FLOMETRICS # Open Source Breathing Assistance (Basic Ventilator) Project, with rough plans.version 3.1 3/24/2020 **Problem**: There are not enough mechanical ventilators – or breathing assistance devices - available for the expected wave of sick people who will need them. What is happening in Italy now will happen to the U.S. in about 10 days (by around April 5). A potential partial solution: Develop an open source design for a DIY breathing assist modified CPAP machine that is robust, effective, easy to use and maintain and that will swiftly pass emergency standards issued by regulatory agencies. A largely DIY design would entail offering production instructions, a bill of materials with alternates, an online training program, and elements of a mutual-support community to solve problems that arise. A clear use case and abbreviated validation protocol may help provide a device that can help people in dire need. This is not a money-making project. It is about saving lives. (See the caution and disclaimer below! This very basic system has a limited range of uses. Consult medical professionals if at all possible.) **Preliminary versions already work.** A version to assist folks with low to intermediate respiratory distress has been built from inexpensive hardware store parts, as demonstrated in this video, https://tinyurl.com/breathassist2. Key to our approach is a simple method of applying lung back-pressure (PEEP) while simultaneously capturing and reducing virus in the patient's exhalations. Even this basic version might enable thousands of sufferers to reduce the burden on already overwhelmed intensive care units. *More advanced versions would incorporate accessible, off-the-shelf sensors, plus access to supplementary oxygen and some degree of control via a cellphone app.* **What's needed**: *Time is of the essence!* Racing the clock, we believe we can take this vital project further and more quickly with an initial grant for parts and supplies, say \$20K, with maybe another \$60-100K as we refine and simplify... then simplify again to reach an optimized design that almost anyone could build. Additional money will be needed – or else partnership with an agency or major corporation – for clinical testing, legal etc. Flometrics – A San Diego County company with decades of experience in fluid and gas flow systems, and a designer of blowers, valves and flow sensors for local medical ventilator companies, would seem an ideal place to attempt this. We don't make ventilators, but we have the skill and equipment to design, build and test them. An advisory board that includes medical doctors, design experts and elements of the DIY Maker community is being assembled. ### **Potential issues:** - Optimizing the design to be maximally effective, inexpensive, simple, easily constructed by semi-skilled persons, and (frankly) "idiot-resistant." - Supply chain, making sure enough parts are available fast enough. - Acceptance: Doctors, respiratory therapists and nurses will justifiably be skeptical. But urgent times demand agility and flexibility. - Testing: Doctors in Italy are ready to try anything. They will test anything that might work. We can come up with a plan here while our physicians are not overwhelmed. What is a "ventilator" and what crucial traits must an open source unit have? A true ICU ventilator - assists patients who have difficulty breathing on their own, a notable symptom of severe respiratory distress exhibited by 5% or so of those infected with the COVID-19 virus. Especially affected are the elderly and those with pre-existing medical problems. By providing extra pressure in the lungs, these devices force more oxygen into the bloodstream for someone who has compromised lungs to hopefully give them more time to build antibodies. They must be capable of taking ambient air, increasing delivery pressure, and helping the patient inhale air augmented with oxygen. (See footnote.) We are not currently developing a ICU ventilator. Patients needing this level of attention are generally intubated – a tube is sent down the trachea – requiring attention of a respiratory therapist. We are not claiming to replace that level of care.¹ Rather, a Do It Yourself modified CPAP is meant to help those who are otherwise healthy and conscious enough to inhale and exhale on their own volition, receiving to overcome somewhat or moderately labored breathing and – perhaps – stay out of the hospital altogether or get out of the ICU faster. The device must provide some resistance to exhalation to keep the lungs inflated. For the COVID-19 patient, doctors in Italy report that a fast breath rate of 40 breaths per minute with 20 cm of water inhalation pressure and 5 cm of water exhalation pressure (PEEP) is best. Can all these traits be achieved with a system built according to downloaded, open-source instructions, from parts bought at a major hardware store, perhaps augmented with 3D printable components? We believe they can. With perhaps half a million victims needing help within the month... they must. **Technical details:** The key spec for an open source device is that it must be made of parts that are available everywhere already. Almost all parts should be things that you can buy at Home Depot or Wal-Mart, with only a few requiring use of a local fab or 3D printing shop, or (if unavoidable) shipped from a regional distributor. The design needs to be developed in coordination with medical experts along with a training program, so that a mechanical design, cell phone app, 3D models of printable fittings and training video can be prepared. ¹ For full background, see a 5 part tutorial on ventilation and breathing assistance, at: https://www.youtube.com/watch?v=gk_Qf-JAL84#t=4m25s Also, FDA Regulations and legal liability will need to be waived, so government support is imperative. (See the FDA website on emergency approvals²). Flometrics will get the ball rolling. We can do the mechanical design, first build and lab testing. We will be happy to share the design with other manufacturers and engineering service organizations. We are connecting with some in Italy now. **Modified CPAP** Our first concept (see a working model in the cited video)is a modified CPAP machine that may help people at home or to get out of the ICU. The inhalation and exhalation circuits are separate. Check valves are used to prevent mixing of the fresh and exhaled air. It uses an oxygen fortified CPAP or Bipap machine with a pipe in a bucket filled with water for exhalation resistance (positive expiratory ending pressure aka PEEP) Capture of the exhaled breath under water prevents the virus from escaping into the room. Dishwasher soap and/or bleach in the bucket kills the virus without foaming up. This needs a source for masks (maybe thermoformed or 3d printed, or adapted from painting respirators. (See figure 1.) This system could be used: - At home so that a patient can perhaps avoid an ICU visit, particularly if they cannot be seen - To delay admission to the ICU and the need for a ventilator - In the kind of "MASH-type" expansion urgent triage centers the some cities may soon set up. - To help them recover so that they can leave the ICU earlier. A number of these modified CPAP systems could be used with a single premixed air and oxygen source in a field hospital setting. In the event that oxygen sensors are not available, the oxygen flow could be controlled indirectly by referring to a pulse oximeter. If a CPAP machine is not available, a shop vac with a dimmer switch for an adjustable pressure air supply can be used. This type of device could be tested immediately in Italy where some people are dying at home alone. They are using helmet cpap (a plastic film pressurized helmet around the patient's head) it works 20% of the time. They are using NIV (non invasive ventilation) now because of a lack of ventilators. We will need to do this in the USA as well, so this is a way to get ahead of the problem. We are also working on 3d printed fittings to adapt CPAP masks so that they can capture the exhalation. We are working on testing it now. We will publish the results, hopefully translated into Italian as well. The second concept (working on next) is a time cycle pressure limit mechanical ventilator. The pressure could be supplied by a shop vac or CPAP machine with modified sprinkler valves or 3 D printed valves for inhalation and exhalation valves, all controlled by a cell phone via the audio output or some other adjustable timer. A stereo can be used to amplify the signals from the cell phone. (These parts have been tested). This could be used in a MASH tent in the hospital parking lot in case they run out of ventilators. This would provide a peak pressure of 20-100 cm H2O for inhalation and 5-50 cm exhalation pressure (PEEP) The oxygen level would be 40-60%. (See figure 2.) https://www.fda.gov/regulatory-information/search-fda-guidance-documents/enforcement-policy-ventilators-and-accessories-and-other-respiratory-devices-during-coronavirus ² FDA website on emergency approvals: In either case, the patient may need an oxygen supply, which might be supplied via a pipe from the tank at the hospital, or from a tank or Dewar from a welding supply store. If there is an issue with oxygen distribution, fiberglass insulated steel drums could be used for Liquid Oxygen distribution. (See figure 3.) These ventilation methods may atomize the virus in the patient, leading to the need to 100% capture of the exhalation into a filter, exhausting outdoors or bubbling through bleach or detergent. A bathroom exhaust fan sucking air from over the patients head and blowing it outdoors could help reduce contamination, particularly if the mask leaks during coughing. **Plan**: We met with engineers, CTOs, clinicians & managers who have worked in the medical respiratory business for 10-30 years. (One of us (SH) is co-inventor of the Philips/Respironics Espirit US6,543,449, and the others have many patents as well.) We have several concepts that we have shown to front line doctors working with patients, and we are currently working towards clinical trials in Italy. These are the major steps that need to be done: (some are underway*) - Build a prototype. Make videos showing function assembly and test instructions. - Engage with pulmonologists, respiratory therapists etc. about what is needed and what is acceptable in an emergency*. - Work with public health officials to determine how/when to use the DIY ventilator systems and get appropriate regulatory permissions or waivers. - Validate design, measure basic performance against limited ventilator specification. Disclaimer and cautionary notice: It is vital that this kind of system only be viewed as an urgent-situation backup that's for otherwise healthy patients whose apparently mild-to-intermediate respiratory distress seems stable, with no sign of deterioration. It is not a substitute for professional medical care, but a backup for when those resources are strained or unavailable. It is for those able to breathe on their own, but wanting help to maintain lung pressure while successfully fighting off the infection. It is also, of course, for places where professional machinery is simply unavailable. CONSULT YOUR PHYSICIAN or medical professional, if at all possible. We at Flometrics stand ready to set aside other priorities and jump at this project, which might empower folks in even the smallest town or isolated community to adapt and save lives. We need painting respirators and CPAP machines and masks to test so we can publish instructions and develop adapters for common types. Thanks for your time and consideration. Steve Harrington, Steve Duquette, Paul Edwards, Carl Tedesco, David Brin, Paul Breed+ others For further information contact: Steve Harrington, PhD | CEO Flometrics, Inc. | Lecturer, UCSD Mechanical & Aerospace Engineering ---- 5900 Sea Lion Place, suite 150 | Carlsbad, CA 92010 O: 760-476-2770 x 510 | C: 760-994-5544 www.flometrics.com Figure 1, enhanced CPAP with PEEP and Oxygen Figure 2, Simple Ventilator. Figure 3, LOX container, (not ready yet) ----- # **Concept 1 prototype** Introductory video at https://tinyurl.com/breathassist1. Assembly video at https://tinyurl.com/breathassist2. Start with a painters' filter. (Ask your local painter, or contractor for a used one, as they are likely sold out. Industrial suppliers such as Mcmaster-Carr, Grainger or Zoro may have them) Remove the activated charcoal from the cartridge, to reduce flow resistance. Blow out all the fragments with compressed air. Find a PVC pipe adapter that goes to whatever hose you use, a CPAP hose or a dishwasher drain hose will work (make sure it is clean and sterile). This could also be a 3D printed adapter with less weight. Hot glue the parts together as shown in the video. Make sure they are clean. Then hot glue the exhalation valve in the front together so it doesn't fall apart from the weight of the hose and hot glue or tape on another PVC adapter for the exhalation Here is the respirator before taping on the exhalation fitting. The plastic ring on the exhalation valve may need to be glued to the mask, otherwise it may fall off with the extra weight. Here is the complete hacked together painting respirator with PVC fittings glued and or taped to the inlet and exhaust. The head gear may need to be reinforced for the extra pressure. Here is the bubbler, aka back pressure regulator. It uses 1/8" holes to expel exhaled air underwater to provide a back pressure according to the depth. This is placed in a top-vented container. Adding bleach or dish soap should destroy viruses. Smaller holes lead to smaller bubbles and less chance of the virus making it out of the bucket. Here's a pressure plot using a shop vac with a dimmer switch and a 3/8 inch orifice on the output of the shop vac so that it holds pressure better during inhalation. Pressure is adjusted by placing the mask on the face and increasing the speed of the shop vac until the bubbler starts to let a little air out. With mask on, I took 8 breaths and then took the mask off. Here is a kit of all the parts that you can get at your local hardware store to make one of these. We need to conduct some longer term tests to check for mask leakage, long term comfort etc. ### **Parts list** Painting respirator CPAP machine or Shop vac, brand new, clean and never used. Must have blower output dimmer switch Extension cord Electrical box 3x 1 inch slip female by ¾ inch NPT PVC fittings 3x ¾ inch PVC NPT couplers 4 x ¾ NPT barb fittings Hot glue Electrical tape 2x CPAP hose or Dishwasher drain hoses An appropriate covered water tank with appropriate holes and fittings, as shown, plus bleach/dish soap for disinfectant. A plastic face cover (not shown) is recommended A UV disinfectant lamp is recommended # === Appendix 1: Notes on the version shown in the "how to build" video at https://tinyurl.com/breathassist2. (1) A clinician pointed out that at least some exhaled breath will escape around the edges of the mask. Rather than attempt to seal this off, a likely-effective palliative would be a Plexiglas or plastic *face shield*, either the kind that dentists use or something makeshift. Covid-19 virus is carried in droplets which will settle on the inside surface, which can be (carefully) cleaned. A UV lamp might be helpful. It should also be noted that many at-home or emergency caregivers will be among those already past their own benign infection. Also reminder. all parts should be new, fresh from factory packaging and then extra cleaned. This is especially true of the shop vac. You may have to settle for a used respirator mask, acquiring an old one from a local painter, for example - these can likely be cleaned and sterilized effectively, with care. Stay tuned for word on 3D printed versions. - (2) The earlier (first) video (https://tinyurl.com/breathassist1) shows some pressure gauges included, which would improve monitoring, but may not be available at a local hardware store. - (3) Other teams are welcome to add to this baseline unit, e.g. with oxygen-level sensors controlling oxygen augmentation, as well as links to potential cell-phone based warning and control Apps. Please contact the Flometrics team with info on your variant, so everyone can increment together. ## === Appendix 2: Other projects and resources We are all in this together. So here is a list (as of March 24, 2020) of *alternative projects* pertinent to this breathless era: - -- A 5-part tutorial on ventilators: https://www.youtube.com/watch?v=gk_Qf-JAL84#t=4m25s - -- Extant DIY ventilator projects: https://makezine.com/2020/03/17/covid-19-a-collection-of-resources-from-our-community/ - -- The re-insurance company *MunichRE* is said to be pushing a ventilator project. - --- -Montreal hospitals launch global challenge offering a \$200,000 prize to design a new low-cost and easy-to-use ventilator to help with the COVID-19 outbreak. https://www.3dprintingmedia.network/montreal-hospitals-launch-global-challenge-design-ventilators/ - -- Replacing missing parts for disused ventilators in northern Italian hospitals, plus makeshift respirators based on hacked scuba gear. https://dqiluz.wordpress.com/2020/03/17/innovation-without-permission-saving-life-in-emergency/ - -- A UK centered contest to develop cheap devices (no prize money.) https://medium.com/frontier-technology-livestreaming/frontier-tech-4-covid-action-emerging-market-ventilation-systems-9c818cb46189 - -- An Italian company used 3D printing to produce a special valve needed for ventilators. Got sued by company that holds the patent. https://www.commondreams.org/news/2020/03/18/italians-found-way-3-d-print-key-ventilator-piece- - -- Designing a low-cost, open source ventilator with Arduino. https://blog.arduino.cc/2020/03/17/designing-a-low-cost-open-source-ventilator-with-arduino/?fbclid=IwAR0KXY4tx61X7w7zphWRrgYNKoTMfLNgeE72xVU2OfEys_CxFHYRm5ehApI - -- "Can a CPAP fan become a ventilator"? https://hackaday.com/2020/03/18/can-a-cpap-fan-become-a-ventilator/ 1-help-battle-coronavirus-so -- BioCurious biohackerspace in Silicon Valley, helping coordinate hacker/maker efforts around COVID-19. https://covidbase.com/https://covidaccelerator.com