AUTOMATA THEORY AND COMPUTABILITY SEMESTER – V

Question Bank

Module 2

1. Consider the DFA shown below:

States	0	1
→q ₁	q_2	q ₁
q_2	\mathbf{q}_3	q_1
*q ₃	q ₃	\mathbf{q}_2

Obtain the regular expressions $R_{ij}^{(0)}$, $R_{ij}^{(1)}$ and simplify the regular expressions as much as possible. (9-Marks) (3a) (Dec.2017/Jan.2018)

- 2. Give Regular expressions for the following languages on $\Sigma = \{a, b, c\}$
 - i. all strings containing exactly one a
 - ii. all strings containing no more than 3 a's.
 - iii. all strings that contain at least one occurrence of each symbol in Σ . (3-Marks) (3b) (Dec.2017/Jan.2018)
- 3. Let L be the language accepted by the following finite state machine.

Indicate for each of the following regular expressions, whether it correctly, describes L: (6-Marks) (3c) (Dec.2017/Jan.2018)

- 4. Prove that the following language in not regular : $L = \{0^n1^n \mid n > 0\}$. (5- Marks) (4a) (Dec.2017/Jan.2018)
- 5. If L_1 and L_2 are regular languages then prove that L_1 U L_2 , L_1 . L_2 and L_1 * are regular languages. (5-Marks) (4b) (Dec.2017/Jan.2018)
- 6. Is the following grammar is ambiguous? S \rightarrow iC + S| iC + SeS|a C \rightarrow b (6-Marks) (4c) (Dec.2017/Jan.2018)
- 7. Define regular expression. Obtain a regular expression for the following languages:
 - i. $L=\{a_nb_m|m+n \text{ is even}\}.$
 - ii. $L=\{a_nb_m|m>=1,n>=1,nm>=3\}$
 - iii. L={w:|w|mod3=0 where w \in (a,b)*} . (8-Marks) (3a) (June/July 2018)
- 8. Design an NDFSM that accept the language L(aa*(a+b)). (4-Marks) (3b) (June/July 2018)
- 9. Convert the regular expression (0+1)*1(0+1) to NDFSM. (4-Marks) (3c)

(June/July 2018)

- 10. If the regular grammars define exactly the regular language, then prove that the class of languages that can be defined with regular grammars is exactly the regular languages. (4-Marks) (4a) (June/July 2018)
- 11. Prove that the regular languages are closed under complement, intersection, difference, reverse and letter substitution. (8-Marks) (4b) (June/July 2018)
- 12. State and prove pumping theorem for regular language. (4-Marks) (4c) (June/July 2018)
- 13. Define Regular expression and write Regular expression for the following language.
 - i. $L = \{a^{2n} b^{2m} \mid n \ge 0, m \ge 0 \}$
 - ii. $L = \{a^n \ b^m \mid m \ge 1 \ , \ n \ge 1 \ , \ nm \ge 3\}.$ (8-Marks) (3a) (Dec.2018/Jan.2019)
- 14. Obtain the Regular expression for the following FSM. (8-Marks) (3b) (Dec.2018/Jan.2019)

- 15. Define a Regular grammar. Design regular grammars for the following languages.
 - i. Strings of a's and b's with at least one a.
 - ii. Strings of a's and b's having strings without ending with ab.
 - iii. Strings of 0's and 1's with three consecutive 0's. (8-Marks) (4a) (Dec.2018/Jan.2019)
- 16. Prove that the following languages are not regular:
 - i. $\{a^i b^j | i > j\}$
 - ii. $L = \{ w \mid n_a(w) = n_b(w) \}$ (8-Marks) (3b) (Dec.2018/Jan.2019|10 Scheme)
- 17. Show that if L_1 and L_2 are regular, so is $L_1 \cap L_2$. (4-Marks) (3c) (Dec.2018/Jan.2019|10 Scheme)
- 18. Define context free grammar. Obtain the CFG for following languages:
 - i. $L=\{a^n b^m c^k | n+2m=k \text{ for } n>=0,m>=0\}$
 - ii. L= { $ww^R/ w \in \{a, b\} *\}$ (8-Marks) (4a) (Dec.2018/Jan.2019|10 Scheme)
- 19. Construct the left most derivation, right most derivation and parse trees for the grammar.

 $E\rightarrow E+E|E-E|E*E|$ id for input string "id + id * id". (6-Marks) (4b) (Dec.2018/Jan.2019|10 Scheme)

- 20. Prove that if L is a regular language SO LR. (5-Marks) (3b) (June/July.2017|10 Scheme)
- 21. Minimize the following DFA using table filling Algorithm. (10-Marks) (3c) (June/July.2017|10 Scheme)

- 22. Define context free grammar. Write a CFG for palindromes over {0, 1}*. (5-Marks) (4a) (June/July.2017|10 Scheme)
- 23. If L and M are regular languages prove that L∩M is also regular. (5- Marks) (3a) (Dec.2016/Jan.2017|10 Scheme)
- 24. Prove that the following language is not regular

 $L = \{0^n | \text{n is prime}\}\ (5\text{-Marks})\ (3b)\ (Dec.2016/Jan.2017|10\ Scheme)$

25. Minimize the following DFA (10-Marks) (3c) (Dec.2016/Jan.2017|10 Scheme)

26. Is the following grammar ambiguous?

 $S \rightarrow aS|X$

 $X \rightarrow aX|a$ (6-Marks) (4c) (Dec.2018/Jan.2019|10 Scheme)

27. Consider the grammar

$$E \rightarrow +EE \mid *EE \mid -EE \mid x \mid y$$

Find leftmost and rightmost derivation for the string +* — xyxy and write parse tree. (8-Marks) (4b) (Dec.2016/Jan.2017|10 Scheme)

- 28. Write the application of CFG (6-Marks) (4c) (Dec.2016/Jan.2017|10 Scheme)
- 29. State and prove pumping lemma for regular languages. (7-Marks) (3a) (June/July.2016|10 Scheme)
- 30. Show that the language $L = \{a^n b^n | n > 0\}$ is not regular. (6-Marks) (3b) (June/July.2016|10 Scheme)
- 31. Minimize the following DFA using table filling algorithm. (7-Marks) (3c) (June/July.2016|10 Scheme)

Jan 1 1 1 1	0
0	1
q_2	q_3
q ₃	q 5
q ₄	q_3
q ₃	q 5
q_2	q_5
	q ₂ q ₃ q ₄

- 32. Define CFG. Design CFG's for the following languages:
 - i. $L = \{a^n b^{2n} | n > = 0\}$
 - ii. L= $\{\infty \infty^R / \infty \in \{a, b\}^*\}$ (8-Marks) (4a) (June/July.2016|10 Scheme)
- 33. Write the LMD, RMD and parse tree for the string '+*-xyxy' using the grammar

$$E \rightarrow +EE \mid *EE \mid -EE \mid x \mid y \text{ (6-Marks) (4b) (June/July.2016} \mid 10 \text{ Scheme)}$$

34. What is an ambiguous grammar? Show that the following grammar is ambiguous:

$$E \rightarrow E+E \mid E*E \mid (E) \mid id (6-Marks) (4c) (June/July.2016|10 Scheme)$$