Shared Autonomy for Aging in Place

Final Project for Robotic Caregivers 2021 Version 1.0. March 18, 2021

Researchers have demonstrated that teleoperated robots can provide meaningful physical assistance to people with disabilities. However, the time to complete tasks and error rates can be high, reducing effectiveness. One approach to overcoming these challenges is to incorporate task-specific autonomy in the system, so that the robot takes on more responsibility for the task and selectively relieves the human operator from task details. Since neither the human operator nor the robot are wholly responsible for performing the task, this is a form of shared autonomy.

You are part of a research and development (R&D) team investigating the potential for robotic caregivers to provide physical assistance to older adults with disabilities. Your goal is to enable older adults to live independently at home with a higher quality of life (i.e., age in place). In the interest of fielding solutions in the nearer term, your team is creating a shared autonomy system. The system will enable a remotely-located human caregiver and a home robot to work together to provide assistance to older adults. The human caregiver could be across the world from the older adult's home where the robot resides.

Your team is expected to design a task-specific shared autonomy system. Along with a simulated implementation, you should provide a complete picture of how your system would function in everyday life, including identifying which parts of the task are well suited for automation versus human control. You should also clarify the roles of the remote caregiver, the care recipient, and the home robot. Your simulated implementation should provide evidence for the feasibility of your approach and you should use it to perform both quantitative and qualitative evaluations. These evaluations should demonstrate the benefits and limitations of shared autonomy as compared to fully autonomous or fully human controlled approaches. You should also justify your approach using the scientific literature and video conference interactions with members of the population you expect to benefit from your robotic caregiver.

Your first deadline is a project status presentation on Thursday, March 25, 2021. You will have 20 minutes to present your project status followed by 15 minutes to answer questions from a panel of experts. On Tuesday, April 27, 2021, you will have 20 minutes to present the final design of your system followed by 15 minutes to answer questions from a panel of experts.

An example of a plausible progression in your project follows:

- Define the population, task, and robot
- Perform a literature review of related work
- Teleoperate the robot to perform the task
- Define a shared autonomy approach
- Define evaluation methods

Present project status (March 25)

- Implement an interface for human control
- Implement autonomous capabilities
- Implement a shared autonomy system
- Iteratively improve your system
- Fully evaluate your system

Present completed project (April 27)