
Viewport Issue Smorgasbord

bokan@chromium.org

This document is meant to describe and track the issues and challenges in web platform
features related to the viewport. The potential solutions are mostly underpinned by the
virtual-viewport work that’s enabled on all Blink based platforms starting in M41. See the
HTML5Rocks article to learn more about that.

Pinch-Zoom

Pinch-zoom on Chrome now uses a two-viewport model known as “virtual viewport”. As of M41
this is the pinch-zoom model on all Blink platforms.

 Chrome Firefox IE Safari

Pinch Model virtual-viewport single-viewport virtual-viewport mixed-viewport

Pinch causes
OnResize

No No Yes (on gesture
end)

No

Safari has a complicated model where they use a single viewport until some zoom threshold is
reached. Once the user zooms in further, they stop shrinking the “layout” viewport and zoom in
using the “visual” viewport. When in the “visual” mode, scrolling causes both viewports to scroll
but at different rates.

Viewport Scroll Order

With multiple viewports, the question to ask is “which should we scroll first” (demo)? That is,
when we use the scroll wheel or a touch gesture, which viewport does it target? Scrolling the
layout viewport first will prevent moving position:fixed elements as long as possible. Scrolling
the visual viewport first allows the user to scroll position:fixed elements easier.

Chrome Firefox IE Safari

Layout (outer) N/A Visual (inner) Simultaneous

Chrome is currently investigating whether to switch to IE’s visual-first model. Tracked in 443724

http://updates.html5rocks.com/2015/01/virtual-viewport
https://dl.dropboxusercontent.com/u/4186806/viewport/index.html
http://crbug.com/443724

An advantage of scrolling the layout viewport first is that position:fixed elements scroll with the
user for as long as possible. Things like navbars and menus remain usable.

An advantage of scrolling the visual viewport first is that the user can easily scroll between
position:fixed elements that aren’t visible in the visual viewport. For example, if a position:fixed
element is obscured by the keyboard in the ChromeOS model (more below), the user doesn’t
have to scroll all the way to the bottom of the page to see it.

On Screen Keyboard

The on-screen keyboard (OSK) is used for text input in the absence of a physical keyboard. It
typically appears when an input text field is focused and disappears when focus is lost. When
the browser is fullscreen (as is always the case on mobile platforms, or maximized on desktop
platforms) the OSK will obscure the browser window.

Historically, Chrome would simply resize the browser widget. This allows the bottom part of the
page to be scrolled into view and keeps position:fixed bottom elements visible above the
keyboard. However, it also triggers potentially expensive resize handlers layouts. It can also
result in a poor UI if the page wasn’t designed to fit into such a small viewport. For example,
bottom position:fixed elements may obscure the entire viewport (including the input field).

ChromeOS introduced a new model for OSK resizes. When the OSK appears it resizes the
visual viewport but leaves the layout viewport unchanged. This means the page can still be fully
scrolled to the bottom in the viewable area but it doesn’t trigger resize handlers or cause layout.
It also leaves position: fixed elements under the keyboard (they can be scrolled into view when
the visual viewport scrolls) so they won't obscure the smaller viewport.

 ChromeOS Chrome
Other

Firefox IE Safari

OSK
Resizes

Visual
Viewport

Window/Widg
et

Window/Widg
et

Window/Widg
et

Visual
Viewport?*

*There’s no resize event but position fixed bottom elements can still be scrolled into view

There are plans to experiment with using the ChromeOS model on Android; however, there may
be compat impact in doing so. Tracked in 404315

Top Controls

Similar to the OSK issue. The top controls (i.e. the URL bar) are a floating bar in Chrome
Android that can be shown or hidden by scrolling the body of a web page. Today, showing/hiding
the top controls will resize the browser widget. For performance reasons, showing the top

http://crbug.com/404315

controls doesn’t cause the resize to happen until after the user lifts their finger (the scroll ends).
When that happens, the widget is resized and Blink (and thus, the page) hears about it. Until the
resize occurs, the top controls are treated as if they were simply overlaying the page.

This is problematic as scrolling can cause the page to change size. e.g. If an author uses
viewport units (vw/vh) to size their page text, text will change size when the user scrolls down
and hides the controls or scrolls up and shows them. Tracked in 428132

One idea to solve this is to have the top controls resize the visual viewport. Since that doesn’t
cause a layout or fire resize handlers, it can be done dynamically during the scroll. The major
sticking point is that top controls would now obscure top position:fixed elements. If we
implement position:device-fixed authors could use that instead but we still have the long tail of
existing content that this would break. We’d need some kind of mitigation.

@viewport

The @viewport rule is designed to replace the <meta name=”viewport”> tag. The major
advantage @viewport has is that it is designed to apply on all devices. The viewport meta is
applied only on phone and tablet browsers. Authors took advantage of this fact and littered it
over desktop pages. A common pattern was to put a fixed width meta like <meta
name=”viewport” content=”width=1024”>; expecting that small screened phones get sent to an
m. address tailored for phones, desktops would ignore it, and tablets would use the meta to
layout the page in a reasonable size. Enabling the viewport meta on desktops is a non-starter
because of this.

However, with the lines between desktop and mobile becoming increasingly blurry and many
desktop devices shipping with touchscreens, it has become important to be able to control the
viewport on devices other than mobiles. The canonical example here is Google Maps. It handles
touch events to have a customized pinch-zoom experience. It does this by prevent-defaulting
the touch events so that they don’t cause pinch zoom, watching for pinch gestures, and scaling
the background maps as appropriate. However, the touch events can only be prevent-defaulted
after touch handlers have been registered. If the user pinch-zooms before that happens, the
Maps UI, which doesn’t expect to be scaled, gets zoomed in; the user gets stuck in a broken
app since pinch-zooms are now handled by the app.

 Chrome Firefox IE Safari

@viewport
support

implemented
(shipping
tracked in
235457)

none shipped
(prefixed)

none

http://crbug.com/428132
http://dev.w3.org/csswg/css-device-adapt/
https://code.google.com/p/chromium/issues/detail?id=235457&can=3&sort=m&colspec=ID%20Pri%20M%20Week%20ReleaseBlock%20Cr%20Status%20Owner%20Summary%20OS%20Modified

position:fixed and position:device-fixed

position:fixed elements now stick to the layout viewport, meaning that zooming in doesn’t cause
them to fill the visual viewport. In most legacy cases, this is an improved experience as it looks
just like we magnified the page. However, what about cases where the author does actually
want elements to stay in the visual viewport under zoom?

IE introduced a prefixed position:device-fixed that attaches elements to the visual viewport and
doesn’t scale them under pinch-zoom. This allows authors to provide an “always visible”
toolbar/navbar experience that works rationally. Furthermore, it would allow authors to keep
elements above the keyboard in the ChromeOS OSK model. If Chrome goes the way of moving
UI to mutate the visual viewport then something like device-fixed will become necessary to allow
authors to layout around the UI widgets.

Another issue in this space is what size to make the layout viewport? Note that the layout
viewport and the layout size can be different. Today on Chrome, the layout viewport is sized to
the visual viewport at minimum scale. This means that if a linebox breaks out of the initial
containing block, the layout viewport will be larger than expected. In a pathological case,
animations can cause the content size to grow (thereby making the min-scale smaller) and so
the layout viewport would grow as well. Tracked in 437303

 Chrome Firefox IE Safari

position:fixed
viewport

layout visual layout mixed-viewport

Supports
device-fixed

No No Yes No

Layout
Viewport Size

Minimum-scale N/A Minimum-scale* N/A

Minimum Scale Content size or
0.25

Content size Layout/ICB Size Layout/ICB Size

*Though it seems like IE sizes to the minimum-scale, there’s no way to control minimum scale in IE (at least
on a Surface, I don’t have a WinPhone to test)

http://crbug.com/437303

	Viewport Issue Smorgasbord
	Pinch-Zoom
	Viewport Scroll Order
	On Screen Keyboard
	Top Controls
	@viewport
	position:fixed and position:device-fixed

