64. A full-spectrum Boswellia serrata extract with enhanced bioavailability, and its co-delivered system with curcumin alleviate pain and stiffness associated with moderate spondylitis: a randomized double-blind, placebo-controlled, 3-arm study Frontiers, accessed July 16, 2025, https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2025.157 7429/full
- 65. Pharmacokinetics of a Natural Self-emulsifying Reversible Hybrid-Hydrogel (N'SERH) Formulation of Full-Spectrum *Boswellia serrata* Oleo-Gum Resin Extract: Randomised Double-Blinded Placebo-Controlled Crossover Study J-Stage, accessed July 16, 2025, https://www.jstage.jst.go.jp/article/bpb/47/9/47 b24-00306/ html/-char/en
- 66. Boswellia Serrata LiverTox NCBI Bookshelf, accessed July 16, 2025, https://www.ncbi.nlm.nih.gov/books/NBK563692/
- 67. Antioxidant, anti-inflammatory and anti-fibrotic effects of Boswellia serrate gum resin in CCI4-induced hepatotoxicity PubMed Central, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC6966228/
- Acetyl-11-keto-β-boswellic acid alleviates hepatic metabolic dysfunction by inhibiting MGLL activity - PubMed Central, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC12139501/
- 69. Effect of Boswellia serrata supplementation on blood lipid, hepatic enzymes and fructosamine levels in type2 diabetic patients, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC3929136/
- 70. Acetyl-11-Keto-Beta-Boswellic Acid Has Therapeutic Benefits for NAFLD Rat Models That Were Given a High Fructose Diet by Ameliorating Hepatic Inflammation and Lipid Metabolism PubMed, accessed July 16, 2025, https://pubmed.ncbi.nlm.nih.gov/37310644/

- 71. Protective effect of boswellic acids versus pioglitazone in a rat model of diet-induced non-alcoholic fatty liver disease: influence on insulin resistance and energy expenditure PubMed, accessed July 16, 2025, https://pubmed.ncbi.nlm.nih.gov/25708949/
- 72. Anti-Inflammatory Omega-3 Fatty Acids and Joint Mobility, accessed July 16, 2025, https://www.zahnchiropractic.com/anti-inflammatory-omega-3-fatty-acids-joint-mobility/
- 73. Essential Supplements for Joint Health: Supporting Cartilage Function and Reducing Inflammation Virtus Clinics, accessed July 16, 2025, https://virtusclinics.com/essential-supplements-for-joint-health-supporting-cartilage-function-and-reducing-inflammation/
- 74. Omega-3 Fatty Acids and Joint Health: Benefits and Sources | Natalie Mesnier MD, accessed July 16, 2025, https://www.pdxfootandankle.com/blog/omega-3-fatty-acids-and-joint-health-benefits-and-sources-40772.html
- 75. Omega-3 Supplementation and Its Effects on Osteoarthritis PMC, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC11174396/
- 76. Effects of Omega-3 Fatty Acid in Nonalcoholic Fatty Liver Disease: A Meta-Analysis - PMC, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC5019889/
- 77. Omega-3 fatty acids for the treatment of non-alcoholic fatty liver disease PubMed Central, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC3491590/
- 78. Omega-3 Fatty Acids and Nonalcoholic Fatty Liver Disease in Adults and Children: Where Do We Stand?, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC6355343/
- 79. Omega-3 fatty acid improves the clinical outcome of hepatectomized patients with hepatitis B virus (HBV)-associated hepatocellular carcinoma PubMed Central, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC3597052/
- 80. Omega-3 intake is associated with liver disease protection PMC, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC10394692/
- 81. Role of Omega-3 Fatty Acids in Reducing Inflammation for Arthritis Pain, accessed July 16, 2025, https://continentalhospitals.com/blog/role-of-omega-3-fatty-acids-in-reducing-inflammation-for-arthritis-pain/
- 82. 오메가3 효능, 부작용, 추천 영양제 TOP10 (2025 최신) 필라이즈, accessed July 16, 2025, https://www.pillyze.com/nutrients/group/104/%EC%98%A4%EB%A9%94%EA%B0%803
- 83. The spice for joint inflammation: anti-inflammatory role of curcumin in treating osteoarthritis, accessed July 16, 2025, https://www.dovepress.com/the-spice-for-joint-inflammation-anti-inflammatory-role-of-curcumin-in-peer-reviewed-fulltext-article-DDDT

- 84. Turmeric Probably Won't Help Your Arthritis But Curcumin Might, accessed July 16, 2025,
 - https://www.arthritis.org/health-wellness/healthy-living/nutrition/anti-inflammatory/turmeric-wont-help-arthritis
- 85. The role of curcumin in liver diseases PMC, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC6855174/
- 86. Turmeric Curcumin and Osteoarthritis | NutritionFacts.org, accessed July 16, 2025, https://nutritionfacts.org/video/turmeric-curcumin-and-osteoarthritis/
- 87. 항염, 항산화, 해독...못하는 게 없는 '강황' 휴베이스 CH본부장 노윤정 약사 Hubase Square, accessed July 16, 2025, https://www.hubasekorea.co.kr/board/view/drug5/45
- 88. Turmeric LiverTox NCBI Bookshelf, accessed July 16, 2025, https://www.ncbi.nlm.nih.gov/books/NBK548561/
- 89. Turmeric-induced Liver Injury PMC PubMed Central, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC11259472/
- 90. Curcumin supplementation effect on liver enzymes in patients with nonalcoholic fatty liver disease: a GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials PubMed, accessed July 16, 2025, https://pubmed.ncbi.nlm.nih.gov/38213188/
- 91. What is the mechanism of action of hyaluronic acid (HA)? Dr.Oracle Al Medical Assistant, accessed July 16, 2025, https://www.droracle.ai/articles/88834/how-does-hyaluronic-acid-work
- 92. What Is Hyaluronic Acid? Arthritis-health, accessed July 16, 2025, https://www.arthritis-health.com/treatment/injections/what-hyaluronic-acid
- 93. 히알루론산, accessed July 16, 2025, https://www.e-cpain.org/journal/download_pdf.php?spage=89&volume=1&numbe r=2
- 94. 무릎 골관절염에서 관절강내 약물 주사, accessed July 16, 2025, https://scholarworks.bwise.kr/neca/bitstream/2023.sw.neca/278/1/NR23-001-34.p df
- 95. 족관절 골관절염에서 히알루론산 관절 내 주사 Journal of Korean Foot and Ankle Society, accessed July 16, 2025, https://www.jkfas.org/journal/download_pdf.php?spage=115&volume=15&number=3
- 96. Oral Hyaluronic Acid for Joint Pain: What You Need to Know Healthline, accessed July 16, 2025, https://www.healthline.com/health/oral-hyaluronic-acid-for-joint-pain
- 97. Serum hyaluronate in liver diseases: study by enzymoimmunological assay PubMed, accessed July 16, 2025, https://pubmed.ncbi.nlm.nih.gov/3710427/
- 98. Hyaluronic Acid: From Biochemical Characteristics to its Clinical Translation in Assessment of Liver Fibrosis, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC3877656/
- 99. Hyaluronan in liver fibrosis: basic mechanisms, clinical implications, and therapeutic targets, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC10027054/

- 100. Hyaluronic acid as a non-invasive biomarker of liver fibrosis PubMed, accessed July 16, 2025, https://pubmed.ncbi.nlm.nih.gov/26188920/
- 101. Hyaluronic acid as a biomarker of fibrosis in chronic liver diseases of different etiologies, accessed July 16, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC4777465/
- 102. BOSWELLIA SERRATA: Overview, Uses, Side Effects, Precautions, Interactions, Dosing and Reviews WebMD, accessed July 16, 2025, https://www.webmd.com/vitamins/ai/ingredientmono-63/boswellia-serrata