Fix PWA media system
|:'_\ prompts for macOS

Dev Design Spec

Authors: Lia Hiscock, Stanley Hon

Spec Status: Ready for Review

Quick Links

PM spec: Support for SystemMediaControls per dPWA - Google Docs
Windows dev design spec: Chromium Dev Design - Fix Medi tem Prompts on Wintl.docx -
I
How to test: How to test CL SystemMediaControls per web app - Google Docs
Prototype: [WIP][dPWA][Mac][SystemMediaControls] bridged app shim design v2 (5493397) - Gerrit Code

Review {googlesou rce.com}

Reviewers

Required = LGTM/NLGTM

(MSFT) Hoch Hochkeppel Yes LCTM - 5/2/2024
steimel Yes LGTM - 5/13/2024
mek Yes LGTM - 5/13/2024
dmurph No

https://docs.google.com/document/d/1ZwGayhSC7FX1AQdqHD59Y9bs5RMl-B_l4SDdjLR1zIM/edit?pli=1
https://docs.google.com/document/d/12dVKreUCjtZZaUqeh3VxGMsGPMC4POhK/edit?pli=1
https://docs.google.com/document/d/12dVKreUCjtZZaUqeh3VxGMsGPMC4POhK/edit?pli=1
https://docs.google.com/document/d/12qOp1oFD-BNnLosmgf4_6nrev_8W8tqCpfV5X5mK820/edit?pli=1
https://chromium-review.googlesource.com/c/chromium/src/+/5493397
https://chromium-review.googlesource.com/c/chromium/src/+/5493397

1. Feature Overview

1.1. Motivations

This spec covers the macOS portion of System Media Controls. The motivations for the feature are the
same as in the windows spec. This spec focuses on the implementation detail of implementing the

feature on macOS.
To summarize in one sentence:

Allow h PWA playing medi

1.2. Background

have its own f controls in the m

in

rf

In Windows, the Ul pops up when the “control center”
is brought up.

On macOSs, you click the “now playing” icon to show this Ul.

o

—
Media Player 2 - Media Congtrols Tester 2

Piano Reflections =

@ Google Chrome Canary

047318 —
@ ‘ Piano Reflections

PWA #2 blue

e i

Not connected Airplane mode

- i E

Night light Accessibility Nearby sharing

-

e

@ [] Media Player 2 - Media Cont

Piano Reflections

‘ I)1:09!3:18 —_—

© ©

N Q &

Piano Reflections

Fri Jul 7 4:29 PM

PWA #2 blue - album

« N

| |

Screenshot
2023-07...2.45 P

Screenshot
2023-07...7.04 PM

1.3. Goals

On macOS, the now playing center should have a separate entry for each PWA playing audio, plus one

G @ & 0 ©

for the browser.

i= . o= lOfi hip hop radio = - bea... T

W= Lafl Glr

Dev Design Specification Page 2 of 10

https://docs.google.com/document/d/12dVKreUCjtZZaUqeh3VxGMsGPMC4POhK/edit?pli=1

We will show the PWA icon in media controls box, not the browser.

1.4. The App Shim
In Chromium, PWAs utilize a concept known as an App Shim. Its purpose is to present PWAs - which
are just essentially browser windows - as a separate “app” on macOS. It also handles a lot of messages

to and from the Browser process, such as using macOS menus associated with Financial Times shown
below.

Financial Times File Edit View History Window

+ Always Show Toolbar in Full Screen

Always Show Full URLs Financial Times - FT

Force Reload This Page CIAL TIM]

Updated 2:14pm

Fntar Full Sereean

In this screenshot above we can see Chromium and a PWA (Financial Times) as independent apps in the
macOS dock. The App Shim enables this. It is an independent process to the browser process. The App
Shim communicates with the browser over various mojo connections.

1.5. macOS APIs

There are 2 “objects” used to read/write to macOS. Both of them are essentially singleton per-process,
meaning you must interact with them from within each app shim process in order to have independent
system media controls for each PWA.

1.5.1. MPNowPlayingInfoCenter

Lets you specify metadata about your media that macOS will display. This includes things such as
artist name, album, track title, etc.

1.5.2. MPRemoteCommandCenter

Lets you register handlers so your app can respond to events received from macOS, like
plays/pauses.

Dev Design Specification Page 3 of 10

2. Design

This is an overview of how we will leverage the in-process/out-of-process bridge design pattern with a new SystemMediaControlsBridge.

web page

A

3

(1) existing classes are notified that audio started
in a web page. (see Windows spec for more info)

Start with yellow box (1), read in
numerical order

‘

v

BROWSER PROCESS

SMCMac

(2) WebAppSMCManager creates an

MediaKeysListenerManagerimpl creates
an SMCMac for the browser.

ssssees

for a PWA, and

(3) smcMac tells

\

SystemMediaControlsMac

f

mojo

' Y

an
SMCMac &
connected via mojo

ApplicationBridge to create

are

Pessssscscssssssnse

AN APP SHIM PROCESS
MediaKeysListenerManagerimpl = WebAppSystemMediaControlsManager R R R EE R R R RRRSRER o

ApplicationBridge

(4) ApplicationBridge creates/owns
an out of process

SystemMediaControlsMac «¢

mojc

v
¢

(6) For the browser's media handling, SMCMac
creates an in-process
. This bridge still
receives messages from the browser process (still
via mojo) and still relays them to macOS.

(5)

is connected to the browser
process via mojo.

It receives messages from the
browser process and relays
them to macOS, and vice
versa.

macOS

2.1. SystemMediaControlsManager
This section is relevant to step (2) in the design diagram above.

WebAppSystemMediaControlsManager, added during the Windows implementation, creates and
manages one SystemMediaControlsMac for each unique PWA playing audio. (Whereas

MediaKeysListenerManagerimpl creates/manages a single SystemMediaControlsMac for all browser
tabs/windows).

2.2.SystemMediaControls::Create API changes
This section is relevant to steps (2) and (3) in the design diagram above.

SystemMediaControls(Win/Mac/Linux) objects are created via the platform agnostic Create function.
After our Windows implementation, Create looked as follows -

std::unique_ptr<SystemMediaControls> Create(
std::string& product_name,

window);
However, SystemMediaControlsMac needs to access an AppShim's ApplicationBridge to make the
out-of-process SystemMediaControlsBridge. We get the ApplicationBridge like this -

remote_cocoa::ApplicationHost* application_host =
remote_cocoa::ApplicationHost::GetForNativeView(web_contents->GetNativeView());

raw_ptr<remote_cocoa::mojom::Application> application_bridge_ =

application_host->GetApplication();
We can't pass the WebContents to Create without causing a circular dependency between
//components/SystemMediaControls and content/browser, so we have to pass ApplicationHost, which only
builds on Mac. This means we need a Mac-only Create function -

Hif

std::unique_ptr<SystemMediaControls> SystemMediaControls::Create(
remote_cocoa::ApplicationHost* application_host) {

return std::make_unique<internal::SystemMediaControlsMac>(application_host);

I
Hendif

2.3. //components/RemoteCommandCenterDelegate (RCCD) changes
This section is relevant to steps (5) and (6) in the design diagram above.

RCCD is the component that interfaces with the macOS APIs, specifically the
MPRemoteCommandCenter which allows us to listen for events from macOS and update the web
contents accordingly. The following changes prevent duplication of a significant amount of code.

[SystemMediaControlsMac j
I

Before - RCCDCocoa directly has a
received the events from macOS, ¥
passed them up to RCCD, which
then forwarded the event to all its

observers (for us, this is namely
MediaKeysListenerManagerimpl). J
has a has aj

GemoteCommandCenterDeIegateCocoa

RemoteCommandCenterDelegate

list of browser process
SystemMediaControlsObservers

The problem - MPRemoteCommandCenter is essentially a singleton per-process, so RCCD needs to run in the app shim process,
but the list of SystemMediaControlsObservers must stay in the browser process.

SystemMediaControlsObservers
into SystemMediaControlsMac
(which always runs in the browser has a rhas a has aﬂ'

process). RCCD will live in v
mojo receiver

Syst.emMedlaQontrolsBrldge RemoteCommandCenterDelegate
(which can be in or out of
aJ Lha\s a

process). RCCD gets a mojo

remote so that when it receives has

messages from macOS, it can tell l
SystemMediaControlsMac, who]

will notify Hhe YVIEEheaEs, mojo Remote RemoteCommandCenterDelegateCocoa

2.4.Duplicate PWAs

On macOS, if you open more than one “Youtube” PWA - they actually all share a single app shim. This
makes sense because all Youtube PWAs are grouped under the same dock icon/Application. This
however, does mean we cannot make each Youtube PWA communicate to macOS as a separate
application. They must all share one communication channel to macOS. We drew inspiration from how
Safari “PWAs” (called “Save to Dock” apps) behaves in this scenario and allow duplicate PWAs to steal
focus from each other.

After - Move the list of [SystemMediaControlsBridge j [SystemMediaControlsMac j

list of browser process
SystemMediaControlsObservers

When SystemMediaControlsMac objects are about to send information across the mojo boundary to an
app shim, it verifies it still holds a connection to SystemMediaControlsBridge (near (3) in the diagram)

If this connection has been severed (because some other duplicate app has stolen focus), it will
re-establish the connection itself before sending messages.

When a connection is re-established, the full set of information (Album, Artist, Song, Current seek
position) is automatically pushed back out to the OS.

For the reverse direction (macOS controlling the browser), whichever application has focus will receive
control messages.

This is generally consistent with how Safari handles this edge case - our position is it's not currently
worth additional attention due to the low expected impact of this scenario.

3. Security Considerations

This feature has some new mojo IPC connections that may have security implications. There are a few new
interesting mojo IPC areas interesting to analyze from a security perspective.

Dev Design Specification Page 6 of 10

3.1. Brokering the new SystemMediaControlsBridge connections

In application.mojom, we've extended the existing interface to allow for brokering of a new connection.
This is not very interesting from a security perspective because it only establishes a connection between
the browser process and a sub-system of the app shim which is already connected to the browser
process.

3.2. The new connections
There are new mojo connections between the new bridge and its counterpart in the browser -
SystemMediaControls and SystemMediaControlsObserver. These interfaces are outlined in

system_media_controls.mojom.

Of these two, the SystemMediaControls interface is less interesting from a security perspective - it
serves only as one-way communication from browser process to app shim process to instruct it to
perform actions. If somehow, an app shim process is malicious - it is limited to not complying with the
requests.

The reverse direction observer interface which allows app shims to notify the browser process of
requests from macOS allows a compromised app shim to potentially spam the browser process with
requests from macOS. However, this would require the browser to be actively holding a connection to
that app shim - but also for it to be compromised which is unlikely.

Overall, these new connections do not seem like significant security risks.

3.3. Testing interfaces

To support testing, system_media_controls.mojom also includes a function on
SystemMediaControlsObserver that allows the app shim process to notify the browser when a bridged
SystemMediaControls object has been created. (see Section 8.1 - Test Approach)

4. Privacy Considerations

This feature does not pose any considerable privacy concerns due to its nature.
This feature:

- Does not store any user data.

- Does not expose additional Ul not currently visible

- Does not store any preferences

- Does not interact with incognito (you cannot install apps in incognito)

- Does not fire any new telemetry

5. Prototype

5493397 [WIPI[dPWAI[Macl[SystemMediaControls] bridged app shim design v2
- — : T/ /5493397

6. Telemetry, Flighting and Logging

6.1. Telemetry
We will wire the mac work into the same telemetry pipelines as the windows work, the metrics will be
combined.

6.2. Flighting
We will follow the same procedure as our Windows work, flight to the PWA team first, then to Edge All
while we wait for Chromium on-by-default.

6.3. Logging

None

Dev Design Specification Page 7 of 10

https://chromium-review.googlesource.com/c/chromium/src/+/5493397/7/components/remote_cocoa/common/application.mojom
https://chromium-review.googlesource.com/c/chromium/src/+/5560885/28/components/system_media_controls/mac/remote_cocoa/system_media_controls.mojom
https://chromium-review.googlesource.com/c/chromium/src/+/5493397

7. Functional and Unit Testing

7.1. UPDATED TESTING APPROACH - 7/25/2024

Due to various blockers with multiple other testing approaches, we have shifted our testing strategy
away from the methods outlined below/in comments. We will now utilize a normal browser test (not a
content browser test) to install and launch PWAs, play media in them, and verify that our new bridged
SystemMediaControlsBridge class gets created (in process for the browser, and out of process for the
app shim).

This involves 2 main APls:

1. OnBridgeCreatedForTesting - extension of system_media_controls.mojom.
a. SystemMediaControlsBridge will use this to notify the browser process when it (ie. the
bridge) has been created and its mojo connections have been set up.
2. SetOn (Browser)BridgeCreatedCallbackForTesting - new //content/test API.
a. Thisis needed because the mojo connection between browser <-> app shim is actually
between //content/browser <-> app shim, not //chrome/browser, where our test lives.
The app shim will notify SystemMediaControlsMac, which is a private class and owned by
our content::WebAppSystemMediaControlsManager, which in turn lives on
content::MediaKeysListenerManagerimpl.

Our current test cases include:

- Launch 2 PWAs, play audio in both, verify 2 SystemMediaControlsBridges are made.
- Launch 1 PWA and 1 browser, play audio, verify 2 SystemMediaControlsBridges are made.
- Launch 1 browser, play audio, verify 1 SystemMediaControlsBridge is made.
- Launch 2 windows of the same PWA, play audio in both, verify 1 SystemMediaControlsBridge is
made. (only 1 per app shim)
Launch 1 PWA, play audio, simulate Cmd+Q quitting the app, verify nothing crashes.
7 2.Test Approach - deprecated
There are macOS specific testing challenges due to the remote app shim architecture. Our existing
content_browsertests for Windows will not be adapted due to their incompatibility with the app shim
model.

The primary challenge with the macOS architecture is that tests do not know how to interface with app
shims. Our new mojo APIs for speaking to the app shim do not provide useful information for testing as
generally they fall into two categories:

A. Set some state (e.g SetArtist) in the app shim

B. Cet called back by an operation in macOS (e.g OnPlay).

We need to introduce 2 new mojo APIs for testing only:

1. Get the current state of the System Media Controls in the app shim
This allows us to use browser_tests to spawn PWAs that play media, then query the app shim
for whether the state of the playing audio is what we would expect.

2. Trigger a mocked action inside the app shim.

This allows us to use browser_tests to trigger an action as if a user asked macOS to pause the
media. An example of this is mock triggering a pause in macOS from a browser_test, which
would indirectly cause the PWA media to stop playing.

7.3.Test Cases - deprecated
Our tests will be automated, with some manual verification of the end-to-end scenario.

7.3.1. Automated Test Cases

e A browser tab plays media, ensure its metadata reflects this correctly.

e 2 browser tabs playing media, ensure they still switch/fallback appropriately.
e A PWA plays media, ensure its remote app shim metadata reflects this.

e A browser tab & a PWA plays media, ensure respective metadata is correct.

Dev Design Specification Page 8 of 10

e Abrowser tab & a PWA plays media, use mock triggers to pause one, ensure each can be
controlled separately.

e 2 PWAs play media, ensure both remote app shim metadata sets reflect this.

e With 2 PWAs playing media, use the mock trigger to pause one. Ensure one is playing and one is
stopped.

e 2 PWAs play media, close one - ensure it's bookkeeping has been cleaned up.

e Opena PWA, play media - ensure metadata is correctly matching this PWA. Open a duplicate of
this PWA - ensure metadata has updated to reflect this PWA. Trigger an update from the original
PWA by toggling paused - ensure metadata has reverted back to tracking the first PWA.

8. Known issues

8.1. macOS Now Playing state bug.
macOS has a bug in the now playing user interface when multiple apps are playing audio. This bug is not
specific to Chromium, or any specific apps.

When two apps are playing media in macOS, when pausing the less recent (older) app that started
playing from the macOS Ul succeeds, however the macOS Ul does not update to show the application
paused.

This means it's not possible to resume that app, now that it is paused - as it still shows a pause button.

This bug is resolved when the other newer media playing app is interacted with, or the app triggers a
state update.

This bug has been reported to Apple. We plan to proceed with this work disregarding this bug.

9. Open Questions

1. Any special handling/consideration needed for media sessions across profiles/users? For example, if
you install YouTube PWA in 2 different profiles, do they each get their own app shim?

a. Duplicate apps originating from different browser profiles still share the same app shim. This
means they will behave identically to duplicate PWAs from the same profile, see Section 2.4

— Duplicate PWAs.

2. With the macOS feature flag off, how much of the original non-bridged design can we preserve?

a. We will aim to keep the behavior as close to the pre-existing behavior as possible, but how
that will look exactly is TBD.

10. Engineering Costs

e Add macOS specific feature flag (and figure out behavior with the flag off)
e Refactor existing RemoteCommandCenterDelegate component to prepare for reuse.

e Update SystemMediaControlsMac to support a mojo connection to a
SystemMediaControlsBridge.

e Update WebAppSystemMediaControlsManager to build on macOS
e AddaSystemMediaControls: :Create for Mac that takes an ApplicationHost
e AddSystemMediaControlsBridge

e Update ApplicationBridge to create SystemMediaControlsBridge. Add tests now that the
app shim system media controls can speak to the bridge.

e Remove logging left in from Windows implementation.

e Document in-process and out-of-process bridges for SystemMediaControlsMac

Dev Design Specification Page 9 of 10

11. Rejected Design Options

11.1.Use AppShimController/AppShimHostMac
[WIP][dPWA][Mac][SystemMediaControls]AppShimController/AppShimHostMac approach (5260503) -
Gerrit Code Review (googlesource.com)

This approach gets the corresponding app shim by asking the AppShimManager (in chrome/browser) for
the AppShimHost(Mac) given a Profile and Appld (both of which have to be obtained from
WebContents). This lets us make a connection to the AppShimController (in chrome/app_shim) that
corresponds to the PWA playing audio. This is more complex than just accessing the app shim via the
ApplicationBridge.

This is also not ideal because it requires a content API to get from our media management code in
//content/browser to the AppShimHostMac in //chrome/browser.

11.2. Remote-only bridge variant
[WIP][dPWA][Mac][SystemMediaControls] bridged app shim design v1 (5441110) - Gerrit Code Review

(googlesource.com)

This variation is essentially an out of process bridge only (as opposed to in process/out of process).
SystemMediaControlsBridge only runs in the app shim, and the browser’s media controls connection
remains largely unchanged.

This option is still viable (and actually makes the browser/in-process code simpler) but it requires a bit
of code/interface duplication, as we essentially have 2 slightly different versions of some classes, 1 for
the browser and 1 for the app shim.

Dev Design Specification Page 10 of 10

https://chromium-review.googlesource.com/c/chromium/src/+/5260503
https://chromium-review.googlesource.com/c/chromium/src/+/5260503
https://chromium-review.googlesource.com/c/chromium/src/+/5441110
https://chromium-review.googlesource.com/c/chromium/src/+/5441110

	1.​Feature Overview
	1.1.​Motivations
	1.2.​Background
	1.3.​Goals
	1.4.​The App Shim
	1.5.​macOS APIs
	1.5.1.​MPNowPlayingInfoCenter
	1.5.2.​MPRemoteCommandCenter

	2.​Design
	2.1.​SystemMediaControlsManager
	2.2.​SystemMediaControls::Create API changes
	2.3.​//components/RemoteCommandCenterDelegate (RCCD) changes
	2.4.​Duplicate PWAs

	3.​Security Considerations
	3.1.​Brokering the new SystemMediaControlsBridge connections
	3.2.​The new connections
	3.3.​Testing interfaces

	4.​Privacy Considerations
	5.​Prototype
	6.​Telemetry, Flighting and Logging
	6.1.​Telemetry
	6.2.​Flighting
	6.3.​Logging

	7.​Functional and Unit Testing
	7.1.​UPDATED TESTING APPROACH - 7/25/2024
	7.2.​Test Approach - deprecated
	7.3.​Test Cases – deprecated
	7.3.1.​Automated Test Cases

	8.​Known issues
	8.1.​macOS Now Playing state bug.

	9.​Open Questions
	10.​Engineering Costs
	11.​Rejected Design Options
	11.1.​Use AppShimController/AppShimHostMac
	11.2.​Remote-only bridge variant

