

CrossChainBridge
Smart Contract Security Analysis

Published on : Jan 28, 2022​

Version v1.0

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved

Smart Contract Audit Certificate

CrossChainBridge

Security Report Published by HAECHI AUDIT

v1.0 Jan 28, 2022​

Auditor : Felix Kim

Executive Summary

Severity of Issues Findings Resolved Unresolved Acknowledged Comment

 Critical 1 - - - -

 Major - - - - -

 Minor 2 - - - -

 Tips - - - - -

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
1

TABLE OF CONTENTS

3 Issues (1 Critical, 0 Major, 2 Minor) Found

TABLE OF CONTENTS

ABOUT US

INTRODUCTION

SUMMARY

OVERVIEW

FINDINGS
Front running attack is possible using the CrossChainBridgeERC20V1#releaseNative() function.​
(Found - v1.0).
It is advised to define the wrappedNative() function of the router as a view function.

The parameter of the LiquidityRemoved event that occurs in the
CrossChainBridgeERC20LiquidityManagerV1#_withdrawLiquidityERC20() function may fail to return a
normal value.

DISCLAIMER

Appendix A. Test Results

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
2

ABOUT US

HAECHI AUDIT believes in the power of cryptocurrency and the next paradigm it will bring.

We have the vision to empower the next generation of finance. By providing security and trust in

the blockchain industry, we dream of a world where everyone has easy access to blockchain

technology.

HAECHI AUDIT is a flagship service of HAECHI LABS, the leader of the global blockchain

industry. HAECHI AUDIT provides specialized and professional smart contract security

auditing and development services.

We are a team of experts with years of experience in the blockchain field and have been

trusted by 300+ project groups. Our notable partners include Universe,1inch, Klaytn,

Badger, etc.

HAECHI AUDIT is the only blockchain technology company selected for the Samsung

Electronics Startup Incubation Program in recognition of our expertise. We have also

received technology grants from the Ethereum Foundation and Ethereum Community

Fund.

Inquiries : audit@haechi.io ​

Website : audit.haechi.io

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
3

mailto:audit@haechi.io

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
4

INTRODUCTION

This report was prepared to audit the security of the smart contract created by

CrossChainBridge team. HAECHI AUDIT conducted the audit focusing on whether the

smart contract created by CrossChainBridge team is soundly implemented and

designed as specified in the published materials, in addition to the safety and security

of the smart contract.

 Critical issues must be resolved as critical flaws that can harm a wide

range of users.

 Major issues require correction because they either have security

problems or are implemented not as intended.

 Minor issues can potentially cause problems and therefore require

correction.

 Tips issues can improve the code usability or efficiency when

corrected.

HAECHI AUDIT recommends that CrossChainBridge team improve all issues discovered. The

following issue explanation uses the format of {file name}#{line number}, {contract

name}#{function/variable name} to specify the code. For instance, Sample.sol:20 points to the

20th line of Sample.sol file, and Sample#fallback() means the fallback() function of the Sample

contract.

Please refer to the Appendix to check all results of the tests conducted for this report.

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
5

SUMMARY

The codes used in this Audit can be found at GitHub

(https://github.com/HAECHI-LABS/CrosschainBridge-audit/tree/de43c5b8e2c8fbf469

0f04a50b44fe02d73b8d6d). The last commit of the code used for this Audit is

“de43c5b8e2c8fbf4690f04a50b44fe02d73b8d6d”.

Issues HAECHI AUDIT found 1 critical issue, 0 major issues, and 2 minor

issues. There are 0 Tips issue explained that would improve the

code’s usability or efficiency upon modification

Severity Issue Status

 Front running attack is possible using the

CrossChainBridgeERC20V1#releaseNative()

function.

(Found - v1.0)

 It is advised to define the wrappedNative()

function of the router as a view function.

(Found - v1.0)

 The parameter of the LiquidityRemoved

event that occurs in the

CrossChainBridgeERC20LiquidityManagerV1

#_withdrawLiquidityERC20() function may

fail to return a normal value.

(Found - v1.0)

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
6

https://github.com/HAECHI-LABS/CrosschainBridge-audit/tree/de43c5b8e2c8fbf4690f04a50b44fe02d73b8d6d
https://github.com/HAECHI-LABS/CrosschainBridge-audit/tree/de43c5b8e2c8fbf4690f04a50b44fe02d73b8d6d

OVERVIEW

Contracts subject to audit

❖​ BridgeChefV1

❖​ BuyBackAndBurn

❖​ CrossChainBridgeERC20LiqudityManagerV1

❖​ CrossChainBridgeERC20V1

❖​ CrossChainBridgeERC721V!

❖​ LiquidityMiningPoolsV1

❖​ MultiSignatureOracleV1

❖​ RewardPoolsV1

❖​ RouterBSCPancakeV1

❖​ RouterETHUniswapV1

❖​ RouterPOLYSushiV1

❖​ Bridge

❖​ MintableERC20

❖​ MintableERC721

❖​ PoolsInterestBearingToken

❖​ MyPausable

❖​ MyPausableUpgradeable

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
7

FINDINGS

Front running attack is possible using the CrossChainBridgeERC20V1#releaseNative()

function. (Found - v.1.0)

 /**

 * @notice Releases native tokens in this network that were deposited in another

network

 * (effectively completing a bridge transaction)

 *

 * @param sigV Array of recovery Ids for the signature

 * @param sigR Array of R values of the signatures

 * @param sigS Array of S values of the signatures

 * @param receiverAddress The account to receive the tokens

 * @param sourceNetworkTokenAddress the address of the ERC20 contract in the network

the deposit was made

 * @param amount The amount of tokens to be released

 * @param depositChainId chain ID of the network in which the deposit was made

 * @param depositNumber The identifier of the corresponding deposit

 * @dev emits event TokensReleased after successful release

 */

 function releaseNative(

 uint8[] memory sigV,

 bytes32[] memory sigR,

 bytes32[] memory sigS,

 address receiverAddress,

 address sourceNetworkTokenAddress,

 uint256 amount,

 uint256 depositChainId,

 uint256 depositNumber

) external nonReentrant {

 // release wrapped native (ERC20) tokens from bridge without transferring them

 // tokens will be swapped from ERC20 to native token in the following steps

 uint256 releaseAmountAfterFees = _releaseERC20(

 sigV,

 sigR,

 sigS,

 receiverAddress,

 sourceNetworkTokenAddress,

 amount,

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
8

 depositChainId,

 depositNumber,

 true

);

 // check native token balance before ERC20-to-native swap

 uint256 contractBalance = address(this).balance;

 // swap wrapped native ERC20 token back to native token

 wrappedNative.withdraw(releaseAmountAfterFees);

 // check if native token balance has increased by release amount

 require(

 address(this).balance == contractBalance + releaseAmountAfterFees,

 'CrossChainBridgeERC20: error while unwrapping native tokens'

);

 // send native token back to user

 payable(_msgSender()).transfer(releaseAmountAfterFees);

 }

[https://github.com/HAECHI-LABS/CrosschainBridge-audit/blob/de43c5b8e2c8fbf4690f04a50b44fe02d73b8d6d/contrac

ts/CrossChainBridgeERC20V1.sol#L241-L293]

Issue

The CrossChainBridgeERC20V1#releaseNative() deposits the native token of network A

in the network and then withdraws the native token in network B via the signature of

multi oracle. However, the multi oracle signature contains the receiver address, it sends

the native token of the current network to msg.sender when the signature is verified.

Thus, when a user who actually intends to move a native token between networks

through the bridge sends the CrossChainBridgeERC20V1#releaseNative() function to

txPool, another user can perform a front running attack by initiating the transaction first

to obtain the native token.

​

Recommendation

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
9

We recommend changing the logic to send the native token of the current network to

the receiver address included in the signature if the signature verification from multi

oracle is completed.

It is advised to define the wrappedNative() function of the router as a view function.

(Found - v.1.0)

 /**

 * @notice Returns the address of the wrapped native token that is used by the dex

 */

 function wrappedNative() external override returns (address) {

 return pancakeRouter.WETH();

 }

[https://github.com/HAECHI-LABS/CrosschainBridge-audit/blob/de43c5b8e2c8fbf4690f04a50b44fe02d73b8d6d/contrac

ts/router/RouterBSCPancakeV1.sol#L78-L83]​

 /**

 * @notice Returns the address of the wrapped native token that is used by the dex

router

 */

 function wrappedNative() external override returns (address) {

 return uniswapRouter.WETH();

 }

[https://github.com/HAECHI-LABS/CrosschainBridge-audit/blob/de43c5b8e2c8fbf4690f04a50b44fe02d73b8d6d/contrac

ts/router/RouterETHUniswapV1.sol#L78-L83]

 /**

 * @notice Returns the address of the wrapped native token that is used by the dex

 */

 function wrappedNative() external override returns (address) {

 return sushiSwapRouter.WETH();

 }

[https://github.com/HAECHI-LABS/CrosschainBridge-audit/blob/de43c5b8e2c8fbf4690f04a50b44fe02d73b8d6d/contrac

ts/router/RouterPOLYSushiV1.sol#L78-L83]

Issue

The RouterBSCPancakeV1#wrappedNatvie(), RouterETHUniswapV1#wrappedNatvie(),

and RouterPOLYSushiV1#wrappedNatvie() functions are external functions that return

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
10

the address of the wrapped native token in each network. However, because they are

not declared as a view function, the return value cannot be obtained.

​

Recommendation

We advise adding a statement to request a claim to the connected pool even when the

DCBVault#withdraw() function is called.

The parameter of the LiquidityRemoved event that occurs in the

CrossChainBridgeERC20LiquidityManagerV1#_withdrawLiquidityERC20() function may

fail to return a normal value.

(Found - v.1.0)

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
11

 /**

 * @notice Removes ERC20 liquidity from a pool

 * Private interface to this function which allows internal calls from

reentrancy guard protected functions

 *

 * @param token the token for which liquidity should be removed from this pool

 * @param amount the amount of liquidity to be removed

 * @dev emits event LiquidityRemoved

 */

 function _withdrawLiquidityERC20(IERC20 token, uint256 amount)

 private

 whenNotPaused

 returns (uint256 withdrawalAmount)

 {

 require(amount > 0, 'LiquidityManager: amount cannot be 0');

 // check if liquidity is sufficient for withdrawal

 require(token.balanceOf(address(bridgeERC20)) >= amount, 'LiquidityManager: not

enough liquidity in bridge');

 // determine the fee rate to be used for this transaction (usually default liquidity

withdrawal fee)

 uint256 liquidityWithdrawalFee = defaultLiquidityWithdrawalFee;

 // if a specific fee rate is stored for this particular release token then we use

this rate instead

 if (liquidityWithdrawalFees[address(token)] > 0) {

 liquidityWithdrawalFee = liquidityWithdrawalFees[address(token)];

 }

 // calculate the fee amounts (dividing by 1.000.000 since the fee rate is provided as

parts per million [ppm])

 // calculate the total fee amount for this transaction

 uint256 withdrawalFeeAmount = (amount * liquidityWithdrawalFee) / 1000000;

 // calculate the remaining amount that will be released to the user

 withdrawalAmount = amount - withdrawalFeeAmount;

 // transfer developer account fee, if applicable

 if (devAddr != address(0) && withdrawalFeeAmount > 0) {

 token.safeTransferFrom(address(bridgeERC20), devAddr, withdrawalFeeAmount);

 }

[https://github.com/HAECHI-LABS/CrosschainBridge-audit/blob/de43c5b8e2c8fbf4690f04a50b44fe02d73b8d6d/contrac

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
12

ts/router/RouterPOLYSushiV1.sol#L78-L83]

Issue

The CrossChainBridgeERC20LiquidityManagerV1#_withdrawLiquidityERC20() function is

called from the functions

CrossChainBridgeERC20LiquidityManagerV1#withdrawLiquidityNative() and

CrossChainBridgeERC20LiquidityManagerV1#withdrawLiquidityERC20(), and is also a

function that withdraws some of the deposited tokens. In the case of a deposit, liquidity

is added as much as the amount of the deposited token, and the amount parameter of

the LiquidityRemoved event is also entered as the amount of the deposited token.

However, for withdrawal, the amount excluding the fee from the withdrawal amount

enters the parameter of the LiquidityRemoved event even though liquidity is removed by

the amount of tokens to be withdrawn

​

Recommendation

We recommend modifying the event to occur with the amount including withdrawalFee

in the amount parameter of the LiquidityRemoved event.

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
13

DISCLAIMER

This report does not guarantee investment advice, the suitability of the business

models, and codes that are secure without bugs. This report shall only be used to

discuss known technical issues. Other than the issues described in this report,

undiscovered issues may exist such as defects on Klaytn. In order to write secure smart

contracts, correction of discovered problems and sufficient testing thereof are

required.

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
14

Appendix A. Test Results

The following results show the unit test results covering the key logic of the smart

contract subject to the security audit. Parts marked in red are test cases that failed to

pass the test due to existing issues.

 BridgeChefV1

 #initialize()

 ✓ should fail if dev address is ZERO ADDRESS

 ✓ should fail if staking address is ZERO ADDRESS

 after initialization

 #add()

 ✓ should fail if contract is paused

 ✓ should fail if msg.sender does not have FARM_ADMIN_ROLE

 ✓ should fail if lpToken address is ZERO ADDRESS

 ✓ should fail lpToken is already used in farm

 valid case

 ✓ lpToken marked as used

 ✓ farm information update

 ✓ should emit FarmAdded event

 #updateFarmMultiplier()

 ✓ should fail if msg.sender does not have FARM_ADMIN_ROLE

 ✓ should fail if try to update non-existent farm

 valid case

 ✓ farm information update

 ✓ should emit FarmMultiplierChanged event

 #deposit()

 ✓ should fail if contract paused

 ✓ should fail if farmId >= farmInfo.length

 ✓ should fail if deposit amount is 0

 ✓ should fail if msg.sender does not approve contract

 valid case

 ✓ lpToken move to chef contract

 ✓ user deposit information update

 ✓ should emit DepositAdded event

 #harvest()

 ✓ should fail if contract is paused

 ✓ should fail if invalid farm Id

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
15

 ✓ should fail if invalid amount

 valid case

 ✓ user earn bridge token

 ✓ should emit RewardsHarvested event

 #withdraw()

 valid case

 ✓ user get deposited lpToken

 ✓ user earn bridge token

 ✓ should emit RewardsHarvested event

 ✓ should emit FundsWithdrawn event

 setter function

 ✓ should fail if msg.sender does not have appropriate role (62ms)

 ✓ should fail if sanity check fail (41ms)

 valid case

 ✓ parameter change properly

 CrossChainBridgeERC20LiquidityManagerV1

 #depositERC20()

 ✓ should fail if amount is zero

 ✓ should fail if invalid token address

 ✓ should fail if try to deposit more than user balance

 ✓ should fail if user does not approve buyback contract

 ✓ should fail if paused

 valid case

 ✓ update collected information

 ✓ should emit TokensAdded event

 #depositNativeToken()

 ✓ should fail if amount is zero

 ✓ should fail if msg.value does not match the amount

 ✓ should fail if paused

 valid case

 ✓ receive function acts like depositNattiveToken

 ✓ update collected information

 ✓ should emit TokensAdded event

 #buybackAndBurnNative()

 ✓ should fail if collected is zero (11278ms)

 ✓ should fail if paused

 valid case

 ✓ token burned

 ✓ collected information clear

 ✓ should emit BoughtBackAndBurned

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
16

 #buybackAndBurnERC20()

 ✓ should fail if collected is zero (3079ms)

 ✓ should fail if paused

 valid case

 ✓ token burned

 ✓ collected information clear

 ✓ should emit BoughtBackAndBurned

 setter function

 ✓ should fail if msg.sender does not have appropriate role (94ms)

 ✓ should fail if sanity check fail (64ms)

 valid case

 ✓ parameter change properly

 CrossChainBridgeERC20LiquidityManagerV1

 #addLiquidityNative()

 ✓ should fail if msg.value does not match the amount

 ✓ should fail if paused (1421ms)

 valid case

 ✓ deposit user get lpToken of wrappedNative

 ✓ should emit LiquidityAdded event

 ✓ should emit LiquidityPoolCreated event if bridgeERC20's lpToken does not exist

 #addLiquidityERC20()

 ✓ should fail if deposit user does not approve manager contract

 ✓ should fail if deposit user does not have enough token to deposit

 valid case

 ✓ deposit user get lpToken of wrappedNative

 ✓ should emit LiquidityAdded event

 ✓ should emit LiquidityPoolCreated event if bridgeERC20's lpToken does not exist

 #withdrawLiquidityNative()

 ✓ should fail if not enough liquidity

 ✓ should fail if deposit user does not approve lpToken to manager contract

 ✓ should fail if user try to withdraw more than deposit amount

 valid case

 ✓ user get native token (636ms)

 ✓ if dev address set, withdrawal fee transfer to dev address

 1) should emit LiquidityRemoved event

 #withdrawLiquidityERC20()

 ✓ should fail if not enough liquidity

 ✓ should fail if deposit user does not approve lpToken to manager contract

 ✓ should fail if user try to withdraw more than deposit amount

 valid case

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
17

 ✓ user get deposited token

 ✓ user lpToken burned

 ✓ if dev address set, withdrawal fee transfer to dev address

 2) should emit LiquidityRemoved event

 setter function

 ✓ should fail if msg.sender does not have appropriate role (94ms)

 ✓ should fail if sanity check fail (64ms)

 valid case

 ✓ parameter change properly

 CrossChainBridgeERC20V1

 #depositNative()

 ✓ should fail if msg.value does not match the amount

 ✓ should fail if paused (875ms)

 valid case

 ✓ should emit TokensDeposited event

 #depositERC20()

 ✓ should fail if deposit user does not approve manager contract

 ✓ should fail if deposit user does not have enough token to deposit

 valid case

 ✓ should emit TokensDeposited event

 #releaseNative()

 ✓ should fail if released was already processed

 ✓ should fail if invalid parameter given

 ✓ should fail if invalid signature

 valid case

 3) user get another network native coin

 ✓ fee transfer to buyBackAndBurn/liuqidityMiningPools/rewardPools (if fee set) (5343ms)

 #releaseERC20()

 ✓ should fail if released was already processed

 ✓ should fail if invalid parameter given

 ✓ should fail if invalid signature

 valid case

 ✓ user get another network token

 ✓ fee transfer to buyBackAndBurn/liuqidityMiningPools/rewardPools (if fee set)

 setter function

 ✓ should fail if msg.sender does not have appropriate role (94ms)

 ✓ should fail if sanity check fail (64ms)

 valid case

 ✓ parameter change properly

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
18

 CrossChainBridgeERC20LiquidityManagerV1

 #deposit()

 ✓ should fail collection address does not registered in official (only when target nft does

not minted from bridge)

 ✓ should fail if msg.sender is not the owner of nft

 ✓ should fail if msg.sender does not approve bridgeERC721 contract (38ms)

 valid case

 ✓ should emit TokenDeposited event

 #release()

 valid case

 ✓ nft move to receiver address

 ✓ releasedDeposites information marked

 ✓ should emit TokenReleased event

 setter function

 ✓ should fail if msg.sender does not have appropriate role (94ms)

 ✓ should fail if sanity check fail (64ms)

 valid case

 ✓ parameter change properly

 LiquidityMiningPoolsV1

 LiquidityMiningPoolsV1 scenario test

 ✓ create LiquidityMiningPool by CrossChainBridgeERC20V1

 ✓ after creating pools, user staking (52ms)

 ✓ by staking, user earn rewardToken (222ms)

 ✓ user exit from pool (248ms)

 ✓ user transfer PoolsInterestBearingToken

 RewardsPoolsV1

 RewardsPoolsV1 scenario test

 ✓ create RewardsPools by CrossChainBridgeERC20V1

 ✓ after creating pools, user staking

 ✓ by staking, user earn rewardToken (202ms)

 ✓ user exit from pool (224ms)

 ✓ user transfer PoolsInterestBearingToken

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
19

End of Document

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
20

	TABLE OF CONTENTS
	ABOUT US
	
	INTRODUCTION
	SUMMARY
	
	OVERVIEW
	
	FINDINGS
	Front running attack is possible using the CrossChainBridgeERC20V1#releaseNative() function. (Found - v.1.0)
	Issue

	It is advised to define the wrappedNative() function of the router as a view function.
	 /**
	 * @notice Returns the address of the wrapped native token that is used by the dex
	 */
	 function wrappedNative() external override returns (address) {
	 return pancakeRouter.WETH();
	 }
	
	Issue
	​Recommendation

	The parameter of the LiquidityRemoved event that occurs in the CrossChainBridgeERC20LiquidityManagerV1#_withdrawLiquidityERC20() function may fail to return a normal value.
	 /**
	 * @notice Removes ERC20 liquidity from a pool
	 * Private interface to this function which allows internal calls from reentrancy guard protected functions
	 *
	 * @param token the token for which liquidity should be removed from this pool
	 * @param amount the amount of liquidity to be removed
	 * @dev emits event LiquidityRemoved
	 */
	 function _withdrawLiquidityERC20(IERC20 token, uint256 amount)
	 private
	 whenNotPaused
	 returns (uint256 withdrawalAmount)
	 {
	 require(amount > 0, 'LiquidityManager: amount cannot be 0');
	
	 // check if liquidity is sufficient for withdrawal
	 require(token.balanceOf(address(bridgeERC20)) >= amount, 'LiquidityManager: not enough liquidity in bridge');
	
	 // determine the fee rate to be used for this transaction (usually default liquidity withdrawal fee)
	 uint256 liquidityWithdrawalFee = defaultLiquidityWithdrawalFee;
	 // if a specific fee rate is stored for this particular release token then we use this rate instead
	 if (liquidityWithdrawalFees[address(token)] > 0) {
	 liquidityWithdrawalFee = liquidityWithdrawalFees[address(token)];
	 }
	
	 // calculate the fee amounts (dividing by 1.000.000 since the fee rate is provided as parts per million [ppm])
	 // calculate the total fee amount for this transaction
	 uint256 withdrawalFeeAmount = (amount * liquidityWithdrawalFee) / 1000000;
	 // calculate the remaining amount that will be released to the user
	 withdrawalAmount = amount - withdrawalFeeAmount;
	
	 // transfer developer account fee, if applicable
	 if (devAddr != address(0) && withdrawalFeeAmount > 0) {
	 token.safeTransferFrom(address(bridgeERC20), devAddr, withdrawalFeeAmount);
	 }
	Issue
	​Recommendation

	DISCLAIMER
	Appendix A. Test Results
	

