Using Gelato Web3 Function on Berachain

See these full GitHub Project Code Repositories.

https://qithub.com/gelatodigital/how-tos-2-w3f-speed-run

https://github.com/gelatodigital/how-tos-3-w3f-triggers

This developer guide will walk you through setting up a new Web3 Function app and
achieve automation for your contract, configuring the Berachain network details,
setup basic wallet connection, test and deploy your contract through a hardhat
configuration.

What are Gelato Web3 Functions ?

Gelato's Web3 Functions are a powerful automation system designed to enhance
Web3 operations. Web3 Functions serve as a comprehensive tool, enabling
developers to effortlessly set up, manage, and automate their smart contract tasks.

Use Case Examples

- Oracles: create fine-tuned customized oracles pushing prices on-chain
following predefined logic (Pyth Oracle Poc , RedStone Oracle Poc)

- Real-time market data: Ostium uses high-throughput automation for
real-time market data integration, precise order execution, and efficient
liquidation management.

- Airdrop Claiming: Automate airdrop claiming with configurable plans stored
on-chain (Github repository)

- PancakeSwap: Native Limit Orders

- Content creation: Automated content creation on Lens using ChatGPT

How do Gelato Web3 functions work?

Gelato Web3 Functions offer a flexible and efficient way to automate tasks. Depending on
your needs, you can choose between off-chain and on-chain computations. You can trigger
functions based on time, events, or every block, and execute custom logic using TypeScript
for off-chain or Solidity for on-chain processes. Once a Web3 function is created, it manages
automated transactions or smart contract interactions, with built-in monitoring to ensure
proper execution and allow for real-time adjustments.

Implementation path

Step Description

https://github.com/gelatodigital/how-tos-2-w3f-speed-run
https://github.com/gelatodigital/how-tos-3-w3f-triggers
https://github.com/gelatodigital/w3f-pyth-poc-v2
https://github.com/gelatodigital/w3f-redstone-poc-v2
https://ostium.app/
https://github.com/gelatodigital/w3f-automated-claiming
https://pancakeswap.finance/limit-orders
https://www.gelato.network/blog/automate-lens-posts-gelato-openai

How do you want to trigger Start by deciding on the type of trigger you want

your web3 function? to use. (Time, event, or every block)

- Typescript Function (custom logic,
off-chain computation)

What to run? - Solidity Function (on-chain
computation, custom logic)

- Transaction

Create a Web3 Function task to allow the
Task Creation) _ o _
execution of typescript, solidity or transaction

Once you've defined your function ensure you
Finalize & Monitor monitor its execution to confirm that it works as

expected. Make any necessary adjustments.

Ways to submit Web3 Function Tasks

- Using Ul: This method is ideal for developers or operators who prefer a graphical
interface for task configuration. For instance, if you're a developer who wants to
quickly test a function or a non-technical person looking to schedule a recurring job
without writing any code.

- Using Smart contract: You can create a task that uses Web3 Function from your
smart contract as well. If your project involves complex interactions and you need the
task creation to be a part of an on-chain transaction, you would directly interact with a
smart contract.

- Using Automate SDK: The SDK is suitable when you need to integrate task creation
into your development environment or automated scripts. It's also useful for complex
setups that require conditional logic before task submission.

For security reasons, during task creation, you will see an address which will be the
msg.sender for your task executions.

If you are the owner of the target contract in question, it's recommended to implement a
msg.sender restriction within your smart contract. This involves whitelisting a dedicated
msg.sender address. Such a measure ensures that only tasks you have created can call
your function, significantly elevating the security posture of your operations. For a hands-on

guide and to manage your dedicated msg.sender settings, please connect to the app and
visit your own Settings page.

MNetwork for d der

Mu Mumbai Q Oxa55e7F0dD850C5353025d3cFASa36e648635a256 [

¢ Ethereum
Ca Polygon
‘:* Fantom

Avalanche
% BNB

Optimism

A Arbitrum

) Gnosis

How to pay

- Transaction pays for itself: You can choose to have your function pay the fee
during executions. It must be remembered that running Web3 Functions has
computational costs. Please see here the Free Tier limits

- 1Balance: in the case that the Web3 Functions goes above these limits, 1Balance
will be also required to pay for the computational costs. For example, a user can top
up their Gelato 1Balance using USDC on Polygon. This USDC balance will now be
used to cover all gas costs and fees

In this guide, we'll use the Ul for submitting a Web3 function.
Steps to Set Up

Requirement

Before beginning, make sure you have the following installed or set up on your
computer beforehand.

- NVM or Node v18.18.2

- npm, yarn, or pnpm

- Wallet that contains BERA token (for deployment)

How to Write a Web3 Function to Update Price Using the CoinGecko
API

https://app.gelato.network/settings
https://docs.gelato.network/web3-services/web3-functions/subscription-and-payments
https://docs.gelato.network/web3-services/1balance

In this guide we will jump through creating a Web3 Function in TypeScript that
fetches the latest price of Ethereum from the CoinGecko API and updates an oracle
smart contract with this data.

Follow these steps to set up and deploy your Web3 Function.

Set Up the Development Environment

1. Clone the Template Repository:
Begin by cloning the Web3 Function Hardhat template:

JavaScript

git clone
https://github.com/gelatodigital/web3-functions-hardhat-template.git
cd web3-functions-hardhat-template

2. Install Dependencies:
Install the necessary dependencies:

JavaScript
yarn install

3. Configure Environment Variables:
Copy the example environment file and fill in your Alchemy API key for local
testing:

None

cp .env.example .env

Update the ".env’ file with your details:

None

ALCHEMY_ID=your_alchemy_key
PRIVATE_KEY=your_private_key # Optional, needed for contract deployment

Write the Web3 Function

1. Create the Function:

Below is an example of a TypeScript function that interacts with the CoinGecko API
and updates the oracle contract. Here's a simplified example:

JavaScript
import { Web3Function, Web3FunctionContext } from
"@gelatonetwork/web3-functions-sdk";
import { Contract, ethers } from "ethers";
import ky from "ky";

const ORACLE_ABI = [
“function lastUpdated() external view returns(uint256)",
“function updatePrice(uint256)",

l;

Web3Function.onRun(async (context: Web3FunctionContext) => {
const { multiChainProvider } = context;
const provider = multiChainProvider.default();

// Define Oracle contract address and instance

const oracleAddress = context.userArgs.oracle ||
"0x71b9b0Bf6c999cbbbBfef9c92b80d54e4973214da" ;

const oracle = new Contract(oracleAddress, ORACLE_ABI, provider);

// Get the last update timestamp from the oracle
const lastUpdated = parseInt(await oracle.lastUpdated());
const nextUpdateTime = lastUpdated + 3600; // Update every 5 minutes

// Check if it's time to update the price
const currentTimestamp = (await provider.getBlock("latest")).timestamp;
if (currentTimestamp < nextUpdateTime) {

return { cankExec: false, message: "Time not elapsed" };

// Fetch the latest price from CoinGecko
const currency = context.userArgs.currency || "ethereum";
const priceData = await ky.get(

“https://api.coingecko.com/api/v3/simple/price?ids=${currency}&vs_currencies
=usd’,
{ timeout: 56000, retry: 0 }
)-json();
const price = Math.floor(priceData[currency].usd);

// Update the oracle with the new price
return {
canExec: true,
callData: [{
to: oracleAddress,

data: oracle.interface.encodeFunctionData("updatePrice", [price])
H
fig
)5

2. Configure Runtime Settings:
Create a 'schema.json’ file to define the runtime configuration:

JavaScript

{
"web3FunctionVersion": "2.0.0"
“runtime": "js-1.0",
"memory": 128,
"timeout": 30,
"userArgs": {

’

“currency": "string",
"oracle": "string"

3. Provide User Arguments:
Create a "userArgs.json’ file to test the function locally:

JavaScript
{

“currency": "ethereum",

"oracle": "Ox71B9BOF6C999CBbBOFeF9c92B80D54e4973214da"
}

3. Test and Deploy the Function

1. Run Locally:
Test the Web3 Function locally to ensure it works as expected:

None

npx hardhat w3f-run oracle --logs

If you want to run tests locally

None

npx hardhat test web3-functions/simple/index.ts --logs --chain-id=31337

when testing locally, we can provide the different providers by including them in .env
at the root folder

None

// .env file

PROVIDER_URLS=RPC1,RPC2 //for local testing you can use localhost

2. Deploy the Web3 Function:

Once tested, deploy the Web3 Function to IPFS and create an automated task
using Gelato's SDK. Before deploying your Web3 Function, it's important to test it
locally to ensure everything works as expected.

None
npx hardhat w3f-run W3FNAME

Replace "W3FNAME" with the name of your function. For example, if your function
is named ‘oracle’, run:

None

npx hardhat w3f-run oracle

2. Optional Flags:
You can use additional flags to get more detailed output:
- --logs’: Show internal Web3 Function logs.
- --debug’: Display runtime debug messages.

- "--network [NETWORK]': Set the default runtime network and provider.

Example with flags:

None
npx hardhat w3f-run oracle --logs --network hardhat

3. Interpreting the Output:

After running your Web3 Function, you will see various outputs, including build
results, user argument validations, execution logs, and runtime statistics. These
details help you understand the function's behavior and performance.

Example output:

None

Web3Function Build result:
v Schema: /path/to/oracle/schema.json
v Built file: /path/to/.tmp/index.js
v/ File size: 2.47mb
v Build time: 947.91ms

Web3Function user args validation:
v/ currency: ethereum
v/ oracle: Bx71B9BOF6C999CBbBOFeF9c92B80D54e4973214da

Web3Function running logs:
> Last oracle update: ©
> Next oracle update: 36600
> Updating price: 1898

Web3Function Result:
v Return value: {
canExec: true,
callData: [
{
to: 'Ox71B9BOF6C999CBbBOFeF9c92B80D54e4973214da ",
data:
'0x8d6cc56d00076a "

}

Web3Function Runtime stats:
v Duration: 1.35s

v Memory: 113.55mb
v/ Storage: 0.03kb
v Rpc calls: 3

Deploying TypeScript Functions

Once you’ve tested your function locally, the next step is to deploy it to IPFS.

1. Deploy the Web3 Function:
Use the following command to compile your Web3 Function and upload it to IPFS:

None
npx hardhat w3f-deploy W3FNAME

Replace "W3FNAME" with the name of your function. For example:

None

npx hardhat w3f-deploy oracle

2. Retrieve the IPFS CID:

After deployment, the IPFS Content Identifier (CID) of your Web3 Function will be
returned. This CID is unique to each version of your function and will be needed
when creating tasks.

Example output:

None

v Web3Function deployed to ipfs.
v CID: QmbQJC5XGpQUsAkLq6BqpvLtDS8EPNDEaPqyFf4xK3TM6X j

Creating a Web3 Function Task using the Ul

After deploying your function, you can create a task in Gelato to run it automatically
based on specified triggers. You can access this feature here.

What to trigger
v —
k:) O

Typescript

) Solidity Function Transaction
Function

Typescript Function

IPFS CID

Task Secrets

Cancel

Network 813 Berachain bArtio

1. Selection of Function:
Go to the "What to trigger" section in the Gelato Ul. In the "Typescript Function"
subsection, enter the IPFS CID you obtained after deployment.

2. Network Configuration:
Choose the blockchain network where the function should execute, such as
"Berachain bArtio".

3. Task Configuration:

If your function requires secret variables (e.g., APl keys), securely enter them in
the "Task Secrets" section:

- Key: Name of the variable, e.g., "API_KEY".

- Value: The corresponding secret value.

Ensure you save each secret to guarantee its secure storage.

Once all the fields have been filled in, click on “Create Task”, then sign the
transaction.

https://app.gelato.network/functions/create

For more advanced settings on the Ul, you can modify the task properties by clicking
on the “Task Properties”

Task Properties

Advanced Settings

@® Transaction pays itself

@ Single execution task

Once the task has been created, a dashboard will appear, allowing you to monitor your task
and track execution and run logs

@ BeraW3FTest @ ~ o Active

@ Berachain bArtio Created by: Oxcf9ccb...2339e4f (3 Aug 9, 2024, 1:30 PM Task ID (3} || Pause Task

GU used this month Average GU per run Runs this month Throttled runs this month Success rate Executions

2179 5.1 430 0 100.00% 455

Trigger

Trigger @ Time Interval: every 1 hour

Typescript Function

IPFS CID QmXZXg3PzyviatATmhylwgP9G1IMZzW3MVm7RCVUC85pNub (5

Arguments currency: ethereum (3}

oracle: OxAf42afOEd7993cF08DeCFF69C9703299DbaB25ef (5:

Task properties

Dedicated message sender ~ 0x599c9bbff89d6f82675f80d79a078d8a70d759b0 (3:

Pay with 1Balance

Executions Task Logs Code Storage Secrets

Executions

18 sept. 2024, 12:47 Oxce6505139ecech...fa7d15aa065¢c 2 (3:

18 sept. 2024, 10:47 0x30ea2c022ca559...c6ffe099a1812 (3

18 sept. 2024, 08:47 0x90b840f51a4d5b...0488da09%da 7 (3

18 sept. 2024, 06:48 0xaa2927e5764971...a171b4d8b5c4 7 (3}

18 sept. 2024, 04:47 0x73ad0ed2371532...8d2d44c91124 2 (3

18 sept. 2024, 02:47 0xa37f892a8f564a...d2d3ad3e319f 7 (5}

18 sept. 2024, 00:47 0xa36ab0829b0c73...57¢709c560d372 (i

17 sept. 2024, 22:47 Oxabd4cccOb55aal...edccel6c97b9 2 D

Besides the task logs available in the Ul, Gelato Web3 Functions offer a more detailed and
granular monitoring system providing status and logs APIs.

Provided the chainId and taskId, this APl will return the current Task status
Copy

None

https://api.gelato.digital/tasks/web3functions/networks/{chain
Id}/tasks/{taskId}/status

Conclusion

In summary, Gelato's Web3 Functions make it simple to automate and monitor smart
contract tasks. Whether you're working with TypeScript or Solidity, the platform gives you the
tools to track performance and usage in real-time. With flexible options for task creation, you
can easily choose the best setup for your needs. Gelato's Web3 Functions help you
streamline your workflow, so you can focus more on building and less on managing tasks.

	Using Gelato Web3 Function on Berachain
	What are Gelato Web3 Functions ?
	How do Gelato Web3 functions work?
	Implementation path

	Ways to submit Web3 Function Tasks
	How to pay

	Steps to Set Up
	Requirement
	How to Write a Web3 Function to Update Price Using the CoinGecko API
	Deploying TypeScript Functions
	Creating a Web3 Function Task using the UI
	Conclusion

