

L T P C
3 0 0 3

INTRODUCTION TO PROGRAMMING
(Common to All branches of Engineering)

Course Objectives:
● To introduce students to the fundamentals of computer programming.
● To provide hands-on experience with coding and debugging.
● To foster logical thinking and problem-solving skills using programming.
● To familiarize students with programming concepts such as data types, control
structures, functions, and arrays.
● To encourage collaborative learning and teamwork in coding projects.

Course Outcomes:
Course Outcomes: A student after completion of the course will be able to
CO1: Understand basics of computers, concept of algorithms and flowcharts.
(Understand-L2)
CO2: Understand the features of C language. (Understand-L3)
CO3: Interpret the problem and develop an algorithm to solve it. (Apply-L3)
CO4: Implement various algorithms using the C programming language. (Apply-L3)
CO5: Develop skills required for problem-solving and optimizing the code (Apply-L3)

UNIT I Introduction to Programming and Problem Solving

History of Computers, Basic organization of a computer: ALU, input-output units,
memory, program counter, Introduction to Programming Languages, Basics of a
Computer Program- Algorithms, flowcharts (Using Dia Tool), pseudo code. Introduction
to Compilation and Execution, Primitive Data Types, Variables, and Constants, Basic
Input and Output, Operations, Type Conversion, and Casting.

Problem solving techniques: Algorithmic approach, characteristics of algorithm,
Problem solving strategies: Top-down approach, Bottom-up approach, Time and space
complexities of algorithms.

UNIT II Control Structures

Simple sequential programs Conditional Statements (if, if-else, switch), Loops (for,
while, do- while) Break and Continue.

UNIT III Arrays and Strings

Arrays indexing, memory model, programs with array of integers, two dimensional
arrays, Introduction to Strings.

UNIT IV Pointers & User Defined Data types

Pointers, dereferencing and address operators, pointer and address arithmetic, array

manipulation using pointers, User-defined data types-Structures and Unions.

UNIT V Functions & File Handling

Introduction to Functions, Function Declaration and Definition, Function call Return
Types and Arguments, modifying parameters inside functions using pointers, arrays as
parameters. Scope and Lifetime of Variables, Basics of File Handling

Note: The syllabus is designed with C Language as the fundamental language
of implementation.

Textbooks:

1.​ "The C Programming Language", Brian W. Kernighan and Dennis M.
Ritchie, Prentice- Hall, 1988

2.​ Schaum’s Outline of Programming with C, Byron S Gottfried,
McGraw-Hill Education, 1996

Reference Books:

1.​ ​Computing fundamentals and C Programming, Balagurusamy, E.,
McGraw-Hill Education, 2008.

2.​ Programming in C, Rema Theraja, Oxford, 2016, 2nd edition
3.​ C​ Programming,​ A Problem Solving Approach, Forouzan, Gilberg,

Prasad, CENGAGE, 3rd edition

L T P C
0 0 3 1.5

COMPUTER PROGRAMMING LAB
(Common to All branches of Engineering)

Course Objectives:

The course aims to give students hands – on experience and train them on the
concepts of the C- programming language.

Course Outcomes:
CO1: Read, understand, and trace the execution of programs written in C language.
(Understand)
CO2: Apply the right control structure for solving the problem. (Apply)
CO3: Develop, Debug and Execute programs to demonstrate the applications of arrays,
functions, pointers and files in C. (Apply)
CO4: Improve individual / teamwork skills, communication and report writing skills
with ethical values.

UNIT I WEEK 1
Objective: Getting familiar with the programming environment on the computer and writing the first
program.

Suggested Experiments/Activities:

Tutorial 1: Problem-solving using Computers.
Lab1: Familiarization with programming environment

i)​ Basic Linux environment and its editors like Vi, Vim & Emacs etc.
ii)​ Exposure to Turbo C, gcc
iii)​Writing simple programs using printf(), scanf()

WEEK 2

Objective: Getting familiar with how to formally describe a solution to a problem in a
series of finite steps both using textual notation and graphic notation.

Suggested Experiments /Activities:

Tutorial 2: Problem-solving using Algorithms and Flow charts.
Lab 1: Converting algorithms/flow charts into C Source code.
Developing the algorithms/flowcharts for the following sample programs

i)​ Sum and average of 3 numbers
ii)​ Conversion of Fahrenheit to Celsius and vice versa
iii)​Simple interest calculation

WEEK 3

Objective: Learn how to define variables with the desired data-type, initialize them with
appropriate values and how arithmetic operators can be used with variables and constants.

Suggested Experiments/Activities:

Tutorial 3: Variable types and type conversions:

Lab 3: Simple computational problems using arithmetic expressions.
i)​ Finding the square root of a given number
ii)​ Finding compound interest
iii)​Area of a triangle using heron’s formulae
iv)​ Distance travelled by an object

UNIT II WEEK 4

Objective: Explore the full scope of expressions, type-compatibility of variables &
constants and operators used in the expression and how operator precedence works.

Suggested Experiments/Activities:

Tutorial4: Operators and the precedence and as associativity:
Lab4: Simple computational problems using the operator’ precedence and associativity

i)​ Evaluate the following expressions.
a.​ A+B*C+(D*E) + F*G
b.​ A/B*C-B+A*D/3
c. A+++B---A
d. J= (i++) + (++i)

ii)​ Find the maximum of three numbers using conditional operator
iii)​Take marks of 5 subjects in integers, and find the total, average in float

WEEK 5

Objective: Explore the full scope of different variants of “if construct” namely if-else, null-
else, if-else if*-else, switch and nested-if including in what scenario each one of them can
be used and how to use them. Explore all relational and logical operators while writing
conditionals for “if construct”.

Suggested Experiments/Activities:

Tutorial 5: Branching and logical expressions:
Lab 5: Problems involving if-then-else structures.

i)​ Write a C program to find the max and min of four numbers using if-else.
ii)​ Write a C program to generate electricity bill.
iii)​Find the roots of the quadratic equation.
iv)​ Write a C program to simulate a calculator using switch case.
v)​ Write a C program to find the given year is a leap year or not.

WEEK 6

Objective: Explore the full scope of iterative constructs namely while loop, do-while loop and for loop
in addition to structured jump constructs like break and continue including when each of these
statements is more appropriate to use.

Suggested Experiments/Activities:
Tutorial 6: Loops, while and for loops
Lab 6: Iterative problems e.g., the sum of series

i)​ Find the factorial of given number using any loop.
ii)​ Find the given number is a prime or not.
iii)​Compute sine and cos series
iv)​ Checking a number palindrome
v)​ Construct a pyramid of numbers.

UNIT III WEEK 7:
Objective: Explore the full scope of Arrays construct namely defining and initializing 1-D
and 2-D and more generically n-D arrays and referencing individual array elements from
the defined array. Using integer 1-D arrays, explore search solution linear search.

Suggested Experiments/Activities:

Tutorial 7: 1 D Arrays: searching.
Lab 7:1D Array manipulation, linear search

i)​ Find the min and max of a 1-D integer array.
ii)​ Perform linear search on1D array.
iii)​The reverse of a 1D integer array
iv)​ Find 2’s complement of the given binary number.
v)​ Eliminate duplicate elements in an array.

WEEK 8:

Objective: Explore the difference between other arrays and character arrays that can be
used as Strings by using null character and get comfortable with string by doing
experiments that will reverse a string and concatenate two strings. Explore sorting solution
bubble sort using integer arrays.

Suggested Experiments/Activities:

Tutorial 8: 2 D arrays, sorting and Strings.
Lab 8: Matrix problems, String operations, Bubble sort

i)​ Addition of two matrices
ii)​ Multiplication two matrices
iii)​Sort array elements using bubble sort
iv)​ Concatenate two strings without built-in functions
v)​ Reverse a string using built-in and without built-in string functions

UNIT IV WEEK 9:

Objective: Explore pointers to manage a dynamic array of integers, including memory
allocation & value initialization, resizing changing and reordering the contents of an
array and memory de-allocation using malloc (), calloc (), realloc () and free () functions.
Gain experience processing command-line arguments received by C

Suggested Experiments/Activities:

Tutorial 9: Pointers, structures and dynamic memory allocation
Lab 9: Pointers and structures, memory dereference.

i)​ Write a C program to find the sum of a 1D array using malloc()
ii)​ Write a C program to find the total, average of n students using structures
iii)​Enter n students data using calloc() and display failed students list
iv)​ Read student name and marks from the command line and display the student details

along with the total.
v)​ Write a C program to implement realloc()

WEEK 10:

Objective: Experiment with C Structures, Unions, bit fields and self-referential structures
(Singly linked lists) and nested structures

Suggested Experiments/Activities:
Tutorial 10: Bitfields, Self-Referential Structures, Linked lists
Lab10 : Bitfields, linked lists
Read and print a date using dd/mm/yyyy format using bit-fields and differentiate the same
without using bit- fields

i)​ Create and display a singly linked list using self-referential structure.
ii)​ Demonstrate the differences between structures and unions using a C program.
iii)​Write a C program to shift/rotate using bitfields.
iv)​ Write a C program to copy one structure variable to another structure of the same type.

UNIT V WEEK 11:

Objective: Explore the Functions, sub-routines, scope and extent of variables, doing some
experiments by parameter passing using call by value. Basic methods of numerical
integration

Suggested Experiments/Activities:

Tutorial 11: Functions, call by value, scope and extent,
Lab 11: Simple functions using call by value, solving differential equations using
Eulers theorem.

i)​ Write a C function to calculate NCR value.
ii)​ Write a C function to find the length of a string.
iii)​Write a C function to transpose of a matrix.
iv)​ Write a C function to demonstrate numerical integration of differential equations using Euler’s

method

WEEK 12:

Objective: Explore how recursive solutions can be programmed by writing recursive
functions that can be invoked from the main by programming at-least five distinct problems
that have naturally recursive solutions.

Suggested Experiments/Activities:

Tutorial 12: Recursion, the structure of recursive calls
Lab 12: Recursive functions

i)​ Write a recursive function to generate Fibonacci series.
ii)​ Write a recursive function to find the lcm of two numbers.
iii)​Write a recursive function to find the factorial of a number.
iv)​ Write a C Program to implement Ackermann function using recursion.
v)​ Write a recursive function to find the sum of series.

WEEK 13:

Objective: Explore the basic difference between normal and pointer variables,
Arithmetic operations using pointers and passing variables to functions using pointers

Suggested Experiments/Activities:

Tutorial 13: Call by reference, dangling pointers
Lab 13: Simple functions using Call by reference, Dangling pointers.

i)​ Write a C program to swap two numbers using call by reference.
ii)​ Demonstrate Dangling pointer problem using a C program.
iii)​Write a C program to copy one string into another using pointer.
iv)​ Write a C program to find no of lowercase, uppercase, digits and other

characters using pointers.

WEEK14:
Objective: To understand data files and file handling with various file I/O functions. Explore the
differences between text and binary files.

Suggested Experiments/Activities:

Tutorial 14: File handling
Lab 14: File operations

i)​ Write a C program to write and read text into a file.
ii)​ Write a C program to write and read text into a binary file using fread() and

fwrite()
iii)​Copy the contents of one file to another file.
iv)​ Write a C program to merge two files into the third file using command-line

arguments.
v)​ Find no. of lines, words and characters in a file
vi)​ Write a C program to print last n characters of a given file.

Textbooks:

1.​ Ajay Mittal, Programming in C: A practical approach, Pearson.
2.​ Byron Gottfried, Schaum' s Outline of Programming with C, McGraw Hill

Reference Books:

1.​ Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language,
Prentice- Hall of India

2.​ C Programming, A Problem-Solving Approach, Forouzan, Gilberg, Prasad, CENGAGE

	INTRODUCTION TO PROGRAMMING
	COMPUTER PROGRAMMING LAB
	Suggested Experiments/Activities:
	Textbooks:
	Reference Books:

