Displacement & velocity -time graphs.

Objective

I can design position and velocity- time graphs of an object moving in different ways.

Make observations:

What is the main difference between Position-time graph and Velocity-time graph?

Can the displacement be negative? Why?

Can the velocity be negative? Why?

Procedure:

- 1. Connect the cart to your devices via Bluetooth
- 2. Press "Sensor Data collection"
- 3. Make sure to start from 0 as a reference point
- 4. Split the page into three graphs (Position, velocity, and acceleration- Time graphs)
- 5- record the data
 - 1. Use the data given to fill this table

Time	Position	Velocity	Acceleration
(s)	(m)	(m/s)	
0.0			
1.0			
2.0			
3.0			
4.0			
5.0			
6.0			
7.0			
8.0			
9.0			
10.0			

2. Plot your data in the graphs below:

According to your graphs...

- a. What shape is your position graph?
- b. What is the slope of your position graph?
- c. What shape is your velocity graph? Is it horizontal, vertical, or diagonal?

Making Connections

- 1. What happens to the cart when it is accelerating?
- 2. What is the difference between an object with constant acceleration and an object with constant speed?

3.	Com	Complete the following sentences:		
	а	"The slone of a linear position arount tells us the		

- a. "The slope of a linear position graph tells us the ______ of the object."
- b. "The slope of a linear velocity graph tells us the ______ of the object."
- c. "For an object moving at a constant speed, we would expect to see a position graph with a ______ shape and a velocity graph with a ______ shape."
- d. "For an object moving at a constant acceleration, we would expect to see a position graph with a ______ shape and a velocity graph with a _____ shape."