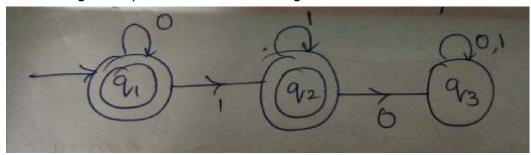
short Answers

- 1. Define Quintuple Specification of Automata
- 2. Extended transition function of FA
- 3. What is state and write its types
- 4. What is transition table and state diagram
- 5. Process Acceptance of String by Finite Automata
- 6. Write transition function of DFA, NFA, & NFA- ε
- 7. Write Extended transition function of NFA
- 8. Write Extended transition function of NFA- ε
- 9. Define ε-closure
- 10. Define Language Acceptance of DFA
- 11. Define Language Acceptance of NFA- ε
- 12. Write Applications of Finite Automata
- 13. Define String
- 14. Explain Different operations on Strings
- 15. Explain Components of Finite Automata
- 16. Elements or Characteristics of DFA
- 17. Draw a DFA for the language accepting strings ending with '00' over input alphabets $\Sigma = \{0, 1\}$?
- 18. Draw a DFA for the language accepting odd binary numbers strings over input alphabets $\Sigma = \{0, 1\}$?

Long Questions:


- 1. Draw a DFA for the language accepting strings containing neither '00', nor '11' as substring over input alphabets $\Sigma = \{0, 1\}$?
- construct DFA for binary integer divisible by 3
- 3. Construct DFA accepting set of all strings containing even no. of a's and even no. of b's over input alphabet {a,b}.
- 4. Construct DFA a DFA for the language accepting strings with '0' and '1' only over input alphabets $\Sigma = \{0, 1\}$
- 5. Compare NFA and DFA in terms of structure, expressiveness, and efficiency.
- 6. Construct a DFA, the language recognized by the Automaton being L={w/ w does not contain the substring ab}. Draw the transition table.
- 7. Discuss various Differences between DFA and NFA.
- 8. Construct a NFA over {a,b} which accepts string starts with 'a' and ends with 'b'.
- 9. Conversion of DFA from given NFA(prepare examples)
- 10. Conversion of DFA from given NFA- ε (prepare examples)

short Answers

- 1. Define CFG and its Quad Tuple
- 2. Define forms of Regular expression
- 3. What are Components of RE
- 4. Write Language associate with RE
- 5. What are basic operations and properties of RE
- 6. Write Applications of RE
- 7. What is Derivation
- 8. What is Yield of a Tree
- 9. Define Sub tree
- 10. Identify given grammar and derive the given string
- **11.** Construction of RE (examples)
- 12. Define Ambiguous grammar
- 13. Mention any two applications of Context Free Grammar

Long Questions:

- 1. Construct a regular expression for the language consisting of all strings over {0,1} that end with "01"
- 2. Show how to convert the given finite automaton into an equivalent regular expression(Take examples)
- 3. Discuss applications of regular expressions in computer science
- **4.** Prove using the **pumping lemma** that $L = \{a^nb^n \mid n \ge 0\}$ is **not regular**.
- **5.** Prove that $L = \{ a^p \mid p \text{ is prime } \}$ is not regular.
- **6.** Apply the **pumping lemma** to show that the language $L = \{ w \in \{0,1\}^* \mid w \text{ has equal number of 0s and 1s } \}$ is not regular
- **7.** Define CFG with an example and explain how **derivations** are performed using it.
- 8. Explain with an example what is meant by **ambiguity in a grammar**. Suggest how ambiguity can be removed.
- 9. Discuss Identity rules. Simplify the Regular Expression or Algebraic expressions
- 10. Find the regular expression for the following DFA

11. Construct Leftmost Derivation., Rightmost Derivation, Derivation Tree for the following grammar with respect to the string aaabbabbba.

 $S \square \ aB \mid bA$

A□aS| bAA|a

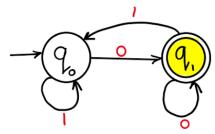
B□bS | aBB | b

12. Construct leftmost and rightmost derivations for the strings, if the language is given as S□AS| ε

A □aa|ab|ba|bb

Strings: a) aabbba b) baabab c) aaabbb

13. Show that the following CFG ambiguous. S□iCtS | iCtSeS | a,

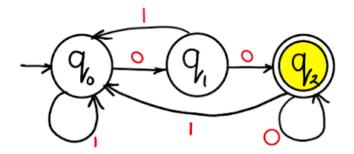

C□b.

14. Derive the parse tree E□ E+E | E*E |id for the stringw=id+id*id

Sample DFA Examples:

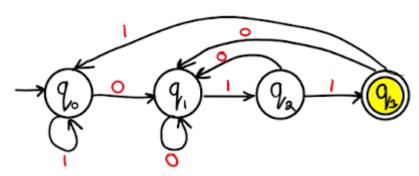
Example 1: Draw a \overline{DFA} for the language accepting strings ending with '0' over input alphabets $\Sigma = \{0, 1\}$?

Solution:

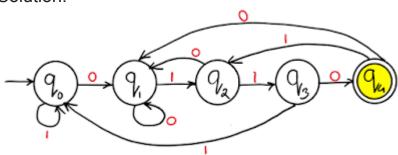


Example 2: Draw a \overline{DFA} for the language accepting strings ending with '01' over input alphabets $\Sigma = \{0, 1\}$?

Solution:

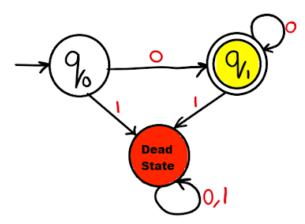


Example 3: Draw a \overline{DFA} for the language accepting strings ending with '00' over input alphabets $\Sigma = \{0, 1\}$?

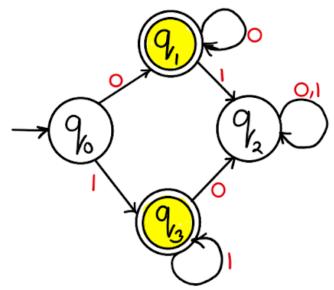

Example 4: Draw a $\underline{\mathsf{DFA}}$ for the language accepting strings ending with '011' over input alphabets $\Sigma = \{0, 1\}$?

Solution:

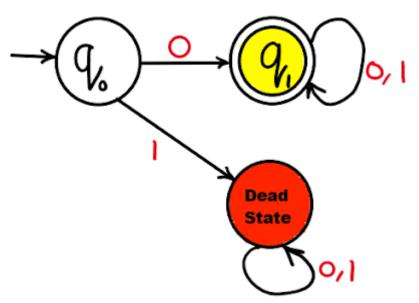
Example 5: Draw a DFA for the language accepting strings ending with '0110' over input alphabets $\Sigma = \{0, 1\}$?


Solution:

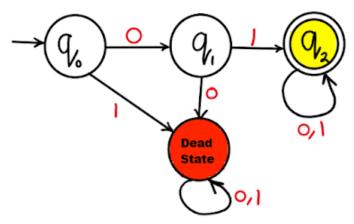
Example 6: Draw a \overline{DFA} for the language accepting strings ending with '0011' over input alphabets $\Sigma = \{0, 1\}$?

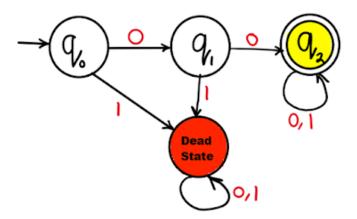


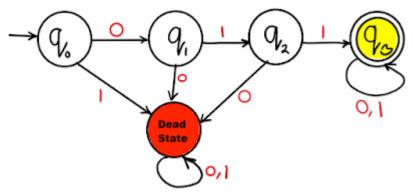
Example 7: Draw a $\underline{\mathsf{DFA}}$ for the language accepting strings with '0' only over input alphabets $\Sigma = \{0, 1\}$?

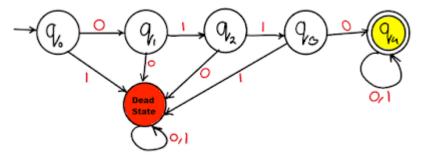


Example 8: Draw a DFA for the language accepting strings with '0' and '1' only over input alphabets $\Sigma = \{0, 1\}$?

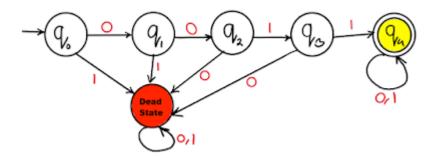

:


Example 9: Draw a DFA for the language accepting strings starting with '0' over input alphabets $\Sigma = \{0, 1\}$?

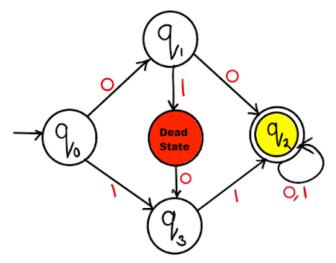

Example 10: Draw a DFA for the language accepting strings starting with '01' over input alphabets Σ ={0, 1} ?


Example 11: Draw a DFA for the language accepting strings starting with '00' over input alphabets $\Sigma=\{0, 1\}$?

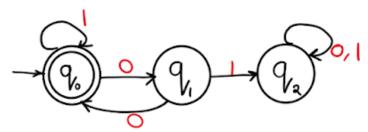
Example 12: Draw a DFA for the language accepting strings starting with '011' over input alphabets $\Sigma = \{0, 1\}$?



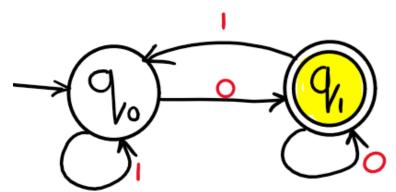
Example 13: Draw a DFA for the language accepting strings starting with '0110' over input alphabets $\Sigma = \{0, 1\}$?



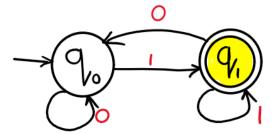
Example 14: Draw a DFA for the language accepting strings starting with '0011' over input alphabets $\Sigma = \{0, 1\}$?


Solution:

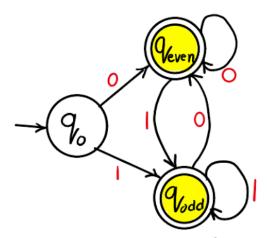
Example 15: Draw a DFA for the language accepting strings starting with '00' or '11' over input alphabets $\Sigma = \{0, 1\}$?



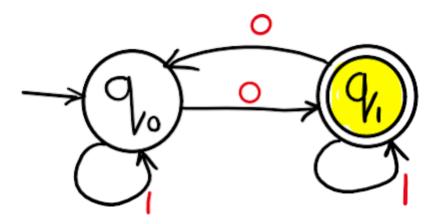
Example 16: Draw a DFA for the language accepting strings without substring '00' over input alphabets $\Sigma = \{0, 1\}$?



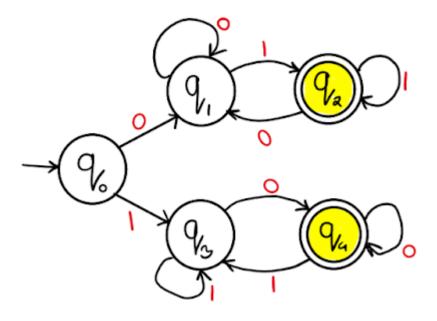
Example 17: Draw a DFA for the language accepting even binary numbers strings over input alphabets $\Sigma = \{0, 1\}$?


Soluntion:

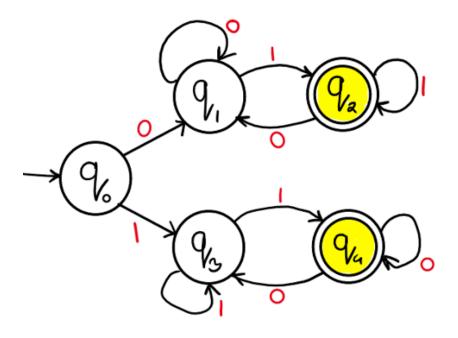
Example 18: Draw a DFA for the language accepting odd binary numbers strings over input alphabets $\Sigma = \{0, 1\}$?



Example 19: Draw a DFA for the language accepting odd or even binary numbers strings over input alphabets $\Sigma = \{0, 1\}$?

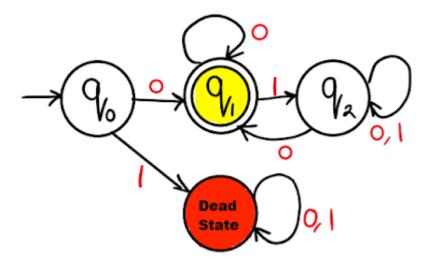

Example 20: Draw a DFA for the language accepting strings containg even number of total zeros over input alphabets $\Sigma = \{0, 1\}$?

Solution:

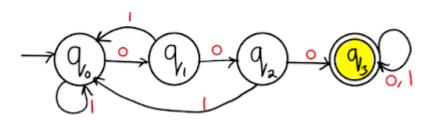


Example 21: Draw a DFA for the language accepting strings starting and ending with different characters over input alphabets $\Sigma = \{0, 1\}$?

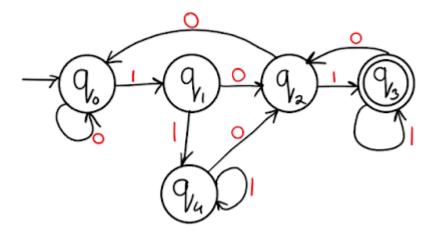
Soluiton:



Example 22: Draw a DFA for the language accepting strings starting and ending with same character over input alphabets $\Sigma = \{0, 1\}$?

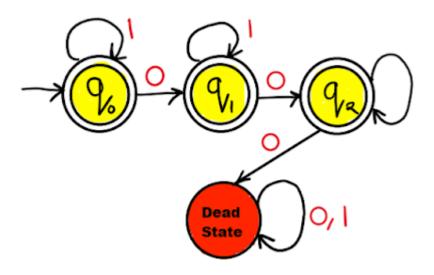

Example 23: Draw a DFA for the language accepting strings starting and ending with '0' always over input alphabets $\Sigma = \{0, 1\}$?

Solution:

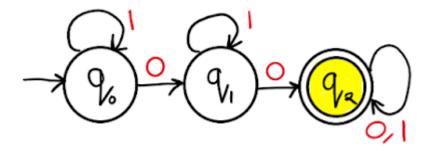


Example 24: Draw a DFA for the language accepting strings containing three consecutives '0' always over input alphabets $\Sigma = \{0, 1\}$?

Solution:

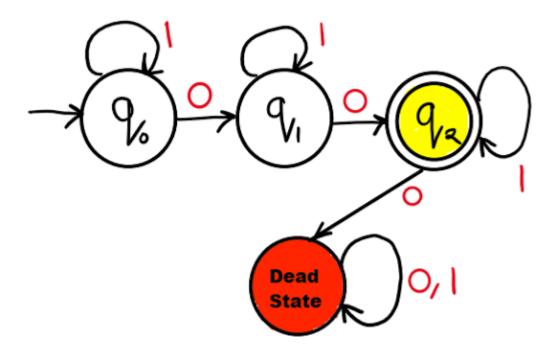


Example 25: Draw a DFA for the language accepting strings such that each '0' is immediately preceded and followed by '1' over input alphabets $\Sigma = \{0, 1\}$?

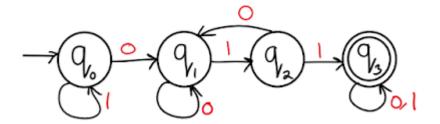


Example 26: Draw a DFA for the language accepting strings containing at most two '0' over input alphabets $\Sigma = \{0, 1\}$?

Solution:

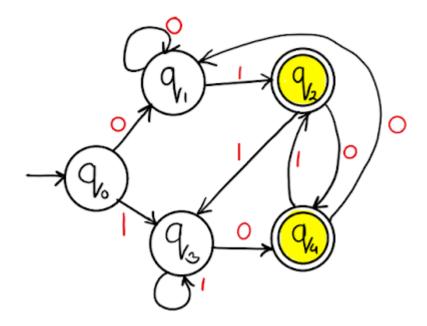


Example 27: Draw a DFA for the language accepting strings containing at least two '0' over input alphabets $\Sigma = \{0, 1\}$?

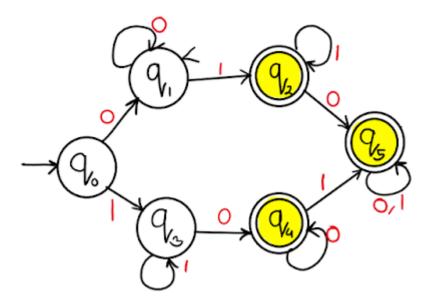


Example 28: Draw a DFA for the language accepting strings containing exactly two '0' over input alphabets $\Sigma = \{0, 1\}$?

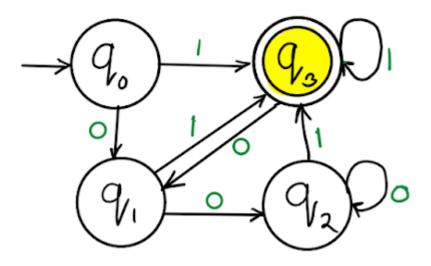
Solution:

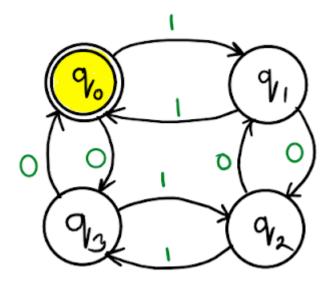


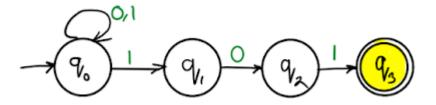
Example 29: Draw a DFA for the language accepting strings with '011' as substring over input alphabets $\Sigma = \{0, 1\}$?

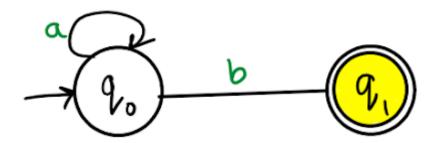


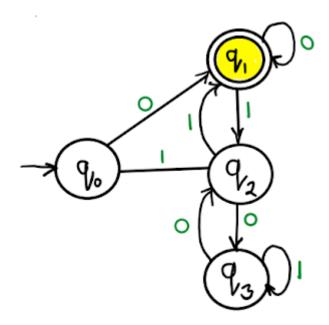
Example 30: Draw a DFA for the language accepting strings ending in either '01', or '10' over input alphabets $\Sigma = \{0, 1\}$?

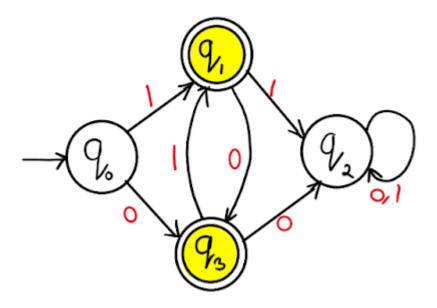

Solution:


Example 31: Draw a DFA for the language accepting strings containing '01', or '10' as substring over input alphabets $\Sigma = \{0, 1\}$?


Example 32: Draw DFA that accepts any string which ends with 1 or it ends with an even number of 0's following the last 1. Alphabets are {0,1}. Solution:


Example 33: Construct DFA accepting set of all strings containing even no. of a's and even no. of b's over input alphabet {a,b}. Solution:


Example 34: Give DFA accepting the language over alphabet {0,1} such that all strings of 0 and 1 ending in 101. Solution:


Example 35: Construct DFA for anb | n>=0. Solution:

Example 36: construct DFA for binary integer divisible by 3 ? Solution:

Example 37: Draw a DFA for the language accepting strings containing neither '00', nor '11' as substring over input alphabets $\Sigma = \{0, 1\}$?

Some Examples On Regular Expressions

Example 1: Let $\Sigma = \{a, b\}$. Write <u>regular expression</u> to define language consisting of strings w such that, w contains only a's or only b's of length zero or more.

Solution: $r = a^* + b^*$

Solution: r = a++ b+

Example 3: Let Σ = {a, b}. Write regular expression to define language consisting of strings w such that, w contains zero or more a's followed by zero or more b's

Solution: r = a*b*

Example 4: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w of length even

Solution: $r = [(a + b) (a + b)]^*$

Example 5: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w of length odd

Solution: $r = (a + b) [(a + b) (a + b)]^*$

Example 6: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w of length three

Solution: r = (a + b) (a + b) (a + b)

Example 7: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w of length atmost three

Solution: $r = (a + b + \in) (a + b + \in) (a + b + \in)$

Example 8: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w of length odd containing only b's

Solution: $r = (bb)^* b$

Example 9: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w starting with a always

Solution: $r = a(a + b)^*$

Example 10: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w starting and ending with b and having only a's in between.

Solution: $r = b a^* b$

Example 11: Let Σ = {a, b}. Write regular expression to define language consisting of strings w such that, w starting and ending with same double letter

Solution: $r = \{(aa (a + b)^* aa) | (bb (a + b)^* bb)\}$

Example 12: Let Σ = {a, b}. Write regular expression to define language consisting of strings w such that, w with starting and ending with different letters

Solution: $r = (a(a+b)^* b) | (b (a + b)^* a)$

Example 13: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w with at least two occurrence of a

Solution: $r = (a + b)^* a (a + b)^* a (a + b)^*$

Example 14: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w with exactly two occurrence of a

Solution: $r = b^* a b^* a b^*$

Example 15: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w with at most two occurrence of a

Solution: $r = b^* (a + \epsilon) b^* (a + \epsilon) b^*$

Example 16: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w with begin or end with aa or bb

Solution: $r = ((aa + bb) (a + b)^*) + ((a + b)^* (aa + bb))$

Example 17: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w with begin and end with aa or bb

Solution: $r = ((aa + bb) (a + b)^* (aa + bb)) + aa + bb$

Example 18: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w with total length multiple of 3 always

Solution: $r = [(a + b) (a + b) (a + b)]^*$

Example 19: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w containing total a's as multiple of 3 always

Solution: $r = [b^* a b^* a b^* a b^*]^*$

Example 20: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w with exactly two or three b's

Solution: $r = a^* b a^* b a^* (b + \in) a^*$

Example 21: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w with number of a's even

Solution: $r = b^* + (b^* a b^* a b^*)^*$

Example 22: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w in which b is always tripled

Solution: $r = (a + bbb)^*$

Example 23: Let Σ = {a, b}. Write regular expression to define language consisting of strings w such that, w with at least one occurrence of substring aa or bb

Solution: $r = (a + b)^* (aa + bb) (a + b)^*$

Example 24: Let Σ = {a, b}. Write regular expression to define language consisting of strings w such that, w with at the most one occurrence of sub-string bb

Solution: $r = (a + ba)^* (bb + \in) (a + ab)^*$

Example 25: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w without sub-string ab

Solution: r = b* a*

Example 26: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w without sub-string aba

Solution: $r = (a + \in) (b + aa +)^* (a + \in)$

Example 27: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w in which 3rd character from right end is always a

Solution: $r = (a + b)^* a (a + b) (a + b)$

Example 28: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w always start with 'a' and the strings in which each 'b' is preceded by 'a'.

Solution: (a + ab)*

Example 29: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w contains atleast one 'a'.

Solution: $(a + b)^* a (a + b)^*$

Example 30: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w contain atleast two 'a's or any number of 'b's.

Solution: (a* a b* a b*) + b*

Example 31: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w contain atleast one 'a' followed by any number of 'b's followed by atleast one 'c'.

Solution: a+ b* c+