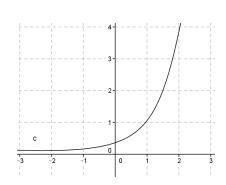
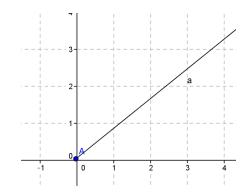
Unit 5: Working and modeling with quadratics Exam Review

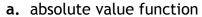

- 1. Find the axis of symmetry and the vertex of the parabola: $g(x) = 4x^2 2x + 1$
 - a. axis of symmetry: $x = \frac{3}{4}$ vertex: $(\frac{3}{4}, \frac{1}{4})$
 - **b.** axis of symmetry: $x = \frac{2}{3}$ vertex: $(\frac{2}{3}, 1)$
 - c. axis of symmetry: $x = \frac{1}{4}$ vertex: $(\frac{1}{4}, \frac{3}{4})$
 - **d.** axis of symmetry: x = 1 vertex $(1, \frac{2}{3})$
- 2. The table gives the number of candy pieces sold in a candy shop between 1980 and 1985. Determine which model best fits the data.

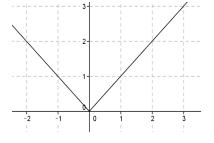
Year	1980	1981	1982	1983	1984	1985
Candy	100	150	250	400	600	850


- a. linear
- b. absolute value
- c. quadratic
- d. exponential
- 3. Determine which function the set of ordered pairs best represents.

$$\{(-2, 2), (-4, 4), (2,2), (4, 4)\}$$

- a. linear
- **b.** absolute value
- c. exponential
- d. quadratic
- **4.** A salesperson earns a monthly salary of \$400 a month plus a percentage of the proceeds from the number of items he sells. Which graph would model this situation.
 - a.


b.


Unit 5: Working and modeling with quadratics Exam Review

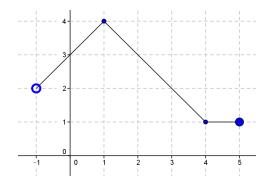
- **5.** What is the range of the function $m(x) = -3x^2 + 4x + 3$ with a domain of $-1 \le x \le 1$
 - **a.** $-1 \le y \le 1$
 - **b.** $-5 \le y \le 5$
 - **c.** $-4 \le y \le 4$
 - **d.** $-2 \le y \le 2$
- **6.** A football is thrown straight up, with an initial velocity of thirty meters per second and from an initial height of 3 meters. The function $h(t) = 3 + 30t 4.9t^2$ describes the height as a function of time. What is the average speed of the football during the first two seconds of flight?
 - a. 7.65 m/s
 - **b.** 15.3 m/s
 - c. 20.2 m/s
- 7. What type of function is depicted in the following graph?

- b. step function
- c. piecewise function

8. Which function has the highest range with a domain of 3?

a.
$$f(x) = 2x - 4$$

b.
$$g(x) = 2(0.5)^x$$


c.
$$h(x) = 3x^2 - 4x + 9$$

9. What is the domain of the function shown in the graph?

a.
$$1 \le x \le 4$$

b.
$$-1 \le x \le 5$$

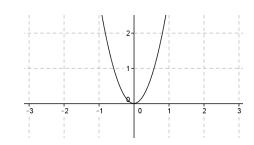
c.
$$-1 < x \le 5$$

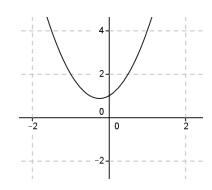
10. Find the inverse of g(x) = 3x + 2

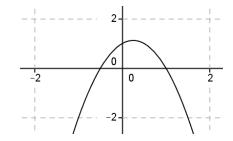
a.
$$g^{-1}(x) = \frac{1}{3}x + \frac{2}{3}$$

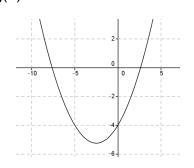
b.
$$g^{-1}(x) = \frac{1}{3}x - \frac{2}{3}$$

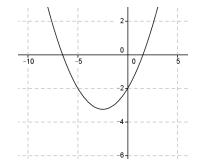
c.
$$g^{-1}(x) = -\frac{2}{3}$$


Unit 5: Working and modeling with quadratics Exam Review


- 11. How would you change the graph of $f(x) = x^2$ to produce the graph of $g(x) = x^2 4$
 - a. shifts the graph f(x) down 4 units
 - **b.** shifts the graph f(x) up 4 units
 - c. shifts the graph f(x) left 4 units
 - **d.** reflects the graph of f(x)
- 12. What transformation changes the graph of $f(x) = x^2$ to the graph shown?


- **b.** vertical translation
- c. Reflection
- d. Stretch


- 13. Graph: $f(x) = -2x^2 + x + 1$
 - a.


b.

- **14.** Graph $g(x) = 0.2x^2 + x 4$
 - a.

b.

