
Make Tasks RCU Less Lazy and
Intrusive

TL;DR: There is not yet a good way of doing this

Paul E. McKenney, but with help from LKML
February 28, 2024

Updated March 20, 2024 based on Mark Rutland’s investigation

The likely advent of lazy preemption (LWN coverage here and here) will mean that even kernels
built with CONFIG_PREEMPT_NONE and CONFIG_PREEMPT_VOLUNTARY can sometimes
be preempted. This will in turn prevent vanilla RCU from being substituted for Tasks RCU on
such kernels, a turn of events that this patch series partially anticipates.

Avoid Tasks-RCU-Specific Annotations
However, it is still proving necessary to add annotations to long-running code, as evidenced by
this patch for networking NAPI. The key point is that all current users (as of v6.7) of Tasks RCU
are waiting not specifically on all tasks to be voluntarily blocked, but rather for a newly removed
trampoline to no longer be in use. Perhaps a more targeted implementation of Tasks RCU
could avoid all of these annotations, which was the subject of this email thread and which is
summarized by the following sections.

Permanent Trampolines
If the jump-to address could be computed and placed into a known register inline, then a
permanent trampoline could disable preemption (or similar) and then transfer to the
non-permanent trampoline. The non-permanent trampoline would need to arrange for
the code to which it transferred control to come back to the permanent trampoline, which could
then enable preemption.

Although this might be simple in concept, it would be quite surprising if it should prove to be
feasible, especially on architectures in which trampolines are used as a spectre mitigation.

Enlist the Aid of cond_resched() and might_resched()
Although cond_resched() is a preemption point that calls preempt_schedule_common(), as
noted above, all that the current update-side uses of Tasks RCU are doing is to wait for
execution to transfer out of any previously removed trampolines. It would therefore be
completely legitimate for Tasks RCU to treat cond_resched(), might_sleep(), and friends
as quiescent states.

https://lore.kernel.org/all/Zfl6y-NLuwbmyyL8@FVFF77S0Q05N/
https://lwn.net/Articles/944686/
https://lwn.net/Articles/945422/
https://lore.kernel.org/all/8c938bd5-6d62-4eff-9289-13b0d7ae8e17@paulmck-laptop/
https://lore.kernel.org/all/Zd4DXTyCf17lcTfq@debian.debian/
https://lore.kernel.org/all/2b735ba4-8081-4ddb-9397-4fe83143d97f@paulmck-laptop/
https://lore.kernel.org/all/Zfl6y-NLuwbmyyL8@FVFF77S0Q05N/

This is straightforward, except that:

1.​ This would mean that cond_resched() would no longer be a no-op in kernels built
with CONFIG_PREEMPT=y.

2.​ This would go counter to the desire to remove cond_resched() completely.
3.​ This would go counter to the desire for might_sleep() to become purely diagnostic.

On the other hand, if there is some other need for cond_resched() to remain, this could be
an attractive option.

Check for Preemption Within a Trampoline
Given a precise and completely reliable way to determine whether the current preemption
occurred within a trampoline, such tasks could simply be marked so that the Tasks RCU
grace-period kthread could wait for them to resume. This same determination is required within
IPI handlers due to the fact that Tasks RCU must wait for currently running tasks as well as
preempted tasks to be free of the old trampoline.

This preferably identifies exactly which trampoline the task was preempted or IPIed within in
order to avoid starvation due to an unlucky task always being preempted within a trampoline.

However, this likely adds some sort of data-structure lookup to the scheduler and entry/exit
fastpaths.

The need for precision and reliability can be relaxed somewhat. It is OK for false positives that
occasionally incorrectly report that the current preemption was from a trampoline. On the other
hand, false negatives are completely and utterly fatal.

Mark Rutland investigated this and noted that some trampolines invoke functions, which further
complicates the task of determining when there is a trampoline that a given task depends upon.

Make Tasks RCU Check for Trampoline Preemption
If enough information is associated with each preempted task to enable the RCU Tasks
grace-period kthread to determine whether or not that task was preempted within a trampoline,
then there is no need for any fastpath lookup of a data structure referencing all trampolines. For
example, perhaps this information can be extracted from the registers. There is still a need to
make this determination for a running task from an IPI handler.

Again, this preferably identifies exactly which trampoline the task was preempted or IPIed within
in order to avoid starvation due to an unlucky task always being preempted within a trampoline.

https://lore.kernel.org/all/Zfl6y-NLuwbmyyL8@FVFF77S0Q05N/

This might be practical, but perhaps only on some architectures. Even on architectures where
this is practical, it likely requires addition of architecture-specific code.

Drive-By Fixes
There are some use cases that assume that kernels built with CONFIG_PREEMPTION=y need
not use Tasks RCU, which in the short term could be adjusted to instead check
CONFIG_TASKS_RCU:

●​ __bpf_tramp_image_release() in kernel/bpf/trampoline.c, which invokes
call_rcu_tasks() in preemptible kernels and percpu_ref_kill() otherwise.
Patch sent.

●​ ftrace_shutdown() in kernel/trace/ftrace.c, which conditionally invokes
synchronize_rcu_tasks(). Patch sent.

Other adjustments are likely in order once CONFIG_PREEMPT_AUTO=y becomes unconditional.
Things to check:

1.​ Use of the following Kconfig options, whether in source code or in either Kconfig
files or Makefiles:

a.​ PREEMPT
b.​ PREEMPT_NONE
c.​ PREEMPT_VOLUNTARY
d.​ PREEMPTION
e.​ PREEMPT_RT

2.​ Architecture-specific code for any architectures that might still not support preemption.

The kernel/rcu/srcutiny.c file is an example of an indirect Kconfig dependency on
PREEMPTION=n, which results in PREEMPT_RCU=n, which if SMP=n in turn results in
TINY_RCU=y and TINY_SRCU=y. This last causes the make variable CONFIG_TINY_SRCU to
have the value “y”, which in turn causes kernel/rcu/srcutiny.c to be included in the
kernel build. This file assumed that preemption was completely disabled, and so lazy
preemption requires explicit preempt_disable() and preempt_enable() calls to be
added to this file.

https://lore.kernel.org/all/847ac98b-886d-4f91-b961-2bb452555af0@paulmck-laptop/
https://lore.kernel.org/all/f6507b10-5bb5-4407-bd4d-c547193a5a28@paulmck-laptop/

	Make Tasks RCU Less Lazy and Intrusive
	Avoid Tasks-RCU-Specific Annotations
	Permanent Trampolines
	Enlist the Aid of cond_resched() and might_resched()
	Check for Preemption Within a Trampoline
	Make Tasks RCU Check for Trampoline Preemption

	Drive-By Fixes

