HAECHI AUDIT

CrossChainBridge

Smart Contract Security Analysis
Published on : Jan 28, 2022

Version v1.0

HAECHI AUDIT

Smart Contract Audit Certificate

CrossChainBridge

Security Report Published by HAECH| AUDIT
v1.0 Jan 28, 2022

Auditor : Felix Kim

Executive Summary

Severity of Issues Findings Resolved Unresolved Acknowledged Comment
Critical 1 - - - -
Major - - - - -
Minor 2 - - - -

Tips - - - - -

TABLE OF CONTENTS

3 Issues (1 Critical, 0 Major, 2 Minor) Found

TABLE OF CONTENTS

ABOUT US

NTRODUCTION
SUMMARY
OVERVIEW

FINDINGS

Front runnin ki ibl ing the Cr hainBri ERC20V 1#trel Native() function.
(Found - v1.0).

normal value.

DISCLAIMER

Appendix A, Test Results

ABOUT US

HAECHI AUDIT believes in the power of cryptocurrency and the next paradigm it will bring.

We have the vision to empower the next generation of finance. By providing security and trust in

the blockchain industry, we dream of a world where everyone has easy access to blockchain

technology.

HAECHI AUDIT is a flagship service of HAECHI LABS, the leader of the global blockchain
industry. HAECHI AUDIT provides specialized and professional smart contract security

auditing and development services.

We are a team of experts with years of experience in the blockchain field and have been
trusted by 300+ project groups. Our notable partners include Universe, Tinch, Klaytn,

Badger, etc.

HAECHI AUDIT is the only blockchain technology company selected for the Samsung
Electronics Startup Incubation Program in recognition of our expertise. We have also
received technology grants from the Ethereum Foundation and Ethereum Community

Fund.

Inquiries : audit@haechi.io

Website : audjt.haechi.io

mailto:audit@haechi.io

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
4

INTRODUCTION

This report was prepared to audit the security of the smart contract created by
CrossChainBridge team. HAECHI AUDIT conducted the audit focusing on whether the
smart contract created by CrossChainBridge team is soundly implemented and
designed as specified in the published materials, in addition to the safety and security

of the smart contract.

(CRITICAL Critical issues must be resolved as critical flaws that can harm a wide

range of users.

MAJOR Major issues require correction because they either have security

problems or are implemented not as intended.

O MINOR Minor issues can potentially cause problems and therefore require
correction.
TIPS Tips issues can improve the code usability or efficiency when
corrected.

HAECHI AUDIT recommends that CrossChainBridge team improve all issues discovered. The
following issue explanation uses the format of {file name}#{line number}, {contract

name}#{function/variable name} to specify the code. For instance, Sample.sol:20 points to the
20th line of Sample.sol file, and Sample#fallback() means the fallback() function of the Sample

contract.

Please refer to the Appendix to check all results of the tests conducted for this report.

SUMMARY

The codes used in this Audit can be found at GitHub
(https://qithub.com/HAECHI-LABS/CrosschainBridge-audit/tree/de43c5b8e2c8fbf469

0f04a50b44fe02d73b8d6d). The last commit of the code used for this Audit is

“ ”

Issues HAECHI AUDIT found 1 critical issue, O major issues, and 2 minor
issues. There are O Tips issue explained that would improve the

code’s usability or efficiency upon modification

Severity Issue Status
OCRITICAL Front running attack is possible using the (Found - v1.0)
CrossChainBridgeERC20V 1#releaseNative()
function.
O MINOR It is advised to define the wrappedNative() (Found - v1.0)

function of the router as a view function.

O MINOR The parameter of the LiquidityRemoved (Found -v1.0)
event that occurs in the
CrossChainBridgeERC20LiquidityManagerV1
#_withdrawLiquidityERC20() function may
fail to return a normal value.

https://github.com/HAECHI-LABS/CrosschainBridge-audit/tree/de43c5b8e2c8fbf4690f04a50b44fe02d73b8d6d
https://github.com/HAECHI-LABS/CrosschainBridge-audit/tree/de43c5b8e2c8fbf4690f04a50b44fe02d73b8d6d

OVERVIEW

Contracts subject to audit

BridgeChefV1
BuyBackAndBurn
CrossChainBridgeERC20LiqudityManagerV1
CrossChainBridgeERC20V1
CrossChainBridgeERC721V!
LiquidityMiningPoolsV'1
MultiSignatureQOracleV1
RewardPoolsV1
RouterBSCPancakeV'1
RouterETHUNiswapV'1
RouterPOLYSushiV1

Bridge

MintableERC20
MintableERC721
PoolsinterestBearingToken

X3

S

0
L 4

X3

%

0
L 4

X3

S

R/
L 4

X3

A5

R/
o

X3

%

Y7
°

X3

A5

7
°

X3

%

R/
°

X3

A5

R/
°

MyPausable

7
L X4

MyPausableUpgradeable

FINDINGS

(O CRITICAL
Front running attack is possible using the CrossChainBridgeERC20V 1#releaseNative()

function. (Found - v.1.0)
Ak
* @notice Releases native tokens in this network that were deposited in another
network

* (effectively completing a bridge transaction)

*
* @param sigV Array of recovery Ids for the signature
* @param sigR Array of R values of the signatures
* @param sigS Array of S values of the signatures
* @param receiverAddress The account to receive the tokens
* aparam sourceNetworkTokenAddress the address of the ERC20 contract in the network
the deposit was made
* @param amount The amount of tokens to be released
* @param depositChainId chain ID of the network in which the deposit was made
* aparam depositNumber The identifier of the corresponding deposit
* adev emits event TokensReleased after successful release
*/
function releaseNative(
uint8[] memory sigv,
bytes32[] memory sigR,
bytes32[] memory sigsS,
address receiverAddress,
address sourceNetworkTokenAddress,
uint256 amount,
uint256 depositChainId,
uint256 depositNumber
) external nonReentrant {
// release wrapped native (ERC20) tokens from bridge without transferring them
// tokens will be swapped from ERC20 to native token in the following steps
uint256 releaseAmountAfterFees = releaseERC20(
sigV,
sigR,
sigs,
receiverAddress,
sourceNetworkTokenAddress,

amount,

depositChainld,
depositNumber,

true

Ik

uint256 contractBalance = address(this).balance;

wrappedNative.withdraw(releaseAmountAfterFees);

require(
address(this).balance = contractBalance + releaseAmountAfterFees,
'CrossChainBridgeERC20: error while unwrapping native tokens'

)

payable(_msgSender()).transfer(releaseAmountAfterFees);

Issue

The CrossChainBridgeERC20V 1#releaseNative() deposits the native token of network A
in the network and then withdraws the native token in network B via the signature of
multi oracle. However, the multi oracle signature contains the receiver address, it sends

the native token of the current network to msg.sender when the signature is verified.

Thus, when a user who actually intends to move a native token between networks
through the bridge sends the CrossChainBridgeERC20V 1#releaseNative() function to
txPool, another user can perform a front running attack by initiating the transaction first

to obtain the native token.

Recommendation

We recommend changing the logic to send the native token of the current network to
the receiver address included in the signature if the signature verification from multi

oracle is completed.

O MINOR

It is advised to define the wrappedNative() function of the router as a view function.
(Found - v.1.0)
J**k
* anotice Returns the address of the wrapped native token that is used by the dex
*/
function wrappedNative() external override returns (address) {
return pancakeRouter.WETH();
}

[https://github.com/HAECHI-LABS/CrosschainBridge-audit/blob/de43c5b8e2c8fbf4690f04a50b44fe02d73b8d6d/contrac
ts/router/RouterBSCPancakeV1.sol#L78-L83]

J**k

* @notice Returns the address of the wrapped native token that is used by the dex
router

*/
function wrappedNative() external override returns (address) {

return uniswapRouter.WETH();

}

[https://github.com/HAECHI-LABS/CrosschainBridge-audit/blob/de43c5b8e2c8fbf4690f04a50b44fe02d73b8d6d/contrac
ts/router/RouterETHUnNiswapV1.sol#L78-183]

Jk*k

* @notice Returns the address of the wrapped native token that is used by the dex
*/
function wrappedNative() external override returns (address) {

return sushiSwapRouter.WETH();

}
[https://github.com/HAECHI-LABS/CrosschainBridge-audit/blob/de43c5b8e2c8fbf4690f04a50b44fe02d73b8d6d/contrac

ts/router/RouterPOLYSushiV1.sol#L78-L83]
Issue
The RouterBSCPancakeV1#wrappedNatvie(), RouterETHUniswap V' 1#wrappedNatvie(),

and RouterPOLYSushiV1#wrappedNatvie() functions are external functions that return

the address of the wrapped native token in each network. However, because they are

not declared as a view function, the return value cannot be obtained.

Recommendation
We advise adding a statement to request a claim to the connected pool even when the

DCBVault#withdraw() function is called.

O MINOR

The parameter of the LiquidityRemoved event that occurs in the
CrossChainBridgeERC20LiquidityManagerV 1#_withdrawLiquidityERC20() function may
fail to return a normal value.

(Found - v.1.0)

J**k
* @notice Removes ERC20 liquidity from a pool

* Private interface to this function which allows internal calls from
reentrancy guard protected functions

*
* @param token the token for which liquidity should be removed from this pool
* aparam amount the amount of liquidity to be removed
* adev emits event LiquidityRemoved
*/

function _withdrawlLiquidityERC20(IERC20 token, uint256 amount)

private
whenNotPaused

returns (uint256 withdrawalAmount)

require(amount > @, 'LiquidityManager: amount cannot be 0');

// check if liquidity is sufficient for withdrawal
require(token.balanceOf(address(bridgeERC2@)) > amount, 'LiquidityManager: not
enough liquidity in bridge');

// determine the fee rate to be used for this transaction (usually default liquidity
withdrawal fee)
uint256 liquidityWithdrawalFee = defaultLiquidityWithdrawalFee;
// 1f a specific fee rate is stored for this particular release token then we use
this rate instead
if (liquidityWithdrawalFees[address(token)] > 0) {
liquidityWithdrawalFee = liquidityWithdrawalFees[address(token)];

// calculate the fee amounts (dividing by 1.000.000 since the fee rate is provided as
parts per million [ppm])

// calculate the total fee amount for this transaction

uint256 withdrawalFeeAmount = (amount * liquidityWithdrawalFee) / 1000000;

// calculate the remaining amount that will be released to the user

withdrawalAmount = amount - withdrawalFeeAmount;

// transfer developer account fee, if applicable

if (devAddr != address(0) & withdrawalFeeAmount > 0) {
token.safeTransferFrom(address(bridgeERC20), devAddr, withdrawalFeeAmount);

}

[https://github.com/HAECHI-LABS/CrosschainBridge-audit/blob/de43c5b8e2c8fbf4690f04a50b44fe02d73b8d6d/contrac

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
12

Issue

The CrossChainBridgeERC20LiquidityManagerV'1#_withdrawliquidityERC20() function is
called from the functions
CrossChainBridgeERC20LiquidityManagerV'1#withdrawliquidityNative() and
CrossChainBridgeERC20LiquidityManagerV'1#withdrawlLiquidityERC20(), and is also a
function that withdraws some of the deposited tokens. In the case of a deposit, liquidity
is added as much as the amount of the deposited token, and the amount parameter of
the LiguidityRemoved event is also entered as the amount of the deposited token.
However, for withdrawal, the amount excluding the fee from the withdrawal amount
enters the parameter of the LiquidityRemoved event even though liquidity is removed by

the amount of tokens to be withdrawn

Recommendation
We recommend modifying the event to occur with the amount including withdrawalFee

in the amount parameter of the LiquidityRemoved event.

DISCLAIMER

This report does not guarantee investment advice, the suitability of the business
models, and codes that are secure without bugs. This report shall only be used to
discuss known technical issues. Other than the issues described in this report,
undiscovered issues may exist such as defects on Klaytn. In order to write secure smart
contracts, correction of discovered problems and sufficient testing thereof are
required.

Appendix A. Test Results

The following results show the unit test results covering the key logic of the smart
contract subject to the security audit. Parts marked in red are test cases that failed to

pass the test due to existing issues.

BridgeChefV1
#initialize()
v should fail if dev address is ZERO ADDRESS
v should fail if staking address is ZERO ADDRESS
after initialization
#add()
v should fail if contract is paused
v should fail if msg.sender does not have FARM_ADMIN_ROLE
v should fail if IoToken address is ZERO ADDRESS
v should fail IpToken is already used in farm
valid case
v/ IpToken marked as used
v farm information update
v should emit FarmAdded event
#updateFarmMultiplier()
v should fail if msg.sender does not have FARM_ADMIN_ROLE
v should fail if try to update non-existent farm
valid case
v farm information update
v should emit FarmMultiplierChanged event
#deposit()
v should fail if contract paused
v should fail if farmld >= farminfo.length
v should fail if deposit amount is O
v should fail if msg.sender does not approve contract
valid case
v IpToken move to chef contract
v/ user deposit information update
v should emit DepositAdded event
#harvest()
v should fail if contract is paused
v should fail if invalid farm Id

v should fail if invalid amount
valid case
v user earn bridge token
v should emit RewardsHarvested event
#withdraw()
valid case
v/ user get deposited IpToken
v/ user earn bridge token
v should emit RewardsHarvested event
v should emit FundsWithdrawn event
setter function
v should fail if msg.sender does not have appropriate role (62ms)
v should fail if sanity check fail (41ms)
valid case
v/ parameter change properly

CrossChainBridgeERC20LiquidityManagerV1
#depositERC20()
v should fail if amount is zero
v should fail if invalid token address
v should fail if try to deposit more than user balance
v should fail if user does not approve buyback contract
v should fail if paused
valid case
v update collected information
v should emit TokensAdded event
#depositNativeToken()
v should fail if amount is zero
v should fail if msg.value does not match the amount
v should fail if paused
valid case
v receive function acts like depositNattiveToken
v/ update collected information
v should emit TokensAdded event
#buybackAndBurnNative()
v should fail if collected is zero (11278ms)
v should fail if paused
valid case
v/ token burned
v collected information clear
v should emit BoughtBackAndBurned

#buybackAndBurnERC20()
v should fail if collected is zero (3079ms)
v should fail if paused
valid case
v token burned
v collected information clear
v should emit BoughtBackAndBurned
setter function
v should fail if msg.sender does not have appropriate role (94ms)
v should fail if sanity check fail (64ms)
valid case
v/ parameter change properly

CrossChainBridgeERC20LiquidityManagerV1
#addLiquidityNative()
v should fail if msg.value does not match the amount
v should fail if paused (1421ms)
valid case
v deposit user get IpToken of wrappedNative
v should emit LiquidityAdded event
v should emit LiquidityPoolCreated event if bridgeERC20's IpToken does not exist
#addLiquidityERC20()
v should fail if deposit user does not approve manager contract
v should fail if deposit user does not have enough token to deposit
valid case
v deposit user get IpToken of wrappedNative
v/ should emit LiquidityAdded event
v should emit LiquidityPoolCreated event if bridgeERC20's IpToken does not exist
#withdrawLiquidityNative()
v should fail if not enough liquidity
v should fail if deposit user does not approve IpToken to manager contract
v should fail if user try to withdraw more than deposit amount
valid case
v user get native token (636ms)
v if dev address set, withdrawal fee transfer to dev address
1) should emit LiquidityRemoved event
#withdrawLiquidityERC20()
v should fail if not enough liquidity
v should fail if deposit user does not approve IpToken to manager contract
v/ should fail if user try to withdraw more than deposit amount
valid case

v user get deposited token
v user IpToken burned
v if dev address set, withdrawal fee transfer to dev address
2) should emit LiquidityRemoved event
setter function
v should fail if msg.sender does not have appropriate role (94ms)
v should fail if sanity check fail (64ms)
valid case
v/ parameter change properly

CrossChainBridgeERC20V1
#depositNative()
v should fail if msg.value does not match the amount
v should fail if paused (875ms)
valid case
v should emit TokensDeposited event
#depositERC20()
v should fail if deposit user does not approve manager contract
v should fail if deposit user does not have enough token to deposit
valid case
v should emit TokensDeposited event
#releaseNative()
v should fail if released was already processed
v should fail if invalid parameter given
v should fail if invalid signature
valid case
3) user get another network native coin
v/ fee transfer to buyBackAndBurn/liugidityMiningPools/rewardPools (if fee set) (5343ms)
#releaseERC20()
v should fail if released was already processed
v should fail if invalid parameter given
v should fail if invalid signature
valid case
v/ user get another network token
v fee transfer to buyBackAndBurn/liugidityMiningPools/rewardPools (if fee set)
setter function
v should fail if msg.sender does not have appropriate role (94ms)
v should fail if sanity check fail (64ms)
valid case
v parameter change properly

CrossChainBridgeERC20LiquidityManagerV'1
#deposit()
v should fail collection address does not registered in official (only when target nft does
not minted from bridge)
v should fail if msg.sender is not the owner of nft
v should fail if msg.sender does not approve bridgeERC721 contract (38ms)
valid case
v should emit TokenDeposited event
#release()
valid case
v nft move to receiver address
v/ releasedDeposites information marked
v should emit TokenReleased event
setter function
v should fail if msg.sender does not have appropriate role (94ms)
v should fail if sanity check fail (64ms)
valid case
v parameter change properly

LiquidityMiningPoolsV1
LiquidityMiningPoolsV1 scenario test
v create LiguidityMiningPool by CrossChainBridgeERC20V 1
v/ after creating pools, user staking (52ms)
v/ by staking, user earn rewardToken (222ms)
v user exit from pool (248ms)
v/ user transfer PoolsinterestBearingToken

RewardsPoolsV1
RewardsPoolsV1 scenario test
v/ create RewardsPools by CrossChainBridgeERC20V 1
v after creating pools, user staking
v by staking, user earn rewardToken (202ms)
v/ user exit from pool (224ms)
v user transfer PoolsIinterestBearingToken

End of Document

	TABLE OF CONTENTS
	ABOUT US
	
	INTRODUCTION
	SUMMARY
	
	OVERVIEW
	
	FINDINGS
	Front running attack is possible using the CrossChainBridgeERC20V1#releaseNative() function. (Found - v.1.0)
	Issue

	It is advised to define the wrappedNative() function of the router as a view function.
	 /**
	 * @notice Returns the address of the wrapped native token that is used by the dex
	 */
	 function wrappedNative() external override returns (address) {
	 return pancakeRouter.WETH();
	 }
	
	Issue
	​Recommendation

	The parameter of the LiquidityRemoved event that occurs in the CrossChainBridgeERC20LiquidityManagerV1#_withdrawLiquidityERC20() function may fail to return a normal value.
	 /**
	 * @notice Removes ERC20 liquidity from a pool
	 * Private interface to this function which allows internal calls from reentrancy guard protected functions
	 *
	 * @param token the token for which liquidity should be removed from this pool
	 * @param amount the amount of liquidity to be removed
	 * @dev emits event LiquidityRemoved
	 */
	 function _withdrawLiquidityERC20(IERC20 token, uint256 amount)
	 private
	 whenNotPaused
	 returns (uint256 withdrawalAmount)
	 {
	 require(amount > 0, 'LiquidityManager: amount cannot be 0');
	
	 // check if liquidity is sufficient for withdrawal
	 require(token.balanceOf(address(bridgeERC20)) >= amount, 'LiquidityManager: not enough liquidity in bridge');
	
	 // determine the fee rate to be used for this transaction (usually default liquidity withdrawal fee)
	 uint256 liquidityWithdrawalFee = defaultLiquidityWithdrawalFee;
	 // if a specific fee rate is stored for this particular release token then we use this rate instead
	 if (liquidityWithdrawalFees[address(token)] > 0) {
	 liquidityWithdrawalFee = liquidityWithdrawalFees[address(token)];
	 }
	
	 // calculate the fee amounts (dividing by 1.000.000 since the fee rate is provided as parts per million [ppm])
	 // calculate the total fee amount for this transaction
	 uint256 withdrawalFeeAmount = (amount * liquidityWithdrawalFee) / 1000000;
	 // calculate the remaining amount that will be released to the user
	 withdrawalAmount = amount - withdrawalFeeAmount;
	
	 // transfer developer account fee, if applicable
	 if (devAddr != address(0) && withdrawalFeeAmount > 0) {
	 token.safeTransferFrom(address(bridgeERC20), devAddr, withdrawalFeeAmount);
	 }
	Issue
	​Recommendation

	DISCLAIMER
	Appendix A. Test Results
	

