
SDL Tridion 2011
Event System Quick Start Guide

(A Collaborative San Jose Boot Camp Effort)

Created: 3/7/11
Last updated: 3/8/11

Audience
This guide shows developers how to create and configure a simple event system extension for SDL

Tridion 2011. Reference and update it as needed as an example for those new to the 2001 event system.

Use Case
The event system provides a programmatic way to respond to events that occur as users create, save,

check in, and publish content with the content management system (CMS). It lets developers create .NET

dynamic link libraries (dlls) that can automate tasks such as validation, adding metadata, creating

additional components, or starting processes outside of content management and publishing.

Developer expertise is required, but the event system could be used as a “phase 2”
project to automatically create and publish pages (see REI example) or notify users of 1

publishing via email. Such implementations are beyond the scope of this document,
however.

Comparison

Feature Old New
Modularity Single dll to handle all events Separate dlls can handle separate or

even the same events (ARR: is this
correct?)

Performance Old event system “blocked” on
triggered events (ARR: edit as
needed)

Events can be triggered
asynchronously, allowing end-users
the ability to continue working in
the CMS

Maintenance .NET through COM+ Interop
required a lot more code (ARR:
need technical definition for “lot
more”)

Core defines delegate
methods—only modify required
methods

Prerequisites
To best follow this guide, you should have:

1 See http://www.sdltridionworld.com/community/2011_extensions/rapideditorialinterface.aspx. Also see
http://www.julianwraith.com/2011/02/event-systems-in-sdl-tridion-2011/ for another example.

​ ​ SDL Tridion 2011 Event System Quick Start Guide|
Page 1 of 11

http://www.sdltridionworld.com/community/2011_extensions/rapideditorialinterface.aspx
http://www.julianwraith.com/2011/02/event-systems-in-sdl-tridion-2011/

●​ Some familiarity with Visual Studio 2010 and .NET or other integrated development environment
(IDE) and programming language

●​ Tridion Content Management System (CMS) installed on a virtual machine (VM) or development
server

●​ Visual Studio 2010

If using a VM, both the CMS and IDE can be in the same virtual machine. If developing for a development
server, consider running the IDE locally, outside of the server. System administrators may not take kindly
to having Visual Studio running on the server.

Contents

Audience​

Use Case​

Comparison​

Prerequisites​

Setup Tridion​

Set Up Project​

Create Code​

Copy DLL​

Configure the CMS​

Appendix A: Developer Q&A​

 Setup Tridion
The Tridion Content Management System (CMS) needs to have a basic setup including at least

publications, schemas, and components. Templates, structure groups, pages, and publishing targets are

required as needed based on the events you want to “capture.”

​ ​ SDL Tridion 2011 Event System Quick Start Guide|
Page 2 of 11

Target Environment

A virtual image was used to create this write-up, but the same process could be used
modify a development server. Always test changes before releasing code to a
production system.

Set Up Project
Open Visual Studio 2010 (choose Visual C# or a development environment of your choice)​

Figure 1 - Select "New Project..." from the Visual Studio 2010 Start Page to get started.

Create a New Project using the Visual C# Class Library (.NET Framework 4)
●​ Check “Create directory for solution”
●​ Optionally check “Add to source control” based on your development preferences

​ ​ SDL Tridion 2011 Event System Quick Start Guide|
Page 3 of 11

Figure 2 - Use (C#) Class Library to start creating the dynamic link library (dll).

Preferences may vary, but consider using standard practices when creating event
system libraries. Naming conventions, documentation, testing, and versioning (source
control) will go a long way towards ensuring “trust” in the CMS. The best event
system implementations are practically “invisible.”

Create a Class Library. Choose an appropriate Name, Location, and Solution name.​

Figure 3 - Use an appropriate name, location, and solution name for your class library project.

Class1.cs is created for you.

​ ​ SDL Tridion 2011 Event System Quick Start Guide|
Page 4 of 11

Figure 4 - The default C# file, "Class1.cs" is created for you. Modify this file to extend the event system.

In the Solution Explorer window, right click on the References folder to add references from the bin >
client folder for Tridion:
 C:\Program Files (x86)\Tridion\bin\client​
(add all .dll except TcmUploadAssembly)

Create Code
Add the following imports and modify the following sample code to match the schemas and locations in
your project. 2

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Tridion.ContentManager.Extensibility;
using Tridion.ContentManager.ContentManagement;
using Tridion.ContentManager.Extensibility.Events;
using Tridion.ContentManager;
using System.Text.RegularExpressions;
using Tridion.ContentManager.CommunicationManagement;
using Tridion.ContentManager.ContentManagement.Fields;
using Tridion.Logging;

namespace TridionEventSystem
{
 [TcmExtension("My Event")] public class MyEvent : TcmExtension // MyEvent should be
instantiated as a TcmExtension
 {

2 The Webdav paths reflect a specific VM setup. Consider moving these to an attributes or configuration file or even
global variables to improve maintenance.

​ ​ SDL Tridion 2011 Event System Quick Start Guide|
Page 5 of 11

 public MyEvent() // constructor
 {
 EventSystem.Subscribe<Component,
CheckInEventArgs>(ComponentCheckInTransactionCommitted,EventPhases.TransactionCommitted);
 }

 public void ComponentCheckInTransactionCommitted(Component subject, CheckInEventArgs
args,EventPhases phase)
 {
 Logger.Write("ComponentCheckInTransactionCommitted started", "Event System",
LoggingCategory.Configuration);
 if (subject.Schema.Title != "Content")
 return; // only process for schemas named "Content"
 Session s = subject.Session;

 String title = subject.Title;
 String filename = Regex.Replace(title, "\\W", "");
 StructureGroup sg = s.GetObject("/webdav/050%20Site/Root") as StructureGroup; //
update to a folder in your blueprint
 ComponentTemplate ct =

s.GetObject("/webdav/050%20Site/Building%20Blocks/System/Component%20Template/Generic%20Compon
ent%20Template.tctcmp") as ComponentTemplate;
 Page p = new Page(s, sg.Id);
 p.Title = title;
 p.FileName = filename;
 TcmUri ComponentInContext = new TcmUri(subject.Id.ItemId,
ItemType.Component,sg.Id.PublicationId);
 Component c = s.GetObject(ComponentInContext) as Component;
 p.ComponentPresentations.Add(new ComponentPresentation(c, ct)); // component
presentation = component + component template
 p.Save(true);
 }
 }
}

Copy DLL
When done, build the solution from the Build menu (build solution) or press F6. Find the compiled dll in

the solution folder by right-clicking on the solution in the Solution Explorer. Select “Open Folder in

Windows Explorer” to navigate to the solution folder, open bin > Debug. Copy the .dll

(EventSystemExample.dll in this example) to a folder available to the CMS.

​ ​ SDL Tridion 2011 Event System Quick Start Guide|
Page 6 of 11

Figure 5 - The Open Folder in Windows Explorer is a built-in feature in Visual Studio 2010.

​ ​ SDL Tridion 2011 Event System Quick Start Guide|
Page 7 of 11

Copy the dll

Use a copy of your compiled dll because the Tridion COM+ service will lock the file,
making development difficult.

To copy over the dll, stop the SDL Tridion Content Manager under COM+ Applications
in Component Services

Figure 6 - By default, the "Debug" version of the dll is created. Copy this file to a folder accessible to the CMS.

Configure the CMS
Make the CMS recognize this event system extension by adding the path to the dll copy to the
Tridion.ContentManager.Config configuration file.

Under <extensions> node, add <add assemblyFileName="C:\path_to_dll\myextension.dll"/>.

Figure 7 - Add your custom event system extension in the <extensions> node.

​ ​ SDL Tridion 2011 Event System Quick Start Guide|
Page 8 of 11

Restart the COM+ service in Component Services and the CMS Website in IIS.

Figure 8 - Find the COM+ Applications folder in Component Services, under My Computer. Right-click and restart the SDL
Tridion Content Manager.

Though developer expertise and understanding of the Tridion Content Manager objects is required, the
2011 implementation of the event system further “modularizes” the Tridion event system, providing a
flexible way .

​ ​ SDL Tridion 2011 Event System Quick Start Guide|
Page 9 of 11

Appendix A: Developer Q&A

Event System Granularity

Question: “Is it possible to disable specific events?”

Answer: only if each event is handled by a separate library (dll). Consider this a “best
practice” tip. Suggestion for Tridion Ideas: easier-to-maintain event system extensions
via an interface (Content Manager Explorer or other GUI) to managed this
configuration outside of the CMS XML config file.

On Syntax…

The opening square bracket syntax indicates a C# attribute which adds (code, not CMS)
metadata that can be handled during runtime or during design. The String parameter
“My Event” and class name “MyEvent” below are customizable—use an appropriate
name.

 [TcmExtension("My Event")] public class MyEvent : TcmExtension // MyEvent
should be instantiated as a TcmExtension

The colon (“:”) is C#’s syntax to designate a class should be instantiated as another
class. [ARR: would subclass, interface, or “extends” be appropriate here?]

To inspect the signature for a given method, use F12 in Visual Studio. For example
EventSystem.Subscribe has two signatures, one of which uses a “delegate” to
seemingly pass three parameters where it appears two are expected.​
[ARR: have a C# programmer review—this was a follow-up on a point from Mihai,
basically – how would we know what to implement and/or get info on the correct
parameters)

Can we debug?

Yes. Attach to process to dllhst3g.exe (which should be running under the mtsuser or
"Tridion" user).

​ ​ SDL Tridion 2011 Event System Quick Start Guide|
Page 10 of 11

Who will write a CMS GUI extension to make loading Event System dlls easier?

Could it be… you?!

​ ​ SDL Tridion 2011 Event System Quick Start Guide|
Page 11 of 11

	SDL Tridion 2011
	Event System Quick Start Guide
	Audience
	Use Case
	Comparison
	Prerequisites

	 Setup Tridion
	Set Up Project
	Create Code
	Copy DLL

	Configure the CMS
	Appendix A: Developer Q&A

