Spec: Sigstore Client

(please join sigstore-dev(@ to make changes/comments!)

This document describes an architecture for using an automated certificate authority
(specifically, B Spec: Fulcio), timestamping service (REC 3161), and transparency service (
B Spec: Transparency Service) for signing digital payloads.

Introduction

Having both an automated code-signing certificate authority for digital identities (CA;

B Spec: Fulcio) and a timestamping service (REC 3161) enables payload signatures using
short-lived, single-use certificates issued to those identities. A signer can request a certificate
from the CA, sign a payload, and get the signature timestamped. Then, a verifier checks that the
signature timestamp falls during the certificate’s validity period. In this way, we decouple the
payload lifetime from the certificate lifetime.

This approach has several advantages. First, signers no longer need to manage signing keys;
they can generate them fresh for each signature. Second, the risk of a leaked signing key is
lower: after the validity period expires, the key cannot be used to sign any payloads without the
cooperation of the timestamping service. Finally, artifact lifetime and expiration can be managed
independently of key lifetime.

In this approach, the certificate authority and timestamping services are trusted parties. To
mitigate the security risks of centralization, we can introduce accountability in the form of
transparency: public logs of all activity (certificates and signatures) that can be monitored for
misbehavior. We implement this transparency property with a Certificate Transparency (CT) log
(REC 6962; see B Spec: Fulcio for details on its integration with the identity service) and a
transparency service (B Spec: Transparency Service). The certificate authority will submit
certificates to a CT log, and the signing client will submit payload metadata to the transparency
service.

This document describes this flow in detail.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in BCP 14 [REC2119] [REC8174] when, and
only when, they appear in all capitals, as shown here.

https://docs.google.com/document/d/1W5xp3g8_jaqzDQmIvepNYsWb-bQNc0U2ZQgQ700Kjok/edit#heading=h.3aihgox35y3e
https://docs.google.com/document/u/0/d/1NQUBSL9R64_vPxUEgVKGb0p81_7BVZ7PQuI078WFn-g/edit
https://docs.google.com/document/d/1W5xp3g8_jaqzDQmIvepNYsWb-bQNc0U2ZQgQ700Kjok/edit#heading=h.3aihgox35y3e
https://docs.google.com/document/d/1W5xp3g8_jaqzDQmIvepNYsWb-bQNc0U2ZQgQ700Kjok/edit#heading=h.3aihgox35y3e
https://docs.google.com/document/u/0/d/1NQUBSL9R64_vPxUEgVKGb0p81_7BVZ7PQuI078WFn-g/edit
https://groups.google.com/g/sigstore-dev
https://www.ietf.org/rfc/rfc3161.txt
https://www.ietf.org/rfc/rfc3161.txt
https://datatracker.ietf.org/doc/html/rfc6962
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174

Terminology

Payload. The payload is the data to be signed (represented as a sequence of bytes). This might
be a digital artifact, or an attestation/claim/metadata about a digital artifact.

Identity. A compact, virtual representation of an external actor, like a human or computer—for
instance, a person's account on a web service, or the name of a computer system in a
production environment.

Verification material. All data required to verify a signature on a payload, including the
signature itself and materials from the various services.

Client. The software implementation used to sign and verify in Sigstore.

Parties

Signer. An entity who wishes to sign a payload using an identity they control.

Authentication System. a system which can authenticate the signer and in return provide an
identity token. Examples include an OIDC Identity Provider. See B Spec: Fulcio for
requirements on the Authentication System. In particular, the identity tokens produced by the
Authentication System SHOULD support a notion of “audience”—indicating the system for
which the tokens are intended—and MUST support a notion of “subject” (indicating the identity).

The tokens can be opaque to a signer except that the signer MUST be able to extract the
subject.

Fulcio. A certificate authority compliant with B Spec: Fulcio , configured to support the
Authentication System.

Certificate Transparency Log. A service compliant with REC 6962.
Timestamping Service. A service compliant with REC 3161.

Transparency Service. A service compliant with B Spec: Transparency Service .
Verifier. The entity who wishes to verify signatures on a given payload.

Overview

Configuration and root key material (henceforth, root certificate(s) and optionally intermediate
certificate(s)) of each of the services are securely distributed out-of-band to any signers and
verifiers; how to do this securely is outside the scope of this document.

https://docs.google.com/document/d/1W5xp3g8_jaqzDQmIvepNYsWb-bQNc0U2ZQgQ700Kjok/edit#heading=h.3aihgox35y3e
https://docs.google.com/document/d/1W5xp3g8_jaqzDQmIvepNYsWb-bQNc0U2ZQgQ700Kjok/edit#heading=h.3aihgox35y3e
https://docs.google.com/document/u/0/d/1NQUBSL9R64_vPxUEgVKGb0p81_7BVZ7PQuI078WFn-g/edit
https://datatracker.ietf.org/doc/html/rfc6962
https://www.ietf.org/rfc/rfc3161.txt

The Signer authenticates with the Authentication System (1) and receives an identity token (2).
The Signer generates a key pair, then sends the public key, along with the identity token, to
Fulcio (3), which creates and signs a certificate attesting to the signer’s identity. Fulcio submits
the certificate to the CT Log (4), then sends it to the Signer (5). The Signer signs the payload,
then sends the signature to a timestamping authority (6), receiving a timestamping response in
return (7). The signer then sends the signing metadata (payload metadata, signature, and
certificate) to the transparency service (8) and receives a Signed Entry Timestamp (9).

Authentication System Transparency Service

®

(graphviz)

Signing

The signer must make a number of choices during signing: which signature algorithm to use,
which metadata format to use, whether to pre-hash the payload before signing, and whether to
skip some of the signing steps. This section first describes the complete payload signing

procedure, then describes considerations pertinent to those choices and how those choices
affect the signing procedure.

Default Signing Procedure

This section describes the full signing workflow for a client. The client MAY omit certain of these
steps (see §Signing Choices below).

Authentication

The Signer authenticates with the Authentication System. The details of how it does this are
specific to the Authentication System and outside the scope of this document (see

B Spec: Fulcio for requirements on the authentication service). If the Authentication System
supports a notion of “audience” for generated tokens, the Signer SHOULD identify the specific
instance of Fulcio (based on the identifier in its public configuration) as the desired
“audience” during authentication.

https://docs.google.com/document/d/1W5xp3g8_jaqzDQmIvepNYsWb-bQNc0U2ZQgQ700Kjok/edit#heading=h.3aihgox35y3e
https://graphviz.christine.website/#digraph%20G%20%7B%0A%20%20rankdir%20%3D%20%22BT%22%3B%0A%0A%20%20signer%20%5B%20label%20%3D%20%22Signer%22%20%5D%3B%0A%20%20idp%20%5B%20label%20%3D%20%22Authentication%20System%22%20%5D%3B%0A%20%20fulcio%20%5B%20label%20%3D%20%22Fulcio%22%5D%3B%0A%20%20%0A%20%20ctlog%20%5B%20label%20%3D%20%22CT%20Log%22%20%5D%3B%0A%20%20tsa%20%5B%20label%20%3D%20%22Timestamping%20Authority%22%20%5D%3B%0A%20%20rekor%20%5B%20label%20%3D%20%22Transparency%20Service%22%20%5D%3B%0A%0A%20%20signer%20-%3E%20idp%20%5B%20label%3D%22(1)%22%20%5D%3B%0A%20%20idp%20-%3E%20signer%20%5B%20label%3D%22(2)%22%20%5D%3B%0A%20%20%0A%20%20signer%20-%3E%20fulcio%20%5B%20label%3D%22(3)%22%20%5D%3B%0A%20%20fulcio%20-%3E%20ctlog%20%5B%20label%3D%22(4)%22%20%5D%3B%0A%20%20fulcio%20-%3E%20signer%20%5B%20label%3D%22(5)%22%20%5D%3B%0A%20%0A%20%20%0A%20%20signer%20-%3E%20tsa%20%5B%20label%3D%22(6)%22%20%5D%3B%0A%20%20tsa%20-%3E%20signer%20%5B%20label%3D%22(7)%22%20%5D%3B%0A%20%20%0A%20%20signer%20-%3E%20rekor%20%5B%20label%3D%22(8)%22%20%5D%3B%0A%20%20rekor%20-%3E%20signer%20%5B%20label%3D%22(9)%22%20%5D%3B%0A%7D

At the conclusion of the authentication protocol, the Signer will possess an authentication token;
the format of this token is opaque to the Signer, except that the Signer MUST be able to extract
a subject.

Key Generation

The Signer chooses an algorithm for digital signatures from the registry (

B Spec: Sigstore Registries); the chosen algorithm MUST be in both the Fulcio instance’s and
the Transparency Service instance’s supportedSigningAlgorithms). The Signer generates
a signing/verification key pair via the appropriate key generation procedure. The Signer MAY
store the signing key on a secure hardware device. Regardless of the success of the signing
procedure, the signer SHOULD destroy the keypair at the end.

Certificate Issuance

The Signer prepares a PKCS#10 CertificationRequestInfo using the key pair and
authentication token from the previous steps as follows:

e The subjectinthe CertificationRequestInfoisan X.501
RelativeDistinguishedName. The value of the RelativeDistinguishedName
SHOULD be the subject of the authentication token; its type MUST be the type
identified in the Fulcio instance’s public configuration.

e The algorithm field of the subjectPKInfo is the AlgorithmIdentifier (REC

5280 §4.1.1.2) of the generated key pair.
e The subjectPublicKey field of the subjectPKInfo MUST be the encoding of the
verification key for its algorithm.

Then, the signer prepares a CreateSigningCertificateRequest (definition) comprising
the authentication token and the PKCS#10 certificate signing request (PEM-encoded; see RFC
7468) to the CreateSigningCertificate endpoint (definition) of the Fulcio instance.

In return, the Signer receives a SigningCertificate (definition) containing a chain of
PEM-encoded X.509 certificates (REC 5280), ordered from “leaf’ to “root.” See B Spec: Fulcio
for additional details about certificate contents. The Signer SHOULD verify the response:

1. Perform certification path validation (REC 5280 §6) of the returned certificate chain with
the pre-distributed Fulcio root certificate(s) as a trust anchor.

2. Extracta SignedCertificateTimestamp, which may be embedded as an X.509
extension in the leaf certificate or attached separately in the SigningCertificate
returned from the Identity Service. Verify this SignedCertificateTimestamp asin
RFEC 9162 §8.1.3, using the root certificate from the Certificate Transparency Log.

https://docs.google.com/document/d/1wYYOtpyuWaDaIrjF1eyaH1iJueE_lvQPk_uwfwbMSoA/edit#heading=h.if88xkt0tyir
https://docs.google.com/document/d/1W5xp3g8_jaqzDQmIvepNYsWb-bQNc0U2ZQgQ700Kjok/edit#heading=h.3aihgox35y3e
https://datatracker.ietf.org/doc/html/rfc2986
https://www.itu.int/rec/T-REC-X.501/en
https://www.rfc-editor.org/rfc/rfc5280#section-4.1.1.2
https://www.rfc-editor.org/rfc/rfc5280#section-4.1.1.2
https://github.com/sigstore/fulcio/blob/8311f93c01ea5b068a86d37c4bb51573289bfd69/fulcio.proto#L88-L108
https://www.rfc-editor.org/rfc/rfc7468
https://www.rfc-editor.org/rfc/rfc7468
https://github.com/sigstore/fulcio/blob/8311f93c01ea5b068a86d37c4bb51573289bfd69/fulcio.proto#L63-L68
https://github.com/sigstore/fulcio/blob/8311f93c01ea5b068a86d37c4bb51573289bfd69/fulcio.proto#L144-L149
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280#section-6
https://datatracker.ietf.org/doc/html/rfc9162#name-validating-scts

3. Check that the leaf certificate contains the subject from the certificate signing request
and encodes the appropriate AuthenticationServiceIdentifier in an extension
withOID1.3.6.1.4.1.57264.1.8.

Signing

The Signer signs the payload using the signing key as in the chosen signing algorithm; the
signature will be opaque binary data. The Signer MAY pre-hash the payload using a hash
algorithm from the registry (B Spec: Sigstore Registries) for compatibility with some signing
metadata formats (see §Submission of Signing Metadata to Transparency Service).

Timestamping

The Signer sends a hash of the signature as the messageImprint ina TimeStampReq to the
Timestamping Service and receives a TimeStampResp including a ‘"TimeStampToken’. The

signer MUST verify the TimeStampToken against the payload and Timestamping Service root
certificate.

Submission of Signing Metadata to Transparency Service

The Signer chooses a format for signing metadata; this format MUST be in the
supportedMetadataFormats in the Transparency Service configuration. The Signer
prepares signing metadata containing at a minimum:

The signature.
The payload (possibly pre-hashed; if so, the entry also includes the identifier of the hash
algorithm).
e Verification material (signing certificate or verification key).
o If the verification material is a certificate, the client SHOULD upload only the
signing certificate and SHOULD NOT upload the CA certificate chain.

The signing metadata might contain additional, application-specific metadata according to the
format used. The Signer then canonically encodes the metadata (according to the chosen
format).

Transparency

The Signer then sends the canonically-encoded signing metadata to the
/api/v1/log/entries endpoint (definition) of the Transparency Service, which checks that
signature is valid and responds with a LogEntry (definition). The signer MUST verify the log
entry as in B Spec: Transparency Service .

https://docs.google.com/document/d/1wYYOtpyuWaDaIrjF1eyaH1iJueE_lvQPk_uwfwbMSoA/edit#heading=h.if88xkt0tyir
https://docs.google.com/document/u/0/d/1NQUBSL9R64_vPxUEgVKGb0p81_7BVZ7PQuI078WFn-g/edit
https://github.com/sigstore/fulcio/blob/main/docs/oid-info.md#1361415726418--issuer-v2
https://github.com/sigstore/rekor/blob/0a3f871c077eb708f2ffcc382d0a2104b887f5e1/openapi.yaml#L138-L171
https://github.com/sigstore/rekor/blob/0a3f871c077eb708f2ffcc382d0a2104b887f5e1/openapi.yaml#L423-L464

Verification

The above sections require the Signer to verify several parts of the signing process. Additionally,
the Signer SHOULD perform the full verification procedure, as below (§Verification). When the
expected signing identity is known before signing, the Signer MAY check that the signature
matches that identity.

Distribution

The Signer conveys the following verification materials to the verifier in order to allow
verification:

e Code-signing certificate. The CA root certificate MUST be provided out of band.
Intermediate CA certificates SHOULD be provided out of band, but MAY be provided
with the verification materials.

Signature.

Additional payload metadata.

Timestamping response.

Transparency Service LogEntry (definition). The log public key MUST be provided out
of band.

They can do so in any manner. Signers SHOULD collate this data in the Sigstore wire format
(§Serialization and Wire Format) which stores these all in one object for easy distribution. The
Verifier must also obtain the artifact to verify.

Signing Choices

Authentication System. The signer MUST use an Authentication System supported by the Fulcio
instance with which they can authenticate.

Digital signature algorithm. The signer must choose a digital signature algorithm for key
generation and signing from the registry (see B Spec: Sigstore Registries). The algorithm
MUST be in the supportedSigningAlgorithms of both the Fulcio and Transparency
Service instances.

Signature metadata format. The signature metadata format MUST be in the list of
supportedMetadataFormats in the Transparency Service configuration. This list can include
both common registry formats (see B Spec: Sigstore Registries) or additional plug-in formats.
Details about plug-in formats are conveyed out-of-band.

The metadata format chosen may depend on the artifact to sign (some formats encode extra
metadata about specific artifact types), size (some formats require the full artifact; others allow
the payload to be hashed), or compatibility with other systems.

https://docs.google.com/document/d/1wYYOtpyuWaDaIrjF1eyaH1iJueE_lvQPk_uwfwbMSoA/edit#heading=h.if88xkt0tyir
https://docs.google.com/document/d/1wYYOtpyuWaDaIrjF1eyaH1iJueE_lvQPk_uwfwbMSoA/edit#heading=h.if88xkt0tyir
https://github.com/sigstore/rekor/blob/0a3f871c077eb708f2ffcc382d0a2104b887f5e1/openapi.yaml#L423-L464

Payload pre-hashing. Some metadata formats store a hash of the payload. In this case, the
signature is over the hashed payload, so that the Transparency Service can validate the
signature.

In such cases, the Signer must choose a hash algorithm from the registry (see
B Spec: Sigstore Registries); this algorithm MUST be in the supportedHashAlgorithms for
the Transparency Service.

Long-lived signing keys. The Signer may have a pre-existing, long-lived signing key with which
they would like to sign payloads. This key MUST use an algorithm in the
supportedSigningAlgorithms of both the Fulcio configuration and Transparency Service
configuration.

In such cases, the Signer can skip the key generation step; the signing procedure is otherwise
unaltered.

Timestamping. Currently, the Transparency Service includes a timestamp in its response to the
Signer. This timestamp comes from the Transparency Service’s internal clock, which is not
externally verifiable or immutable. For this reason, a Signer SHOULD get their signatures
timestamped. However, a Signer MAY choose to omit the timestamping step; in this case, the
Signer MUST use the Transparency Service to provide a timestamp for the signature.

Transparency. The Signer SHOULD upload signing metadata to the Transparency Service, but
MAY choose to skip this step (for instance, for privacy reasons). In this case, the Signer MUST
use a Timestamping Service to provide a timestamp for the signature.

Other workflows. A client may support signing workflows different from that described above.
For instance, a Signer may want to use a long-lived signing key without an associated
certificate; in this case, they can skip the authentication, key generation, and certificate issuance
steps. A Signer may have a distinct Certificate Authority. Details for these workflows are
out-of-scope for this document.

Verification

A Verifier validates a signature on a payload along with other verification material according to a
policy. The policy specifies:

What must be true about the identity in a certificate (whom to trust).
Which Fulcio, Timestamping Authority, and Transparency Service instances to trust
(including root key material for each).

e Whether to require signed timestamp(s) from a Timestamping Authority, and, if so, how
many.

https://docs.google.com/document/d/1wYYOtpyuWaDaIrjF1eyaH1iJueE_lvQPk_uwfwbMSoA/edit#heading=h.if88xkt0tyir

e Whether to require the signature metadata to be logged in one or more Transparency
Services and, if so, how many.

e Whether to perform online or offline verification for the CT Log and the Transparency
Service.
Which Transparency Service formats the Verifier knows how to parse and validate.
What to do with a payload, once verified.
How to determine whether a signature has been revoked.

Knowing the verification policies of possible Verifiers may help Signers choose how to sign their
payloads. Policies are application-specific and distributed out of band. A policy is an abstract
procedure, not a set configuration: a client does not need to support arbitrary policies; it might
instead hard-code verification for a single policy, or expose only a limited number of
configuration options, like the Sigstore ArtifactVerificationOptions (definition) and
TrustedRoot (definition). Below, we describe a generic verification procedure and note where
policy-specific decisions or departures may occur. If any step fails, abort verification unless
otherwise specified.

Inputs

The Verifier performs verification according to its policy based on the following inputs:

e The artifact.

e \Verification materials (possibly in the the Bundle format (definition)):
o Leaf certificate

m When used with the Public Good Instance, only the leaf is necessary.

Other Sigstore instances (such as private instances) may require one or
more intermediates as well, if those intermediates are not listed in the
independent root of trust.

Signature.

Additional payload metadata.

Timestamping response.
o Transparency Service LogEntry (definition).

e Root key material for Sigstore infrastructure (from the policy).

o O O

The distribution of these inputs is out-of-scope for this document.

Recommended discovery order for verification materials

For Sigstore clients that expose a command-line interface, the following discovery order is
RECOMMENDED:

1. Use whatever verification materials are supplied explicitly by the user. For example, if the
client has flags and/or environment variables for configuring bundles and/or detached
verification materials, these should take precedence over any implicitly discovered
materials.

https://docs.google.com/document/d/1NQUBSL9R64_vPxUEgVKGb0p81_7BVZ7PQuI078WFn-g/edit#heading=h.6w69n885z90t
https://github.com/sigstore/protobuf-specs/blob/4dbf10bc287d76f1bfa68c05a78f3f5add5f56fe/protos/sigstore_verification.proto#L46-L108
https://github.com/sigstore/protobuf-specs/blob/4dbf10bc287d76f1bfa68c05a78f3f5add5f56fe/protos/sigstore_trustroot.proto#L59-L88
https://github.com/sigstore/protobuf-specs/blob/88c45b0ab8c3781a118be6339f443d8c277c0126/protos/sigstore_bundle.proto#L61-L77
https://github.com/sigstore/rekor/blob/0a3f871c077eb708f2ffcc382d0a2104b887f5e1/openapi.yaml#L423-L464

2. If no explicit inputs are given: for a given file input, attempt to discover
{input}.sigstore.json.If {input}.sigstore. json is present, attempt to use it
for verification.

3. If {input}.sigstore. json is not present, attempt to discover {input}.sigstore
and use it for verification.

Establishing a Time for the Signature

First, establish a time for the signature. This timestamp is required to validate the certificate
chain, so this step comes first.

Timestamping Service

If the verification policy uses the Timestamping Service, the Verifier MUST verify the
timestamping response using the Timestamping Service root key material, as described in

B Spec: Timestamping Service , with the raw bytes of the signature as the timestamped data.

The Verifier MUST then extract a timestamp from the timestamping response. If verification or
timestamp parsing fails, the Verifier MUST abort.

Transparency Service Timestamp

If the verification policy uses timestamps from the Transparency Service, the Verifier MUST
verify the signature on the Transparency Service LogEntry as described in

B Spec: Transparency Service against the pre-distributed root key material from the
transparency service. The Verifier SHOULD NOT (yet) attempt to parse the body. The Verifier
MUST then parse the integratedTime as a Unix timestamp (seconds since January 1, 1970
UTC). If verification or timestamp parsing fails, the Verifier MUST abort.

Certificate

For a signature with a given certificate to be considered valid, it must have a timestamp while
every certificate in the chain up to the root is valid (the so-called “hybrid model” of certificate
verification per Braun et al. (2013)):

None

Root CA: |----- |
Intermediate: |-----
Leaf: | ----- |
Valid timestamp range: |-

https://docs.google.com/document/u/0/d/1FoRHXejIhXwEai0RS3iRsN1HfCV16fJOp582Vl8KA7A/edit
https://docs.google.com/document/u/0/d/1NQUBSL9R64_vPxUEgVKGb0p81_7BVZ7PQuI078WFn-g/edit
https://research.tue.nl/en/publications/how-to-avoid-the-breakdown-of-public-key-infrastructures-forward-

The Verifier MUST perform certification path validation (REC 5280 §6) of the certificate chain
with the pre-distributed Fulcio root certificate(s) as a trust anchor, but with a fake “current time.”
If a timestamp from the timestamping service is available, the Verifier MUST perform path
validation using the timestamp from the Timestamping Service. If a timestamp from the
Transparency Service is available, the Verifier MUST perform path validation using the
timestamp from the Transparency Service. If both are available, the Verifier performs path
validation twice. If either fails, verification fails.

Unless performing online verification (see §Alternative Workflows), the Verifier MUST extract the
SignedCertificateTimestamp embedded in the leaf certificate, and verify it as in REC
9162 §8.1.3, using the verification key from the Certificate Transparency Log.

The Verifier MUST then check the certificate against the verification policy. Details on how to do
this depend on the verification policy, but the Verifier SHOULD check the Issuer X.509
extension (OID1.3.6.1.4.1.57264.1.1) at a minimum, and will in most cases check the

SubjectAlternativeName as well. See E Spec: Fulcio §TODO for example checks on the
certificate.

Transparency Log Entry

By this point, the Verifier has already verified the signature by the Transparency Service
(§Establishing a Time for the Signature). The Verifier MUST parse body: body is a
base64-encoded JSON document with keys apiVersion and kind. The Verifier
implementation contains a list of known Transparency Service formats (by apiVersion and
kind); if no type is found, abort. The Verifier MUST parse body as the given type.

Then, the Verifier MUST check the following; exactly how to do this will be specified by each
type in B Spec: Sigstore Registries (§Signature Metadata Formats):

1. The signature from the parsed body is the same as the provided signature.
2. The key or certificate from the parsed body is the same as in the input certificate.
3. The “subject” of the parsed body matches the artifact.

The verification policy can impose additional constraints here. For instance, if a kind and
apiVersion are provided in the policy (as in the bundle format), they must match the kind
and apiVersion in body.

Signature Verification

The Verifier now constructs the payload to be signed from the artifact and the additional payload
metadata according to the verification policy and Transparency. Methods for doing so include:

https://docs.google.com/document/d/1W5xp3g8_jaqzDQmIvepNYsWb-bQNc0U2ZQgQ700Kjok/edit#heading=h.3aihgox35y3e
https://docs.google.com/document/d/1wYYOtpyuWaDaIrjF1eyaH1iJueE_lvQPk_uwfwbMSoA/edit#heading=h.xd7kd6bn0rue
https://datatracker.ietf.org/doc/html/rfc5280#section-6
https://datatracker.ietf.org/doc/html/rfc9162#name-validating-scts
https://datatracker.ietf.org/doc/html/rfc9162#name-validating-scts
https://github.com/sigstore/fulcio/blob/main/docs/oid-info.md#1361415726411--issuer
https://docs.google.com/document/u/0/d/1NQUBSL9R64_vPxUEgVKGb0p81_7BVZ7PQuI078WFn-g/edit
https://docs.google.com/document/d/1wYYOtpyuWaDaIrjF1eyaH1iJueE_lvQPk_uwfwbMSoA/edit#heading=h.xd7kd6bn0rue

e Using the raw bytes of the artifact as the payload.
e Hashing the artifact, then using the resultant digest as the payload.
e Using DSSE as an envelope for the payload with a known DSSE payload type.

The Verifier MUST verify the provided signature for the constructed payload against the key in
the leaf of the certificate chain.

Alternative Workflows

Verification according to some verification policies may deviate from the above procedure as
follows:

No Timestamping Service. The Verifier MAY choose to rely on the Transparency Service for
timestamps. In this case, the Verifier MUST use a timestamp from the Transparency Service
during certificate verification. The Verifier can skip verification of the timestamping response, as
well as certificate verification using the timestamp from the Timestamping Service.

No Transparency Service. The Verifier MAY choose not to require that signatures are in the
Transparency Service. In this case, the Verifier MUST use a timestamp from the Timestamping
Service during certificate verification. The Verifier can skip verification of the Transparency
Service "LogEntry” for timestamping, certificate verification using the timestamp from the
Transparency Service, and Transparency Log Entry validation.

Online Certificate Transparency Log verification. The above procedure describes using
SignedCertificateTimestamps to verify inclusion in the certificate transparency log.
Instead, Verifiers MAY perform online verification by fetching and validating inclusion proofs
(REC 9162 §8.1.4) against a signed tree head. The Verifier SHOULD fetch the signed tree head
in a manner that prevents equivocation by the Certificate Transparency log (e.g., by requiring
signatures from independent “witnesses”).

Online Transparency Service verification. The above procedure describes using signed inclusion
promises from the Transparency Service for verifying membership in a transparency log (“offline
verification.”) Instead, a Verifier MAY perform online verification. In this case, the Verifier checks
an inclusion proof for the LogEntry against a SignedTreeHead. See

B Spec: Transparency Service for details.

Threshold verification. The Verifier MAY require that the leaf certificate be included in multiple
Certificate Transparency Logs or that the formatted metadata be included in multiple
Transparency Service logs. This is equivalent to verifying multiple times with different logs.
Verifiers MUST ensure that multiple entries in the same log do not both count towards the
threshold.

https://docs.google.com/document/d/1NQUBSL9R64_vPxUEgVKGb0p81_7BVZ7PQuI078WFn-g/edit
https://github.com/secure-systems-lab/dsse/blob/master/protocol.md
https://datatracker.ietf.org/doc/html/rfc9162#name-fetching-inclusion-proofs

Omitted Transparency Service body. In some cases, the Transparency Service body may be
simple to compute from the artifact. In this case, the LogEntry may omit the body, and the
Verifier can reconstruct the body.

Out-of-band intermediate CAs. The Verifier SHOULD require that intermediate certificates are
distributed out-of-band as well. In this case, the Verifier MUST remove certificates from the
certificate chain that are not also found in the out-of-band list of intermediate certificates.

While other signing and verification workflows are possible using the Transparency Service
(third-party certificate authorities, using hardcoded keys), this document focuses on verification
using the Sigstore Certificate Authority.

Serialization and Wire Format

This section describes the “Sigstore wire format” for verification materials.

To produce verification materials in this format, a client MUST use the Protocol Buffers Bundle
format to collate these materials, serialized to JSON using the canonical proto3 JSON
serialization, excepft that:

1. The bundle MUST use lowerCamelCase rather than snake_case for keys.
2. The bundle MUST use the string representation for enum values.

This is the same as the JSON Schema schema in the protobuf-specs repository for clients
which prefer JSON Schema. Clients SHOULD NOT accept other variants of the canonical JSON
proto3 serialization.

If clients serialize the bundle to a file, the file SHOULD have the extension .sigstore. json.
To write multiple bundles in one file, clients SHOULD use the JSON Lines format (format each
bundle without newlines, and write one bundle per line) and the extension .sigstore. jsonl.

Security Considerations

This document describes a security system, and security considerations are present throughout.
The Sigstore threat model details a threat model, including which parties are trusted to be
honest, and the consequences if various subsets of those parties are in fact malicious.

Revocation and expiration. This document does not describe how to perform revocation and
rotation for the key material for the Sigstore infrastructure. Revocation, rotation, and expiration
should be handled where the key material is distributed. Specifically, when fetching root key
material, a Verifier should fetch metadata indicating the validity period for that key material
(which may be a subset of the validity period indicated in an X.509 certificate, for instance).

https://github.com/sigstore/protobuf-specs/blob/88c45b0ab8c3781a118be6339f443d8c277c0126/protos/sigstore_bundle.proto#L61-L77
https://github.com/sigstore/protobuf-specs/blob/88c45b0ab8c3781a118be6339f443d8c277c0126/protos/sigstore_bundle.proto#L61-L77
https://protobuf.dev/programming-guides/proto3/#json
https://protobuf.dev/programming-guides/proto3/#json
https://github.com/sigstore/protobuf-specs/blob/77828e59f8e81cbad6133c200467ca620e4fc0fe/gen/jsonschema/schemas/Bundle.schema.json
https://jsonlines.org/
https://docs.sigstore.dev/threat-model/

Then, that validity period should be used during certificate verification. This is described in more
detail

	Spec: Sigstore Client
	Introduction
	Requirements Language
	Terminology
	Parties
	Overview

	Signing
	Default Signing Procedure
	Authentication
	Key Generation
	Certificate Issuance
	Signing
	Timestamping
	Submission of Signing Metadata to Transparency Service
	Transparency
	Verification
	Distribution

	Signing Choices

	Verification
	Inputs
	Recommended discovery order for verification materials

	Establishing a Time for the Signature
	Timestamping Service
	Transparency Service Timestamp

	Certificate
	Transparency Log Entry
	Signature Verification
	Alternative Workflows

	Serialization and Wire Format
	Security Considerations

