
Tab 1

Gossamer's Contributions to Polkadot-SDK v2​

[3 milestones, Q3/Q4 2025]

Proposal Date: 8th August 2025

Requested Amount: 815_358 USDC

Payouts will be distributed in equal, milestone-based installments every two months:

●​ Milestone 1: 271,786 USDC – Payout Date: 10 September 2025​

●​ Milestone 2: 271,786 USDC – Payout Date: 10 November 2025​

●​ Milestone 3: 271,786 USDC – Payout Date: 10 January 2026

Beneficiary Address: 149mJjdQjEBMHHbWDjbLJ7X4e95ps6L35DZVaBzn1raR1EVQ

Short Description: Gossamer was originally envisioned as a Go-based implementation

of the Polkadot Relay Chain Validator, contributing to the decentralization and resilience

of the network through client diversity. Our team, deeply committed to the Polkadot

ecosystem, built Gossamer as an alternative full node and validator client to help ensure

the robustness of the protocol.

However, as the ecosystem's needs have changed, it's become clear that alternative

client development is not currently a top priority. In light of this, we’ve made a strategic

decision to shift our focus from developing an alternative client to contributing directly to

the existing Rust-based SDK implementation. This change aligns with both the direction

of the ecosystem and our desire to maximize our impact on Polkadot’s core

infrastructure.

Following consultations with Parity, we have defined a set of objectives that our team

will focus on over the next six months. These efforts, in close collaboration with Parity,

will leverage our experience to contribute to the Polkadot-SDK's most critical areas,

helping to strengthen, optimize, and scale the protocol at its foundation.

Project Category/Type: Software development

Website: ChainSafe

1. Context of the Proposal

The Gossamer team at ChainSafe is a group of technical experts engaging in

protocol-level implementations for the Polkadot ecosystem. The team has formerly

received funding from the Web3 Foundation and the Polkadot Treasury and has also

been temporarily self-funded through ChainSafe.

This proposal is a request for six months of funding from the Polkadot Treasury for the

collaboration of the Gossamer team and Parity to work on the Polkadot protocol's

(polkadot-sdk) pressing needs. The ecosystem is rapidly evolving, and a lot of change is

to be expected. We are therefore adopting a six-month proposal cycle to maintain agility

and responsiveness to best serve the ecosystem.

In this funding period, as detailed in Section 2 (Scope of Current Proposal), we will

dedicate resources to the needs of the polkadot-sdk by addressing key technical

priorities identified in collaboration with Parity. Our focus will be on areas where our

team’s expertise can deliver the greatest impact - enhancing scalability, performance,

and protocol robustness. This marks a natural evolution of our role within the

ecosystem, transitioning from client diversity through Gossamer to strengthening the

core infrastructure that supports the Polkadot network. Our focus will be on areas where

our team’s expertise can deliver the greatest impact - protocol development.

https://chainsafe.io/
https://github.com/paritytech/polkadot-sdk

1.1 About ChainSafe and the Gossamer Team

At ChainSafe, we are dedicated to pioneering the development of decentralized and

community-oriented technologies that empower users globally. Our mission is to

advance web3 potential through open-source innovation, making it more accessible,

secure, and sustainable.

Outside Gossamer, some of ChainSafe’s development contributions to the Polkadot

ecosystem are:

●​ Multix

○​ An interface to easily manage complex multisigs.

●​ Phala SubBridge

○​ Bridging data and assets from/to Dotsama and Ethereum.

●​ Sygma Substrate Pallets

○​ Enables native connectivity for assets and messages, leveraging the

Sygma protocol, between EVM and Substrate-based chains.

●​ Cypress Plugin - Polkadot Wallet

○​ A plugin that enables integration tests with wallets using the popular

testing framework, Cypress.

●​ Metamask Snap

○​ Plugin for interacting with Polkadot dApps and other Substrate-based

chains.

●​ Chainlink Pallet

○​ Integration of Chainlink feed in Substrate-based chains.

●​ Gossamer

○​ Alternative implementation of the Polkadot Relay Chain Validator, which

was developed using Go. As an alternative client implementation, it serves

decentralization and robustness of the network by being a full node and a

validator node.

https://multix.chainsafe.io/
https://docs.phala.network/other-products/subbridge
https://github.com/sygmaprotocol/sygma-substrate-pallets
https://github.com/ChainSafe/cypress-polkadot-wallet
https://github.com/ChainSafe/metamask-snap-polkadot
https://github.com/ChainSafe/chainlink-polkadot
https://github.com/ChainSafe/gossamer

Outside development contributions and as part of our multifaceted approach, we are

enhancing the Polkadot ecosystem through targeted infrastructure improvements:

●​ Snapshot Hosting Services

○​ Snapshots are free and allow efficient network synchronization of both

Polkadot and Kusama.

●​ Running Validator Nodes

○​ Part of the 1K Validator Program on Kusama, with ongoing efforts to

expand to Polkadot.

Additionally, we continue to be active in our non-technical contributions, such as

participating and presenting at Polkadot events like Decoded (2022, 2023), Sub0

(2024), ParisDot, Web3 Summit, Polkadot Blockchain Academy, JAM Experience, and

so on. We are also organizers of Polkadot meetups, both physical and online (Croatia

meetup, CSCON).

https://snapshots.chainsafe-dot.io/
https://www.youtube.com/watch?v=HR9OgFMm-aM
https://www.youtube.com/watch?v=cQymHtreDUA
https://www.youtube.com/watch?v=sLv0hgqE8u4
https://github.com/ChainSafe/gossamer/discussions/4181
https://www.youtube.com/watch?v=amPN7X7TIoo
https://www.youtube.com/watch?v=amPN7X7TIoo
https://www.youtube.com/watch?v=qoAOe6r4HGA

2. Scope of Work

In each section below, you can find a set of components that will be worked on in this

proposal's timeline.

Note on Scope Flexibility and Prioritization (Candidate Items)

The initial scope of work outlined in this document was developed in close
consultation with Parity, reflecting their strategic priorities at the time of writing. We

recognize that priorities may evolve. Consequently, specific elements within this scope

can be deprioritized and substituted with new tasks of equivalent value to address more

urgent needs. For this specific reason, points P. 2.2, P. 2.6, and P. 2.7 are marked as

Candidate Items, as only a selection of these will be delivered based on the final

prioritization. Parity will retain the final authority to define and confirm these evolving

priorities throughout the project lifecycle, ensuring the engagement remains aligned with

their most critical objectives.

2.1 Approval-checking rewards

Why This Is Important

The Polkadot Approval process, a core function of the Parachain Host, is vital for

ensuring only valid parachain blocks are finalized on the Relay Chain. It holds backing

validators accountable and underpins the network's integrity and security.

In this process, randomly selected validators reconstruct a parachain block's

Proof-of-Validity (PoV) data by downloading Data Availability chunks and performing

complex erasure coding recovery. They then verify this PoV to confirm a valid state

transition and aligned outputs.

Currently, the approval process lacks both rewards for participation and proactive

slashing for non-participation. This omission creates a vulnerability, potentially leading

to validator misbehavior and significant security risks for the network.

Approach

The “Approval Rewards” mechanism relies on a decentralized, vote-based protocol

where validators anonymously assess the approval participation of their peers

(excluding themselves). These assessments are gossiped across the network and used

to compute a median approval count for each validator.

Each validator independently calculates this median list, constructs a Merkle tree from

it, and signs the Merkle root. If a majority of the validators sign the same root, the

corresponding median list is posted on-chain and used to determine rewards. Validators

who meet or exceed the median threshold are rewarded; underperformers may be

penalized or slashed.

If no majority is reached - typically due to network or gossip failures - no rewards are

distributed for that era, though governance may intervene in rare cases. This design

ensures rewards reflect observed behavior and protects against manipulation or

collusion.

Key deliverables

●​ Finalization of RFC-119: Completion and formal approval of the RFC defining

the Approval Rewards mechanism, including scoring models, gossip protocol

details, and on-chain integration.​

●​ Off-Chain Median Voting Protocol Implementation: A decentralized system

where validators gossip peer approval scores, compute median participation lists,

and vote on Merkle root hashes for on-chain consensus.​

https://github.com/polkadot-fellows/RFCs/pull/119

●​ On-Chain Verification and Reward Logic: Runtime functionality to verify

signed Merkle roots, establish quorum agreement, and handle reward distribution

or fallback conditions in case of disagreement.​

2.2 Parachain runtime upgrades off-chain R&D [Candidate Item]

Why This Is Important

Off-chain runtime upgrades proposal is crucial for making the Polkadot network more

efficient and scalable. Currently, when a parachain updates its code, the entire new

code block must be sent to and stored on the relay chain. This is a very costly and slow

process, as a single update can take up an entire relay chain block, impacting all other

parachains. By moving this process "off-chain" the network can handle these upgrades

without clogging up the main chain. This frees up valuable block space, making the

network faster and more resilient, especially as more parachains are expected to join in

the future.

The off-chain upgrade mechanism also significantly lowers the cost and effort required

for parachain teams to update their runtimes. The old method requires a large storage

deposit, which is a major barrier to entry for new projects. The new approach reduces

these costs and gives developers a smoother, more flexible way to manage their code.

Ultimately, this change makes Polkadot more accessible and cheaper for developers

while also improving the overall performance and stability of the network for all users.

Approach

The implementation of off-chain runtime upgrades hinges on a few key changes to the

node and relay chain logic. First, the process is initiated when a parachain sends a new,

lightweight RequestCodeUpgrade(Hash) UMP message. This message contains only

the hash of the new Parachain Validation Function (PVF), not the code itself, preventing

relay chain bloat. Upon seeing this message, backers use a new peer-to-peer

https://github.com/polkadot-fellows/RFCs/pull/102
https://github.com/paritytech/polkadot-sdk/issues/5012

request/response protocol to fetch the full PVF directly from the parachain's collators.

This off-chain distribution method ensures the large PVF file never touches the relay

chain's state.

To ensure network-wide availability without compromising liveness, the upgrade is

enacted through a staged rollout. The relay chain sets a countdown (e.g., 10 blocks),

communicated to validators via a runtime API. During this period, validators fetch the

new PVF from backers in the background. After the countdown, the protocol logic for

availability is altered: a validator will only affirm a candidate's availability if it possesses

both the data chunk and the necessary PVF. This guarantees that a supermajority of

validators have the new code before it's passed to the existing pre-checking and

enactment process, securing the transition.

Leveraging Existing Message Protocols: We'll use existing UMP/DMP

(Upward/Downward Message Passing) to signal runtime upgrades between collators

and validators, avoiding new message types.

Building an Off-Chain Data Availability System: A new system will be developed to

store all versions of PVFs off-chain, ensuring historical runtime accessibility for

syncing and re-execution.

Adapting Existing Data Availability Subsystem: We'll partially reuse the current

design for availability distribution and bitfield signing to efficiently distribute PVF

data among validators and ensure they have the necessary code for validation.

Key deliverables

NOTE: First phase only includes R&D with PoC and idea verification on private testnets.

●​ Finalization of RFC-102: Completion and formal approval of the RFC defining

the Off-chain runtime upgrades mechanism.

○​ Resolve open questions, such as the mechanism for charging a deposit

for off-chain code and how to handle the initial runtime.

https://github.com/polkadot-fellows/RFCs/pull/102

○​ Refine the full design of the new UMP message and the request/response

protocol.

○​ Complete the details for the new runtime API and the counter-based

rollout mechanism.

○​ Document the precise behavior changes required for validators and

collators.
●​ Proof-of-Concept & Verification:

○​ Develop and test the new peer-to-peer communication API based on

existing UMP/DMP for code distribution.

○​ Implement and verify the logic for the counter mechanism and how

validators use it to manage the code-fetching process.

○​ Conduct internal testing to confirm that the off-chain distribution is secure

and reliable, mitigating attack vectors and ensuring availability.

●​ Testnet Deployment and Integration:
○​ Integrate the finalized code into a testnet implementation.

○​ Run extensive tests to ensure the new upgrade process works seamlessly

for parachains without disrupting other chains.

○​ Verify that the new runtime update behavior works as intended.

2.3 Optimizing the dependency footprint

Why This Is Important

The polkadot-sdk's current dependencies list size presents several challenges that

impact developer experience, build efficiency, and overall security posture. Addressing

these issues is crucial for:

●​ Shorter Compile Times: Excessive or unoptimized dependencies lead to

significantly longer compilation times. This creates friction for developers, slows

down iteration cycles, and increases the time required for CI/CD pipelines.

●​ Simplified Build Process: Dependencies on non-Rust tools and libraries (e.g.,

OpenSSL) introduce complexities into the build environment, requiring

developers to set up additional toolchains beyond the standard Rust one. This

increases the barrier to entry for new contributors and makes builds less

reproducible.

●​ Reduced Attack Surface for Supply Chain Attacks: Every third-party

dependency introduces a potential vulnerability point. A large and unvetted

dependency tree increases the "supply chain attack" surface, where malicious

code could be injected into the software through a compromised upstream

package. Reducing the number of dependencies, especially high-risk ones,

directly mitigates this threat.

Approach

●​ Identify and Prioritize Existing Issues: Begin by addressing known

dependency-related issues within the polkadot-sdk repository (e.g., 777).
●​ Leverage Rust-Specific Supply Chain Security Tools:

○​ Utilize `cargo vet` to manage and verify third-party Rust dependencies,

ensuring trusted entities have audited them.

○​ Employ `cargo audit` to scan for known vulnerabilities in the dependency

tree.

○​ Explore `cargo-auditable` to embed dependency lists into binaries,

facilitating post-build auditing.

○​ Use cargo `supply-chain` to analyze the overall supply chain integrity of

the project's dependencies.

●​ Feature Management: Ensure that optional features in crates (e.g., WebRTC in

litep2p) are correctly deselected when not required by polkadot-sdk to avoid

pulling in unnecessary transitive dependencies.

●​ A little copying is better than a little dependency. Define dependencies that

can be copied inside the repository instead of being imported.

●​ Provide reports/issues/RFCs on what can be done. Initiate discussions

regarding dependency findings to form consensus among developers.

Key deliverables

●​ Reduced Dependency Footprint in polkadot-sdk.

●​ Enhanced Supply Chain Security Workflows.

●​ Shorter compile times.

2.4 WebRTC transport for browser-based LightClients

Why This Is Important

The current methods for Polkadot light clients to connect to full nodes suffer from

significant drawbacks, most critically the need to trust RPC nodes. WebRTC's design for

peer-to-peer (P2P) communication makes it the ideal choice for facilitating direct

connectivity between browser-based light clients (like smoldot compiled to

WebAssembly) and substrate-based nodes. By enabling direct P2P connections,

WebRTC reduces reliance on traditional RPC endpoints, which are often centralized

and can become bottlenecks or single points of failure.

Approach

The project will focus on enabling robust WebRTC-based peer-to-peer (P2P)

connectivity between browser-based light clients (such as smoldot compiled to

WebAssembly) and substrate-based nodes via the litep2p transport layer in

polkadot-sdk.

The implementation will proceed in three main phases:

1.​ Assessment and Stabilization of Existing Work
○​ Investigate and build upon prior attempts to implement WebRTC transport

in Substrate and polkadot-sdk.

○​ Collaborate with the smoldot and litep2p team to understand current

architectural compatibility and integration requirements.​

2.​ Litep2p Enhancements and Issue Resolution
○​ Tackle critical issues identified in the litep2p GitHub tracker to ensure a

stable, spec-compliant, and performant WebRTC transport.

○​ Maintain ongoing discussions with relevant maintainers to align efforts and

validate design decisions.

3.​ Integration with Smoldot and polkadot-sdk
○​ Implement and validate full WebRTC transport support in polkadot-sdk,

enabling nodes to accept WebRTC connections.

○​ Integrate WebRTC support in smoldot, ensuring browser-based light

clients can establish secure, functional connections to substrate-based

nodes.

○​ Evaluate the feasibility and long-term value of bringing litep2p directly into

the smoldot codebase to streamline integration.

Key deliverables

●​ Functional WebRTC Transport in polkadot-sdk
○​ A merged and stable implementation of WebRTC transport (implemented

within litep2p) within the polkadot-sdk codebase.

○​ This will enable polkadot-sdk nodes to accept and manage WebRTC

connections from light clients.

●​ Browser-Based smoldot Connectivity
○​ Demonstrable capability for smoldot (compiled to WebAssembly) to

connect directly to a polkadot-sdk node via WebRTC from within a web

browser.

○​ This includes successful establishment of connections, data exchange,

and basic light client functionality.

●​ Reliability and Performance Improvements
○​ Measurable improvements in the reliability and performance of litep2p's

libp2p-webrtc implementation, addressing the issues outlined in

https://github.com/paritytech/litep2p/issues/312.

●​ Documentation and Examples
○​ Comprehensive documentation for developers on how to enable and use

WebRTC connectivity in polkadot-sdk nodes and smoldot light clients.

○​ Working code examples demonstrating the WebRTC connection setup

and usage.

2.5 Speculative Availability

Why This Is Important

This improvement is important for significantly enhancing the efficiency and user

experience of the Polkadot network, particularly in the context of its Asynchronous

Backing mechanism. By addressing delays in core availability, it aims to unlock greater

throughput and improve transaction reliability.

Maximizing Core Utilization for Increased Throughput: Polkadot's core

computational units (cores) are temporarily occupied while a parachain block

(parablock) is undergoing availability checks after being backed. Asynchronous

Backing, a key advancement for Polkadot 2.0, already reduces block time from 12 to 6

seconds and allows for pipelining of backing and inclusion. However, timely core

release is still vital. Finishing availability checks sooner means a core can be reused

earlier for new parachain blocks, directly increasing the overall system throughput and

leveraging the benefits of Asynchronous Backing more fully. This is especially important

as parachains aim to produce blocks more frequently and with larger execution times

(up to 2 seconds compared to 0.5 seconds previously) as enabled by Asynchronous

Backing.

Delayed Inclusion possibly can lead to "Lost Transactions”: A significant pain point

for users is the occasional "disappearance" of parachain transactions, often requiring

resubmission. One leading hypothesis for this is that a parachain candidate might be

backed on the Relay Chain but then fail to be included because its availability

distribution process (where validators collect erasure chunks and Proofs-of-Validity

(PoVs)) hasn't completed within the required timeframe (currently limited to 1.5

seconds, starting after backing).

Approach

●​ The primary goal is to empirically prove or disprove the hypothesis that "lost

transactions" are indeed caused by parachain candidates being backed but not

included due to availability distribution failures.

●​ Proceed with implementing the speculative availability enhancements, largely

based on the suggestions

○​ Make the code for fetching backable candidates from the prospective

parachains subsystem reusable from subsystems other than provisioner,

where it currently lives.

○​ Modify the availability distribution subsystem to call this refactored code.

This will enable it to proactively provide erasure chunks and PoVs for

backable candidates to non-backing validators earlier in the process.

○​ Implement logic for non-backing validators to speculatively fetch these

erasure chunks and PoVs as soon as a candidate is backed off-chain,

rather than waiting for the block author to select it. This pre-fetching is the

core of "speculative" availability.

Key deliverables

●​ Speculative Availability Implementation

https://github.com/paritytech/polkadot-sdk/issues/5544
https://github.com/paritytech/polkadot-sdk/issues/5544
https://github.com/paritytech/polkadot-sdk/blob/59eab3bc977d4a246e540564d81d0c82f3df0711/polkadot/node/core/provisioner/src/lib.rs#L635
https://github.com/paritytech/polkadot-sdk/blob/59eab3bc977d4a246e540564d81d0c82f3df0711/polkadot/node/core/provisioner/src/lib.rs#L635

○​ Implement the core logic for speculative availability, allowing non-backing

validators to proactively fetch erasure chunks and Proofs-of-Validity

(PoVs) as soon as a seconded statement has been received for a

candidate.

○​ Modify the Availability Distribution subsystem to leverage this logic,

initiating availability and inclusion processes before a candidate is officially

backed on-chain.

●​ Empirical Validation and Metrics
○​ Conduct an analysis to validate/invalidate the hypothesis that "lost

transactions" stem from availability distribution delays post-backing.

○​ Demonstrate measurable improvements in the Availability Distribution, and

Inclusion processes.

2.6 Polkadot network chaos testing and DDoS protection

[Candidate Item]

Why This Is Important

Testing decentralized systems is an inherently complex endeavor, characterized by a

vast array of potential attack vectors and unique operational challenges. A foundational

understanding here is critical: all decentralized systems are, by their very nature,

distributed, relying on interconnected nodes operating without a central authority. This

inherent distributed architecture means that a significant subset of potential issues in

decentralized networks directly stems from their underlying distributed nature. Our focus

is precisely on this intersection, aiming to identify issues common to all distributed

systems while also diving deeper to test for internal consensus problems by attacking

the system from within. This involves simulating consensus-level failures by introducing

faulty or malicious validators to analyze how the network withstands coordinated attacks

where trusted participants turn hostile. Luckily, this is a long-standing issue, and we

have a variety of tools to utilize, plus our deep knowledge of the protocol.

Approach

The approach will involve leveraging the Gossamer codebase (or existing Parity

validator) to build what we called the Chaos Gossamer tool to simulate and test various

DDoS and consensus attack scenarios.

The core strategy is as follows:

●​ A specialized Gossamer node will be developed where its internal state

and network messaging behavior can be precisely controlled via an API.

●​ This "Chaos Gossamer" node will serve as the primary tool for generating

controlled disruptive traffic and testing network resilience under

adversarial conditions.

●​ A primary focus will be on identifying ways to cause disruptions without

running a validator in the active set. This is critical because the absence of

a staked economic deterrent (risk of slashing) makes such attacks

potentially more damaging and accessible.

●​ Additional focus will include, but is not limited to, overwhelming network

resources (e.g., sending a million packets and reading them very slowly to

induce TCP/IP congestion) to the validators in active sets.

●​ In the future this tool can also be used for “attacking” a network from

within an active validator set (disputes, wrong backings, approvals, etc.).

Key deliverables

●​ Build a Chaos Gossamer tool using Go, deliberately chosen to leverage the rich

ecosystem of distributed systems tooling available in the language. This tool will

integrate with the Gossamer codebase - which already implements most of the

Polkadot protocol primitives and networking architecture - and connect it with

existing tools for testing distributed networks. The goal is to provide

comprehensive and definitive testing capabilities for Polkadot-based systems.

https://github.com/asatarin/testing-distributed-systems?tab=readme-ov-file

●​ Design and implement a comprehensive suite of test scenarios to evaluate the

behavior, resilience, and performance of the network under a wide range of

distributed conditions and failure modes.

●​ Generate detailed reports on scenario execution, including metrics, outcomes,

anomalies, and insights, to support debugging, validation, and continuous

improvement of the protocol and network stack.

●​ Initially, the report and codebase will most likely be privately shared only with

Parity and the Technical Fellowship for security reasons.

2.7 Smart Contracts Infrastructure Integration (Foundry-Polkadot)

[Candidate Item]

Why This Is Important

This initiative is focused on directly assisting Parity in building the Polkadot Foundry, a

critical piece of infrastructure designed to unlock the full potential of smart contracts on

AssetHub. By providing a powerful and familiar development toolkit analogous to

Ethereum's popular Foundry, we will empower developers to transform AssetHub from a

simple asset ledger into a dynamic platform for programmable assets, enabling

sophisticated DeFi and NFT applications. This work is strategically vital for lowering the

barrier to entry for the vast community of existing blockchain developers, accelerating

innovation and user adoption across the entire Polkadot ecosystem by delivering a

best-in-class developer experience.

Approach

The general approach will focus on delivering the Anvil part of the Polkadot-Foundry

based on the task scope that is outlined in the Epic.

https://github.com/paritytech/foundry-polkadot/issues/209

Key deliverables

●​ Functional, standalone, Anvil-compatible Polkadot test node that integrates

pallet-revive for local smart contract testing.

●​ Implementation of the required RPC methods to ensure full compatibility with the

Foundry toolkit and other developer tools.

●​ Successful integration of the Anvil Polkadot node into the main Foundry

framework, allowing developers to use it as a standard testing environment.

●​ Support for executing deployment scripts via the forge script command, enabling

a complete development and testing lifecycle.

3. Budget

3.1 Current Proposal Budget Description​
The Gossamer core team currently consists of:

●​ 1x Full-Time Protocol Product Manager/Senior Engineering Manager

●​ 8x Full-Time Protocol Engineers

The total funding request covers a six-month period (July 2025 – December 2025) and

includes all salary and ancillary (infrastructure, tooling, operations, and taxes) costs for

the team.

Compensation logic

●​ Average engineering rate: $94.37/hour, reflecting the team’s expertise and

responsibilities.

●​ Full-time assumption: 160 working hours/month per engineer, accounting for

holidays and leave (averaged to 24 days off per year).

●​ Some engineers also support QA and DevOps as part of their protocol roles.

This results in the following cost breakdown for the six-month proposal period (July

2025 - December 2025):​

Role # of
FTE

Hourly Rate
(USD)

Monthly
Hours

Month
s

Subtotal
(USD)

Protocol Eng. Manager ​
/ Sr. Eng. Manager 1 $94.37 160 6 $90,595

Protocol Engineer 8 $94.37 160 6 $724,765

Ancillary Costs (infra, ops,
etc.) – – – 6 Included

Total (USD) $815,358

​

We are requesting a total of $815,358 USD for 6 months of development work for a

9-person team. This includes all salary and ancillary costs, resulting in an average team

cost of ~$135,000 per month.

The proposed monthly salary costs for our protocol engineers remain below $150,000 USD per
engineer per year, which is competitive with current market rates. This is supported by industry

benchmarks such as:

-​ https://web3.career/web3-salaries (Go Engineer table entry)

-​ https://metana.io/blog/web3-developer-salary-2025-what-you-can-earn-in-blockchain/

-​ https://web3.career/protocol-engineer-jobs

https://web3.career/web3-salaries
https://metana.io/blog/web3-developer-salary-2025-what-you-can-earn-in-blockchain/
https://web3.career/protocol-engineer-jobs

3.2 Payout Structure

Payouts will be distributed in equal, milestone-based installments every two months:

●​ Milestone 1: 271_786 USDC – Payout Date: 10 September 2025​

●​ Milestone 2: 271_786 USDC – Payout Date: 10 November 2025​

●​ Milestone 3: 271_786 USDC – Payout Date: 10 January 2026​

This structure ensures a retroactive compensation model while also establishing a

security mechanism that allows the community to halt future payouts if ChainSafe fails

to meet its milestone obligations.

3.3 Total Budget of This Proposal

Beneficiary account: 149mJjdQjEBMHHbWDjbLJ7X4e95ps6L35DZVaBzn1raR1EVQ

Cost (in USDC): 815_358

4. Progress, Updates, and Delivery

4.1 Milestones
Note: As outlined in Section 2, milestone details are subject to change, provided that

any modifications are formally agreed upon in writing with Parity and are publicly

communicated to the Polkadot community.

Currently, we outline three milestones:

Milestone 1: Jul - Aug 2025

Initiative Deliverables

Approval-checking rewards - Initial work design and active RFC drafting participation
- Off-chain Approval rewards calculations (next
ApprovalsTally) based on approval_usages and
noshows.
- Off-chain ApprovalsTally distribution among active
validators
- Computing rewards medians across validators

Speculative Availability -​ Initial research and spec drafting
-​ Implement speculative pulling of backable candidates

from prospective parachain

Parachain runtime upgrades
off-chain R&D

- Initial feasibility research

Optimizing the dependency footprint - Remove unused dependencies
- Remove curve-25519-dalek dependency
- Investigation on Relocation of Cryptographic
Implementations

WebRTC transport for
browser-based LightClients

- Research on WebRTC-Direct
- Research on the current state of litep2p WebRTC
support and integration into polkadot-sdk.
- Research Smoldot libp2p WebRTC integration
- Align with litep2p developers on a roadmap to improve
robustness and stability of WebRTC support.

DDoS protection - Initial research

https://github.com/paritytech/polkadot-sdk/issues/1975
https://github.com/paritytech/litep2p/issues/312

Smart Contracts Infrastructure
Integration (Foundry-Polkadot)

Getting familiar with the codebase/docs, having a sync
meeting, and identifying the best area for contribution.

Milestone 2: Sep - Oct 2025

Initiative Deliverables

Approval-checking rewards - Implementation of on-chain submission of
ApprovalsTally
- On-chain computation of participation rewards for
the approval process, utilizing approval_usages
and noshows metrics
- Private testnet deployment for functional validation
and metrics collection
- Off-chain implementation of rewards calculations
based on Availability chunks uploads and
downloads

Speculative Availability - Private testnet deployment for functional validation
and metrics collection

Parachain runtime upgrades
off-chain R&D

-​ Finalising RFC
-​ Work on PoC

Optimizing the dependency footprint -​ Removal of unused features
-​ Simplification of Dependency Tree
-​ Work on Relocation of Cryptographic

Implementations.

WebRTC transport for
browser-based LightClients

- Complete development efforts to improve
robustness and stability of WebRTC in litep2p.
- Revisit existing attempts to integrate litep2p
WebRTC into polkadot-sdk.
- PoC WebRTC communication between node and
lightclient.
- Private testnet deployment preparation for testing
of Substrate-based chains utilizing WebRTC.

DDoS protection - Implement basic traffic filtration rules based on
Polkadot GridTopology​
- Conduct a security analysis of the consensus
networking module to identify potential
vulnerabilities.

Smart Contracts Infrastructure
Integration (Foundry-Polkadot)

Deliverables will be announced based on initial
specification work.

Milestone 3: Nov - Dec 2025

Initiative Deliverables

Approval-checking rewards -​ On-chain implementation of ApprovalsTally
rewards calculations based on Availability chunks,
uploads and downloads

-​ Support phase *

Speculative Availability - Support phase*

Parachain runtime upgrades
off-chain R&D

- Finalising PoC for private testnet deployment

Optimizing the dependency footprint -​ Ongoing Removal of Unused Features
-​ Ongoing Simplification of Dependency Tree

WebRTC transport for
browser-based LightClients

- Address issues that arise from private testnet
utilizing WebRTC.
- Work towards inclusion in polkadot-sdk and
inclusion in a Polkadot release.
- Support phase*

DDoS protection - Private testnet deployment of GridTopology
filtration rules
- Compile and share an initial confidential report
detailing identified security vulnerabilities within the
consensus networking module
- Evaluate potential mitigation strategies and
develop a structured execution plan for the
upcoming project milestones.

Smart Contracts Infrastructure
Integration (Foundry-Polkadot)

Deliverables will be announced based on initial
specification work.

*By the support phase, we refer to facilitating the deployment process to a public testnet or

mainnet**, including metering and tracing of the solution to ensure correct execution within a

decentralized network.

**ChainSafe cannot solely guarantee public mainnet/testnet deployment, as we do not control

the full integration and deployment pipelines. Additionally, certain updates require community

approval through RFCs and runtime upgrade proposals.​

4.2 Progress and Updates:

To maintain transparency, reports on milestone progress will be continuously shared via:

●​ Monthly progress reports (GitHub discussions, X, polkadot forum)

●​ GitHub code progress (see GitHub project board)

●​ Presentations at Polkadot events

5. Contact

●​ Kyrylo Pisariev, Senior Engineering Manager, kyrylo@chainsafe.io,

@p1sar:matrix.org

●​ Peter Kalambet, Head of Protocol, peter@chainsafe.io, @peter:dod.ngo

●​ Belma Gutlic, VP of Engineering, belma@chainsafe.io, @morrigan.iv:matrix.org

6. FAQ

 FAQ - Gossamer's Contributions to Polkadot-SDK v2

https://docs.google.com/document/d/1cQIW1woTu_Sv0WWFOvvdqOtyE8pOjA6UCW8SJht3Ygg/edit?usp=sharing
https://github.com/ChainSafe/gossamer-parity/discussions
https://x.com/ChainSafeth
https://forum.polkadot.network/c/ecosystem/24/none
https://github.com/orgs/ChainSafe/projects/62
mailto:kyrylo@chainsafe.io
https://matrix.org
mailto:peter@chainsafe.io
https://dod.ngo
mailto:belma@chainsafe.io
https://matrix.org

	Tab 1
	Gossamer's Contributions to Polkadot-SDK v2​[3 milestones, Q3/Q4 2025]
	1. Context of the Proposal
	1.1 About ChainSafe and the Gossamer Team

	
	2. Scope of Work
	Note on Scope Flexibility and Prioritization (Candidate Items)
	2.1 Approval-checking rewards
	Why This Is Important
	Key deliverables

	2.2 Parachain runtime upgrades off-chain R&D [Candidate Item]
	Why This Is Important
	Approach
	Key deliverables

	
	2.3 Optimizing the dependency footprint
	Why This Is Important
	Approach
	Key deliverables

	
	2.4 WebRTC transport for browser-based LightClients
	Why This Is Important
	Approach
	Key deliverables

	
	2.5 Speculative Availability
	Why This Is Important
	Approach
	Key deliverables

	
	2.6 Polkadot network chaos testing and DDoS protection [Candidate Item]
	Why This Is Important
	Approach
	Key deliverables

	
	2.7 Smart Contracts Infrastructure Integration (Foundry-Polkadot) [Candidate Item]
	Why This Is Important
	Approach
	Key deliverables

	
	3. Budget
	3.1 Current Proposal Budget Description​The Gossamer core team currently consists of:
	3.2 Payout Structure
	3.3 Total Budget of This Proposal

	
	4. Progress, Updates, and Delivery
	4.1 Milestones
	Milestone 1: Jul - Aug 2025
	Milestone 2: Sep - Oct 2025
	Milestone 3: Nov - Dec 2025
	4.2 Progress and Updates:

	5. Contact
	6. FAQ

