RecSys Israel Meetup #7:

iRecSys24 - Talks by Israeli researchers accepted to RecSys24 conference

Date: Sep,30 17:30 Location: ZipRecruiter

Talk 1: Papers from Recommenders in Tourism Workshop

Speaker: Amit Livne, Carlos Herrero, Adva Hadrian (Booking.com)

Abstract:

In the first talk of the meetup we will introduce two papers that were accepted for the workshop RecTour24 as part of the RecSys conference.

Paper 1: Multi-funnel recommender system for cold item boosting

Paper 2: Lifecycle of promotional campaigns in the online travel industry

Talk 2: Low Rank Field-Weighted Factorization Machines for Low Latency Item

Recommendation

Speaker: Alex Shtoff (Ex-Yahoo)

Abstract:

The family of Factorization Machines are extensively used for large-scale real-time item recommendation due to their ability to strike an intricate balance between the inference or training speeds, and expressive power. The initial proposal by Rendle included a reformulation that facilitates fast inference for two reasons: the time complexity is linear in the number of item features per item. Unfortunately, such a reformulation is not known for other models in the family. In this work we utilize properties of symmetric matrices to extend this idea to the Field-Weighted Factorization Machines (FwFM) family. Our work, therefore, allows enjoying the improved expressive power provided by FwFMs, while facilitating fast training and inference speeds.

Talk 3: Temporal Reasoning in Recommender Systems

Speaker: Adir Solomon (Haifa University)

Abstract: User behavior is dynamic and evolves over time, often influenced by real-life trends. Modeling these trends and incorporating them into recommender systems can lead to more personalized and accurate recommendations. However, integrating these temporal elements into recommendation algorithms remains a complex challenge. In this session, we shed light on the application of temporal aspects across various fields, including healthcare, e-commerce, fashion, banking, travel, and film. Our goal is to advance temporal methodologies, ultimately resulting in more precise and relevant recommendations.