Занятие 4. Классы веществ. Оксиды, основания

Классификация неорганических веществ. Оксиды. Типы оксидов, соответствующие гидроксиды. Свойства оксидов разных типов. Основания, их классификация.

Расчёты по уравнениям реакций. Примеси. Выход, избыток-недостаток.

Теория.

Классификация неорганических веществ.

К важнейшим классам неорганических веществ по традиции относят:

- простые вещества (металлы и неметаллы),
- оксиды (кислотные, основные и амфотерные),
- гидроксиды (часть кислот, основания, амфотерные гидроксиды),
- соли.

Простые вещества обычно делят на металлы и неметаллы.

Металлы – простые вещества, в которых атомы связаны между собой металлической связью.

Неметаллы – простые вещества, в которых атомы связаны между собой ковалентными (или межмолекулярными) связями.

По химическим свойствам среди металлов выделяют группу так называемых **амфотерных металлов**. Это название отражает способность этих металлов реагировать как с кислотами, так и со щелочами (как амфотерные оксиды или гидроксиды).


Оксиды – бинарные соединения, одним из двух элементов в которых является <u>кислород</u> со степенью окисления -2.

Гидроксиды – соединения, в состав которых входит группа **–ОН**. И основания, и кислородсодержащие кислоты, и амфотерные гидроксиды – относятся к ГИДРОКСИДАМ!.

Основания – сложные вещества, содержащие в своем составе гидроксид-ионы **ОН**⁻ или при взаимодействии с водой образующие в качестве анионов только эти ионы.

Кислоты – сложные вещества, содержащие в своем составе ионы оксония \mathbf{H}^{+} или при взаимодействии с водой образующие в качестве катионов только эти ионы. По составу кислоты делятся на кислородсодержащие (оксокислоты) и бескислородные.

Кислородсодержащие кислоты (оксокислоты) — кислоты, в состав которых входят атомы кислорода. **Бескислородные кислоты** — кислоты, молекулы которых не содержат атомов кислорода.

Соли – <u>ионные соединения, в состав которых в качестве анионов входят кислотные остатки.</u> Соли принято подразделять по составу на кислые, средние, основные, двойные, смешанные, комплексные.

Классификация солей.

соли					
Средние	Кислые	Основные	Двойные -	Смешанные -	Комплексные
(нормаль-ны	(<u>гидро</u> соли) -	<u>(гидроксо-</u> со	содержат два	содержат	[Cu(NH3)4]SO4
е) - продукт	продукт	ли) -продукт	разных	один металл	
полного	неполного	неполного	металла и	и несколько	
замещения	замещения	замещения	один	кислотных	
атомов	атомов	ОН-групп	кислотный	остатков	
водорода в	водорода в	основания на	остаток	CaOCl ₂	
кислоте на	кислоте на	кислотный	$KAI(SO_4)_2$	CaClBr	
металл	металл	остаток	KNaSO₄		
AICl ₃	KHSO₄	FeOHCl			

Оксиды. Типы оксидов, соответствующие гидроксиды.

окоиды	i i i i i i i i i i i i i i i i i i i	сидов, соответ	OIDYIODANO INE	thouand an
Оксиды				
Основные	Амфотерные	Кислотные	Несолеобразующие	Солеобразные
Оксиды металлов в	Оксиды	1) Оксиды	Оксиды неметаллов,	Некоторые
степенях	металлов в	неметаллов, кроме	которым не	«двойные» оксиды,
окисления +1, +2,	степенях	несолеобразующих;	соответствуют	в которых элемент
(+3), кроме	окисления	2) Оксиды металлов в	кислоты.	имеет 2 степени
амфотерных.	+2: Be, Zn,	степенях окисления от		окисления:
	Sn, Pb;	+4 и выше.		
	+3: Al, Cr			
Na_2O	Al_2O_3	$1)P_2O_5$	NO, N_2O, CO	$Fe_3O_4 =$
		2) CrO ₃		$FeO \cdot Fe_2O_3$
				$Pb_3O_4 =$
				2PbO ·PbO₂
Солеобра				
зующие				

Каждому оксиду из солеобразующих соответствуют гидроксиды:

Основным оксидам соответствуют основания; амфотерным оксидам – амфотерные гидроксиды, кислотным оксидам – кислородсодержащие кислоты.

Связь между оксидом и гидроксидами.

СВЯ	ізь между	ОКСИДОМ	и гидроксидами.		
Степень		Гидроксиды			
окисления	Оксид			Примеры	
		Основания	Кислоты		
+1	Θ_2O	ЭОН	НЭО	КОН	HClO
+2	Э0	Э(OH) ₂	H ₂ 3O ₂	Ba(OH) ₂	?
+3	Θ_2O_3	Э(OH) ₃	НЭО ₂ (<u>мета</u> -форма)	Al(OH) ₃	HNO_2
			(+H ₂ O) (H_3PO_3
			H ₃ ЭО ₃ (орто -форма)		
+4	Θ_2		H ₂ 9O ₃ [©]		H_2CO_3
			H ₄ 3O ₄		H ₄ SiO ₄
+5	Θ_2O_5		НЭО₃ €		HNO ₃
			H ₃ 3O ₄		H_3PO_4
+6	ЭО,		H ₂ ЭO ₄		H_2SO_4
+7	Θ_2O_7		HЭO ₄		HClO ₄
			(+ 2H ₂ O) [©]		H_5IO_6
			H ₅ 3O ₆		

Получение оксидов:

Способы получения.	Примеры.	Ограничения и примечаниия
1. Окисление	а) металлов:	С кислородом не реагируют галогены,
простых веществ:	2Ca + O₂ € 2CaO	инертные газы, Аи, Рt. Азот реагирует в
	б) неметаллов:	жестких условиях. Этим способом
	$4P + 3O_2$ (нед) $2P_2O_3$	получаются: из $S - SO_2$, из $Fe - Fe_2O_3$ и
	4P + 5O ₂ (изб) [€] 2P ₂ O ₅	Fe_3O_4 , из $N_2 - NO$.
2. Окисление	а) водородных соединений:	
сложных веществ:	$2H_2S + 3O_2 \le 2H_2O + 2SO_2$	
	б) сульфидов, карбидов,	
	фосфидов (бинарных	
	соединений):	
	$2ZnS + 3O_2 $ © $2ZnO + 2SO_2$	
3. Разложение	а) гидроксидов (оснований и	Гидроксиды и карбонаты щелочных
гидроксидов и	кислот):	металлов не разлагаются.
солей:	$2Al(OH)_3$ - (t) à $Al_2O_3 + 3H_2O$	
	H_2SiO_3 -(t°)à $SiO_2 + H_2O$	
	б) карбонатов:	
	$CaCO_3$ - $(t^o)\grave{a}$ $CaO + CO_2$	
4. Окисление	а) кислородом:	Для элементов, которые при горении не
оксидов до более	$2CO + O_2 $ $2CO_2$	образуют высший оксид (сера, азот) или
высокой степени	б) озоном:	могут образовывать при горении
окисления:	$NO + O_3 $ $NO_2 + O_2$	несколько оксидов (углерод, фосфор)

Свойства оксидов.

Основные оксиды – оксиды, способные реагировать с кислотами и не способныереагировать со щелочами. Все основные оксиды – твердые немолекулярные вещества с ионной связью.

Свойства основных оксидов.

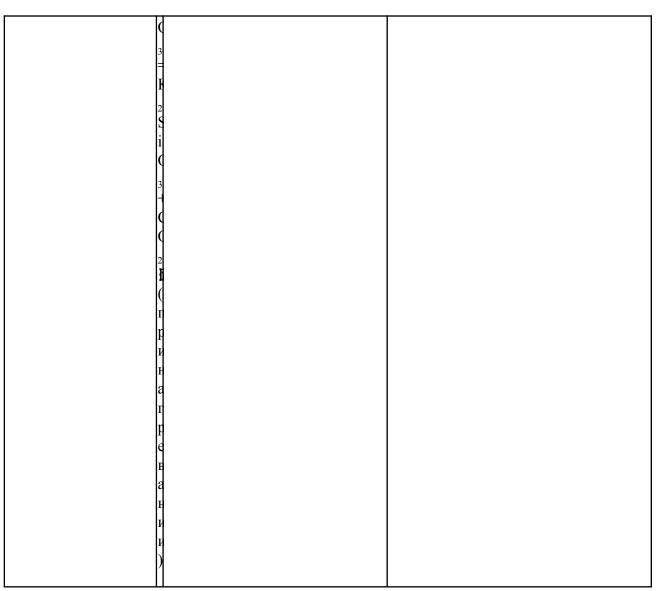
OBONCIBA OCHOBNIBI	л околдов.	
Свойства	Примеры реакций	Ограничения и примечания
1) Все основные	$Li_2O + 2HCl = 2LiCl + H_2O$,	Возможность реакции с раствором
оксиды реагируют с	$NiO + H_2SO_4 = NiSO_4 + H_2O.$	слабой кислоты определяется силой
растворами сильных		кислоты (чем сильнее кислота, тем она
кислот:		активнее) и прочностью связи в оксиде
		(чем слабее связь, тем активнее оксид).
2) Оксиды щелочных и	$Li_2O + H_2O = 2LiOH$	Оксид реагирует с водой, если в
щелочноземельных	$BaO + H_2O = Ba(OH)_2$	результате образуется растворимый
металлов реагируют <u>с</u>		гидроксид
<u>водой</u>		
3) Основные оксиды	$BaO + CO_2 = BaCO_3$,	Один из реагирующих оксидов
реагируют <u>с</u>	$FeO + SO_3 = FeSO_4,$	(основный или кислотный) должен
кислотными оксидами:	$CuO + N_2O_5 = Cu(NO_3)_2$	соответствовать сильному гидроксиду.
	$CaO + SO_2 = CaSO_3$	Соль должна быть устойчива.
4) Многие основные	MnO + C = Mn + CO	
оксиды могут быть	(при нагревании),	
восстановлены <u>до</u>	$FeO + H_2 = Fe + H_2O$	
<u>металла</u> :	(при нагревании).	
1 /	$4FeO + O_2 = 2Fe_2O_3$	
степеней окисления		
могут быть <u>окислены</u>		
до более высоких		
степеней окисления.		

Кислотные оксиды — оксиды, способные реагировать со щелочами и не способные реагировать с кислотами.

Среди кислотных оксидов есть вещества, представляющие собой при комнатной температуре:

- газы (например: CO₂, SO₂, NO, SeO₂),
- жидкости (например, Mn₂O₇) и
- **твердые** вещества (например: B_2O_3 , SiO_2 , N_2O_5 , P_2O_3 , P_2O_5 , SO_3 , I_2O_5 , CrO_3).

Большинство кислотных оксидов - молекулярные вещества (исключения составляют B_2O_3 , SiO_2 , твердый SO_3 , CrO_3 и некоторые другие; существуют и немолекулярные модификации P_2O_5). Но и немолекулярные кислотные оксиды при переходе в газообразное состояние становятся молекулярными.


Свойства кислотных оксидов.

Свойства ки	слотных оксидов.	
Свойства	Примеры реакций	Ограничения и примечания
1) Все кислотные	(Наиболее активные кислотные
оксиды реагируют с	₫	оксиды (SO ₃ , CrO ₃ , N ₂ O ₅ , Cl ₂ O ₇) могут
<u>СИЛЬНЫМИ</u>	2	реагировать и с нерастворимыми
<u>основаниями</u> , как с	4	(слабыми) основаниями.
твердыми, так и с	(
растворами	a	
щелочей	(
	4	
	H	
)	
	2	
	†	
	٩	
	a	
	9	
	9	
	3	
	Ţ	
	4	
	2	
	9	
	:	
	1	
	٩	
	2	
	4	
	r d	
	T T	
	1 ≡	
	T.	
	2 S	
	i	
	9 -1	
	 	
	2	
	d	
	ld	
	וץ ח	
	l I	1

<u> </u>	
p	
и	
T.	
ä	
П	
n	
٩	
B	
a	
<u> </u>	
Ŋ	
น	
4	
,	
\$	
d	
ή	
3	
4	
4	
4	
Γ	
a	
7	
9	
Ц	
¥	
1	
a	
2	
4 d	
4	
4	
4	
[]	
H	
2	
4	
4	
2	
h	
2	
(
5	
7	
2	
Tal	
7	
Υ	
1	
4	
14	
1	
4	
3	
- -	
Ц	
2	
ð	
١	
-	

2) Кислотные	Один из реагирующих оксидов
оксиды реагируют с	(основный или кислотный) должен
ОСНОВНЫМИ 2	соответствовать сильному гидроксиду.
оксидами -	Соль должна быть устойчива.
	j. i. j. i.
l	
d	
la	
3	
2	
5	
I ^F	
le le	
4	
l b	
2	
l h	
þ	
Į.	
H	
a	
I I	
ן וו	
3) Многие	Оксид реагирует с водой, если в
кислотные оксиды	результате образуется растворимый
реагируют с водой,	гидроксид
образуя кислоты	
2	

	П	
	\P	
	 	
	<u> </u>	
	7	
	Ц	
	h	
	4	
	2	
	4	
	2	
	- -	
	Ц	
	2	
	١٩	
	╡	
	H	
	1	
	2	
	1	
	ld	
]	
	3	
	1	
	2	
	q	
	5	
	1	
	2	
	4	
	 	
	<u> </u>	
	4	
	Ц	
	1	
	١٩	
	3	
	<u> </u>	
	9	
	[3]	
	l -l	
	4	
	2	
	ld	
	7	
	H	
	2	
	}	
	4	
10.5	4	
4) Возможно взаимодействие	1	
взаимолействие	lil	
KIACHOTI II DA OKCITAT	7	
кислотных оксидов	4	
с солями более	2	
слабых или летучих	-	
слаоых или летучих		
<u>кислот</u>	 	
	7	
	ΙΥ	

Амфотерные оксиды — оксиды, способные реагировать и с кислотами, и со щелочами. По химическим свойствам амфотерные оксиды похожи на основные оксиды и отличаются от них только своей способностью реагировать с щелочами, как с твердыми (при сплавлении), так и с растворами, а также с основными оксидами.

Вещества, образуемые амфотерными элементами в щелочной среде:

Степень окисления	В растворе	В расплаве
+2 (Zn, Be, Sn)	Na ₂ [Zn (OH) ₄]	Na ₂ ZnO ₂
	тетрагидроксоцинкат	цинкат натрия
	натрия	
+3 (Al, Cr)	Na[Al(OH) ₄]	NaAlO ₂
	тетрагидроксоалюминат	метаалюминат натрия и
	натрия и	Na ₃ AlO ₃
	Na₃[AÎ(OH) ₆]	ортоалюминат натрия
	гексагидроксоалюминат	
	натрия	

Свойства амфотерных оксидов.

Свойства	Примеры реакций	Примечания
1) Реагируют с кислотами, так	$ZnO + 2HCl = ZnCl_2 + H_2O$	Только с
же, как <u>основные</u> оксиды –	$Al_2O_3 + HNO_3 = Al(NO_3)_3 + H_2O$	сильными
образуются соли.		кислотами
2) Взаимодействуют с	$Al_2O_3 + KOH + H_2O = K[Al(OH)_4]$ или	
растворами щелочей -	$K_3[Al(OH)_6]$	
образуются растворы	ZnO + NaOH + H2O = Na2[Zn(OH)4]	
гидроксокомплексов.		
3) Реагируют с расплавами	$Al_2O_3 + KOH = KAlO_2$ (или K_3AlO_3) +	
щелочей – образуя соли, при	$\rm H_2O$ (при нагревании)	
этом проявляют свойства	$ZnO + KOH = K_2ZnO_2 + H_2O$ (при	
<u>кислотных</u> оксидов.	нагревании)	
4) При сплавлении могут	$Al_2O_3 + Na_2CO_3 = NaAlO_2$ (или Na_3AlO_3)	
взаимодействовать с	+ CO₂ ⊠ (при нагревании)	
карбонатами щелочных металлов.	$ZnO + Na_2CO_3 = Na_2ZnO_2 + CO_2$ Ш (при	
	нагревании)	

<u>Гидроксиды: основания и амфотерные гидроксиды, кислоты.</u>

Основания, их классификация.

<u>Основания</u> – сложные вещества, содержащие в своем составе гидроксид-ионы или при взаимодействии с водой образующие в качестве анионов только эти ионы.

Амфотерные гидроксиды – гидроксиды, способные реагировать и с кислотами, и со щелочами.

Кислородсодержащие кислоты (оксокислоты) — кислоты, в состав которых входят атомы кислорода.

Кислородсодержащие кислоты по своему строению являются гидроксидами!

К основаниям относятся:

- а) ионные гидроксиды, соответствующие основным оксидам КОН, Ва(ОН)₂ и т.п
- б) некоторые не содержащие гидроксидных ионов вещества, молекулы которых способны принимать протон (аммиак NH_3 , гидразин N_2H_4 и амины).

Частицами-основаниями в этих веществах являются или **гидроксид-ионы (а)**, или сами молекулы оснований (б).

Все основания удобно разделить на три группы:

I - растворимые ионные основания (щелочи),

II - нерастворимые (то есть очень мало растворимые) основания,

III - молекулярные основания.

Все растворимые ионные основания (щелочи) являются сильными основаниями. Из нерастворимых гидроксидов слабыми являются только те, которые в той или иной степени проявляют амфотерные свойства. Все молекулярные основания - слабые.

Основания I группы в воде химически растворяются, основания II группы также химически растворяются в воде, но крайне незначительно, а растворение оснований III группы - отчасти физическое, а отчасти химическое (часть растворившихся молекул обратимо реагирует с водой):

$$NaOH_{\kappa\rho} \stackrel{\text{H}_{2}O}{=} Na^{\oplus} + OH_{,}^{\Theta}$$
 $Fe(OH)_{2\kappa\rho} \stackrel{\text{H}_{2}O}{\rightleftharpoons} Fe^{2\Theta} + 2OH_{,}^{\Theta}$ $NH_{3} + H_{2}O \rightleftharpoons NH_{4}^{\oplus} + OH_{,}^{\Theta}$

По той или иной причине в растворах оснований присутствуют гидроксид-ионы, поэтому растворы оснований I и III группы изменяют окраску кислотно-основных индикаторов.

Получение оснований:

Способ получения	Примеры реакций	Примечания
1) Реакция активных металлов с	$2Na + 2H_2O = 2NaOH + H_2$	С водой реагируют
водой (только если образуется		металлы IA
растворимый гидроксид!)		подгруппы, Са, Sr,
		Ba
2) Взаимодействие основных оксидов	$BaO + H_2O = Ba(OH)_2$	С водой реагируют
с водой (только если образуется		оксиды металлов IA
растворимый гидроксид!)		подгруппы, Са, Sr,
		Ba.
3) Взаимодействие солей тяжелых	$CuCl_2 + 2KOH = Cu(OH)_2 $ +	Получение
металлов со щелочью.	2KCl	нерастворимых
		гидроксидов.
4) Электролиз растворов хлоридов и	2KCl + 2H ₂ O –(эл.ток) [€] Cl ₂	
бромидов щелочных металлов.	+ H ₂ + 2KOH	

Свойства оснований:

овойства основан		
Свойства	Примеры реакций	Примечания
1) Основания реагируют	$NaOH + HNO_3 = NaNO_3 + H_2O_3$	Щёлочи – с любыми
с растворами кислот -	$Fe(OH)_2 + 2HCl = FeCl_2 + 2H_2O,$	кислотами, нерастворимые
реакция нейтрализации.	$NH_3 + HClO_4 = NH_4ClO_4$	основания — с сильными
		кислотами.
4) Щелочи и	$2KOH + SO_3 = K_2SO_4 + H_2O$	
малорастворимые	$2NaOH + CO_2 = Na_2CO_3 + H_2O$	
основания реагируют с	$SiO_2\kappa p + 2NaOH = Na_2SiO_3 + H_2O$	
кислотными оксидами	(при нагревании или сплавлении)	
3) Растворимые	$2NaOH + FeSO_4 = Fe(OH)_2 + Na_2SO_4$	Реакция протекает, если и
<u>-</u>	$2NH_3 + 2H_2O + MgSO_4 = Mg(OH)_2 +$	соль и основание
растворами средних	(NH ₄) ₂ SO ₄	растворимы, а в результате
солей	(1.124) 2004	образуется газ или осадок
2) Растворимые	$NaOH + NaHCO_3 = H_2O + Na_2CO_3$;	Кислая соль ведёт себя как
основания реагируют с	$2NH_3 + 2NaHSO_4 = Na_2SO_4 + (NH_4)_2SO_4$	кислота
растворами кислых	$2KOH + (NH_4)_2SO_4 = K_2SO_4 + 2NH_3 +$	in the second
солей	2H ₂ O.	
7) Все нерастворимые	$Cu(OH)_2$ -(t°)à $CuO + H_2O$	Щелочи плавятся без
гидроксиды (в том		разложения.
числе и гидроксиды		Гидроксид серебра
кальция и магния)		разлагается сразу в момент
разлагаются при		образования в водном
нагревании.		растворе.
5) Щелочи реагируют <u>с</u>	2NaOH + Cr2O3 = 2NaCrO2 + H2O	растворе.
<u>амфотерными</u> оксидами	(при сплавлении)	
и гидроксидами	2KOH + ZnO + H2O = K2 [Zn(OH)4]	
'" ''	$2\text{NaOH} + \text{Zn(OH)}_2 = \text{Na}_2 [\text{Zn(OH)}_4]$	
	$3KOH + Cr(OH)_3 = K_3 [Cr(OH)_6]$	
6) Щелочи	$2\text{NaOH} + \text{Be} + 2\text{H}_2\text{O} = \text{Na}_2 \left[\text{Be}(\text{OH})_4 \right] + \text{H}_2$	
взаимодействуют с	211aO11 + BC +2112O - 11a2 [BC(O11)4] +112	
<u>амфотерными</u>		
металлами.		
7) Щелочи	Si + KOH + H2O = K2SiO3 + H2	У серы, фосфора,
взаимодействуют с	S + NaOH = Na2S + Na2SO3 + H2O	галогенов – реакции
некоторыми		диспропорционирования.
неметаллами.		,

Свойства амфотерных гидроксидов.

Свойства	Примеры реакций	Примечания
----------	-----------------	------------

1) Реагируют с кислотами, так	$Zn(OH)_2 + 2HCl = ZnCl_2 + 2H_2O$	Только с
же, как <u>основания</u> –	$Al(OH)_3 + 3HNO_3 = Al(NO_3)_3 + 3H_2O$	сильными
образуются соли.		кислотами
2) Взаимодействуют с	$2NaOH + Zn(OH)_2 = Na_2 [Zn(OH)_4]$	в растворе –
растворами щелочей -	тетрагидроксоцинкат натрия	гидроксо-комп
образуются растворы	$3KOH + Cr(OH)_3 = K_3 [Cr(OH)_6]$	лексы
гидроксокомплексов.		
3) Реагируют с расплавами	$Al(OH)_3 + KOH = KAlO_2$ (или K_3AlO_3) +	в расплаве –
щелочей – образуя соли, при	$ m H_2O$ (при нагревании)	соли
этом проявляют свойства	$Zn(OH)_2 + 2KOH = K_2ZnO_2 + 2H_2O$	алюминаты,
<u>кислот</u> .	(при нагревании)	цинкаты.
4) При сплавлении могут	$Al(OH)_3 + Na_2CO_3 = NaAlO_2$ (или	
взаимодействовать с	Na_3AlO_3) + CO_2 © (при нагревании)	
карбонатами щелочных	$Zn(OH)_2 + Na_2CO_3 = Na_2ZnO_2 +$	
металлов.	CO_2 \boxtimes (при нагревании)	
5) Разлагаются при нагревании	$Al(OH)_3$ - (t°) à $Al_2O_3 + H_2O$	