
Read this first
Please add project ideas by Thursday Feb 18 2021 if possible

Instructions: Copy/paste the template below and add your project’s details. Remember:

1.​ This year, students will be given 175 hour projects (about half as long as previous
years) - take this into account with your expectations and project sizes.

2.​ Projects must be code projects. Not research projects or tech projects that aren’t code
(e.g. no pure design, docs, or ux projects)

3.​ Questions? Please email obf-gsoc-mentors@googlegroups.com (all mentors and
admins), obf-gsoc-admins@googlegroups.com (admins only), or book a chat.

TEMPLATE: (please copy/paste this template to add your project below)

PROJECT TITLE + ORGANISATION

●​ Project description
○​ <tell us about your project>

●​ Languages and skills needed
○​ (Shorter lists are more likely to attract a broader range of candidates)
○​ Language / skill
○​ Language / skill

●​ Difficulty
○​ <Easy/Medium/Hard> - if possible use qualifiers, e.g. “easier if you

know react, medium if not”
●​ Mentors

○​ <name>, contact info (email, github id, etc. as desired)
●​ Student Benefits

○​ <details if relevant / or delete>
●​ How to Apply

○​ <instructions if relevant - maybe add a chat room, application template,
or other requirements>

2021 OBF projects

PROJECT TITLE + ORGANISATION

●​ Project description
○​ <tell us about your project>

mailto:obf-gsoc-mentors@googlegroups.com
mailto:obf-gsoc-admins@googlegroups.com
https://calendly.com/yo-yehudi-manchester/gsoc-chat?month=2021-02

●​ Languages and skills needed
○​ (Shorter lists are more likely to attract a broader range of candidates)
○​ Language / skill
○​ Language / skill

●​ Difficulty
○​ <Easy/Medium/Hard> - if possible use qualifiers, e.g. “easier if you know react,

medium if not”
●​ Mentors

○​ <name>, contact info or github id
●​ Student Benefits

○​ <details if relevant / or delete>
●​ How to Apply

○​ <instructions if relevant - maybe add a chat room, template, or other
requirements>

Distributed workflow execution with data streaming (Common
Workflow Language project / Toil)

●​ Project description

Command line scientific analysis tools often support streaming data into or out of the tool. (At
the command line we use the unix pipe “|” or named pipes to implement this). This speeds up
the analysis by avoiding slow disk/storage IO.

While the CWL standard supports this approach, no CWL-aware workflow system makes use of
this optimization.

You would implement this feature (automatic streaming data in and out of scientific computing
tools) to one of the CWL workflow engines, such as Toil (which is Python based).

The first iteration would stream in and out of object stores (Amazon S3, Google Cloud Storage,
etc..). More advanced implementations may feature direct streaming between the tools, but this
requires refactoring the job scheduling engine.

Notes:

All work must be done openly and under the Apache 2.0 license.

●​ Languages and skills needed
○​ Python

●​ Difficulty
○​ Medium to Hard

https://en.wikipedia.org/wiki/Named_pipe
https://www.commonwl.org/
https://www.commonwl.org/#Implementations
https://github.com/DataBiosphere/toil
https://en.wikipedia.org/wiki/Object_storage#Cloud_storage
https://en.wikipedia.org/wiki/Object_storage#Cloud_storage

●​ Mentors
○​ Michael R. Crusoe

●​ Student Benefits
○​ If successful, you will have contributed a major feature to a popular workflow

engine!
●​ How to Apply

○​ Get in touch with us at https://github.com/DataBiosphere/toil/issues/3469

Enabling and prototyping JavaScript visualizations in the
Qt-based viewer TOPPView (OpenMS)

1.​ Project description

OpenMS is an open-source library and toolset for mass-spectrometry data analysis. One
of its key capabilities is the visualization of mass-spectrometry data via its viewer
“TOPPView”. TOPPView is written in C++ using the Qt (currently 5.x) library. However,
TOPPView is lacking some often requested high-level summary views of results that are
produced by OpenMS’ other tools. In the typical open-source spirit we would like to
integrate other open-source libraries by the community that already solved this problem
sufficiently. Unfortunately, most of the successful interactive visualization libraries in this
research area are developed in JavaScript (Nightingale, Lorikeet) and reimplementation
in C++ would be tedious. Also, general JavaScript-based plotting libraries like Plotly.js
would be a great addition for the Viewer. With this addition, we hope to attract both new
users and (frontend) developers.

Therefore we are looking for a student that enables the usage of JavaScript libraries
within TOPPView, probably using the QtWebEngine AddOn. The aim of the project
would be to develop an easy-to-use interface between QtWebEngine to the existing
C++-based QWidgets and showcase this interface by integrating one or more
visualization prototypes that we developed for external JavaScript supporting workflow
systems (KNIME) that read the data from a table instead of our C++ data structures. If
time permits, additional library integrations or own visualizations could be developed.

An example of a similar project tackling general data visualizations might be
https://github.com/YimingYAN/qvisualisation.

2.​ Languages and skills needed
○​ C++ (intermediate; mostly for interfacing with Qt)
○​ Basic knowledge about Qt slots and signals helps
○​ CMake (basic knowledge to build OpenMS/TOPPView and add a dependency to

the new addons needed)
○​ Git (basic; our Git workflow can be learned quickly but it should be done during

the application period)

https://github.com/DataBiosphere/toil/issues/3469
https://ebi-webcomponents.github.io/nightingale/#/
http://proteomicsresource.washington.edu/lorikeet/specview.html
https://plotly.com/javascript/
https://doc.qt.io/qt-5/qtwebengine-webenginewidgets-markdowneditor-example.html
https://www.knime.com/

○​ JavaScript (intermediate; react to signals from Qt using e.g. qtwebchannels.js
library)

○​ Abstract knowledge about the data to be visualized in mass-spectrometry can be
acquired in a few days or when the need arises

3.​ Difficulty
○​ Medium (easy if you are an expert in Qt)

4.​ Mentors
○​ Julianus Pfeuffer (@jpfeuffer)

5.​ Student Benefits
○​ Practical experience in proteomics and metabolomics, using an open-source

software project that is used around the world
○​ Gain insight into the development process of a medium-size open-source project

(including working with continuous integration systems and pull request reviews)
○​ Improving your oral and written communication skills in a team environment

6.​ How to Apply
○​ For the short period of this year’s GSOC we require a first minor contribution to

our GitHub project to see that the student’s coding environment is correctly set
up and that they are familiar with a basic Git workflow.

○​ Provide a cover letter that explains why your skills would be a good fit. If you
don’t have the skills, explain why you would like to learn those skills (2 pages
maximum)

○​ Provide a resume with a list of skills and experience (2 pages maximum)
○​ Provide a breakdown of how you’d run this project – i.e. Features A, B delivered

in the first two weeks, Features C, D delivered in later weeks. Show your
proposal to mentors for feedback as they may be able to suggest improvements!

○​ Provide links to any other code you might have contributed to eg. Github,
bitbucket repos/commits

Deploying deep learning models (OpenMS)

7.​ Project description

OpenMS is an open-source library and toolset for mass-spectrometry data analysis.
Similar to other fields, many state-of-the-art methods nowadays use deep learning, are
python based and use one of the prominent deep learning frameworks.

To make these methods available to a larger audience and to integrate with larger
OpenMS workflows, we are looking for a student that carefully evaluates how existing
deep learning methods and models can be natively used and deployed in OpenMS. The
outcome of the project would be an OpenMS tool written in C++ that uses a published
model, potentially performs some retraining to adapt current data and performs the
predictions. E.g. one application could be predicting when peptides elute from a

chromatographic column (see e.g., https://github.com/compomics/DeepLC). Ideally, all
supported operating systems (Mac, Win, Linux) will be covered.

8.​ Languages and skills needed
○​ C++ (intermediate)
○​ Basic knowledge of deep learning frameworks
○​ CMake (basic knowledge to build OpenMS/TOPPView and to add new

dependencies to machine learning framework)
○​ Git (basic; our Git workflow can be learned quickly, but it should be done during

the application period)
○​ Abstract knowledge about mass spectrometry data, can be acquired in a few

days or when the need arises
9.​ Difficulty

○​ Medium
10.​Mentors

○​ Timo Sachsenberg (@timosachsenberg)
○​ Oliver Alka (@oliveralka)

11.​ Student Benefits
○​ Practical experience in the field of proteomics and metabolomics, using an

open-source software project that is used around the world
○​ Gain insight into the development process of a medium-size open-source project

(including working with continuous integration systems and pull request reviews)
○​ Improving your oral and written communication skills in a team environment

12.​How to Apply
○​ For the short period of this year’s GSOC we require a first minor contribution to

our GitHub project to see that the student’s coding environment is correctly set
up and that they are familiar with a basic Git workflow.

○​ Provide a cover letter that explains why your skills would be a good fit. If you
don’t have the skills, explain why you would like to learn those skills (2 pages
maximum)

○​ Provide a resume with a list of skills and experience (2 pages maximum)
○​ Provide a breakdown of how you’d run this project – i.e. Features A, B delivered

in the first two weeks, Features C, D delivered in later weeks. Show your
proposal to mentors for feedback as they may be able to suggest improvements!

○​ Provide links to any other code you might have contributed to eg. Github,
bitbucket repos/commits

Implementations of NEON functions (SIMDe)

●​ Project description

SIMD Everywhere (SIMDe) contains portable implementations of (traditionally)
architecture-specific SIMD functionality such as SSE (x86) and NEON (Arm).
This allows code written to target a specific architecture or architecture extension

to be run on any architecture (e.g., running SSE code on an Arm CPU) with
minimal performance penalties.

For this project, you would be implementing NEON functions which are not yet
supported, including implementing entire families of functions SIMDe currently
doesn’t support. For more information, see issue #10 in our issue tracker.

A portable implementation is required for all functions, but you’ll also be using
other ISA extensions (e.g., SSE/AVX, AltiVec, WASM SIMD128, etc.) to create
accelerated implementations for some platforms, as well as tests to ensure
correctness.

●​ Languages and skills needed
○​ C

●​ Difficulty
○​ Medium. Easier if you already know C and/or are familiar with SIMD

programming.
●​ Mentors

○​ Evan Nemerson
○​ Ng Zhi An (@ngzhian)

●​ Student Benefits

You will likely walk away with a fairly deep understanding of how SIMD
programming works and the differences in functionality between various ISA
extensions (including SSE and NEON), which should help you better optimize
software.

You will also have helped make it much easier to port existing software to and
from the Arm architecture, and to develop new software for Arm from non-Arm
machines.

Furthermore, it should provide you with valuable experience with developing
portable software and working with an extensive test suite and CI to verify
correctness.

●​ How to Apply
○​ You can use the SIMDe issue tracker to get in touch (via issue #10 or #702), visit

our chat room on Gitter, or e-mail Evan Nemerson directly.

Implementations of AVX-512 functions (SIMDe)

●​ Project description

SIMD Everywhere (SIMDe) contains portable implementations of (traditionally)
architecture-specific SIMD functionality such as SSE (x86) and NEON (Arm).

https://github.com/simd-everywhere/simde/issues/10
https://github.com/simd-everywhere/simde/issues/10
https://github.com/simd-everywhere/simde/issues/702
https://gitter.im/simd-everywhere/community
mailto:evan@nemerson.com

This allows code written to target a specific architecture or architecture extension
to be run on any architecture (e.g., running SSE code on an Arm CPU) with
minimal performance penalties.

For this project, you would be implementing AVX-512 functions which are not yet
supported, including implementing entire families of functions SIMDe currently
doesn’t support. For more information, see the various AVX-512 issues in our
issue tracker.

A portable implementation is required for all functions, but you’ll also be using
other ISA extensions (e.g., SSE/AVX, AltiVec, WASM SIMD128, etc.) to create
accelerated implementations for some platforms (including x86 machines which
don’t support AVX-512), plus tests to ensure correctness.

●​ Languages and skills needed
○​ C

●​ Difficulty
○​ Medium. Easier if you already know C and/or are familiar with SIMD

programming.
●​ Mentors

○​ Evan Nemerson (@nemequ)
●​ Student Benefits

You will likely walk away with a fairly deep understanding of how SIMD
programming works and the differences in functionality between various ISA
extensions (including SSE and NEON), which should help you better optimize
software.

You will also have helped make it easier to port existing x86 software to other
architectures such as Arm, RISC-V, PPC, etc., and made it easier for software to
take advantage of new ISA extensions which are not yet widely available.

Furthermore, it should provide you with valuable experience with developing
portable software and working with an extensive test suite and CI to verify
correctness.

●​ How to Apply
○​ You can use the SIMDe issue tracker to get in touch (via one of the AVX-512

issues or #702), visit our chat room on Gitter, or e-mail Evan Nemerson directly.

https://github.com/simd-everywhere/simde/issues?q=is%3Aissue+is%3Aopen+AVX-512+label%3Ainstruction-set-support
https://github.com/simd-everywhere/simde/issues/702
https://gitter.im/simd-everywhere/community
mailto:evan@nemerson.com

Development of a user interface for the Ensembl Variant Effect
Predictor neXtProt plugin as one of the community tools hosted
on the neXtProt portal (Swiss Institute of
Bioinformatics/CALIPHO)

●​ Project description

In order to be able to interpret human genomic variation data, several open source
tools such as the Ensembl Variant Effect Predictor (VEP) have been developed to predict the
structural and functional effects of variants (SNPs, insertions, deletions, CNVs or structural
variants) on genes, transcripts, and protein sequences, as well as regulatory regions. The VEP
tool takes input variants in different formats such as VCF, HGVS and variant identifier formats
such as SNPs, and produces the output with the predicted effect on the selected biological
entities. The VEP tool has numerous plugins including a neXtProt plugin, which was made
public last november as a command line. This plugin improves the accuracy of predictions
about coding single nucleotide polymorphisms by integrating manually curated information
from neXtProt about domains, PTMs, interacting regions etc. associated with the affected
amino-acid positions.

neXtProt is an open source discovery platform for human genes and proteins developed at the
Swiss Institute of Bioinformatics (ELIXIR-CH). The neXtProt team would like to develop a web
based user interface for the VEP neXtProt plugin and include it as one of the community tools
hosted on the neXtProt portal, in order to improve its accessibility.

The proposed user interface visualizes the predicted variant effect output for all variants within
a neXtProt entry. It has to handle the possibly large number of variants in the neXtProt entry
and handle the corresponding large VEP output in an optimal manner. The student is expected
to have knowledge in REST APIs and to utilize the neXtProt API to get the variants given a
neXtProt accession. The student has the choice of the web technology to use to implement the
UI (Javascript based technologies recommended). The UI has to handle large amounts of
prediction data and visualize them in an efficient and user friendly manner.

●​ Languages and skills needed
○​ HTML/Javascript/CSS
○​ React/Angular
○​ Knowledge of REST API

●​ Difficulty
○​ Medium/Hard

●​ Mentors
○​ Kasun Samarasinghe, kasun.wijesiriwardana@sib.swiss

https://www.ensembl.org/info/docs/tools/vep/index.html
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#input
https://www.nextprot.org/help/technical-corner
https://api.nextprot.org/

○​ Lydie Lane, lydie.lane@sib.swiss
●​ Student Benefits

○​ To gain experience in implementing efficient UIs for big data visualization
●​ How to Apply

○​ Email the CV and a short description on the skills relevant for the project `​

gtfbase - A curated resource of multispecies
genomic regions

●​ Project description
○​ Each genome has some common features: exons that make the mRNA, coding

domain sequence (CDS), and untranslated regions (UTRs) that are located both
towards the 5’ and 3’ ends of the transcripts. ENSEMBL (http://ensembl.org/),
Gencode (https://www.gencodegenes.org), and NCBI
(https://www.ncbi.nlm.nih.gov/) are some of the key available resources that
provide access to these features in the form of General Transfer Format (GTF)
files (https://uswest.ensembl.org/info/website/upload/gff.html). While GTF files
are by themselves comprehensive, a lot of analysis is focused on individual
features. For example, any analysis focused on transcriptional regulation would
focus more on exons and possibly introns and non-coding RNA than UTRs while
translational regulation analysis would focus on only the CDS and possibly the
UTRs. These analyses often require a BED file
(https://uswest.ensembl.org/info/website/upload/bed.html). Though it is trivial to
obtain a BED file from GTF, currently there are no resources that provide ready
access to BED files. Though the GTF is supposed to be a standard format, there
are differences in the annotation features for different species.

○​ We have a collection of scripts currently available as part of gencode_regions
repository: https://github.com/saketkc/gencode_regions that provides ready
access to BED files of 5’UTR/exons/CDS/3’UTRs across multiple species. We
plan to generalize these scripts into a usable tool that can be used to generate
BED files for a variety of use cases and serve as a readily updated database of
BED files that will keep in sync with ENSEMBL’s GTF releases.

○​ Goals: The current codebase is in Python and makes use of gffutils library
for processing GTFs. The GTFs themselves cannot be assumed to be free
of errors and hence while processing we need to be able to handle issues
such as overlapping regions or infer missing feature annotations from
known features. The student will execute the following:

■​ Convert the existing scripts to a library with an extensible API that can be
exposed to command line

■​ Create a modular pipeline that will use the above library to create BEDs
for GTFs of all organisms hosted on ENSEMBL:
https://uswest.ensembl.org/info/data/ftp/index.html

■​ The following bed files should be supported at the minimum:
a.​ 5’ UTR
b.​ CDS
c.​ Exons
d.​ Introns
e.​ Start codons
f.​ Stop codons
g.​ Non-coding RNA
h.​ 3’ UTR
i.​ First exons
j.​ Last Exons

●​ Languages and skills needed
○​ Requires Python programming and some knowledge of Biology/genomics.

●​ Difficulty
○​ Medium, easier if you are familiar with Python and the GTF file format

●​ Mentors
○​ Saket Choudhary- saketkc@gmail.com
○​ Amal Thomas- amalthomas111@gmail.com

●​ Student Benefits​
○​ Implementing and extending a bioinformatics software project that is a

requirement of every bioinformatics researcher in one way or another
○​ Gaining practical experience in writing a scientific manuscript
○​ Improving your oral and written communication skills in a team

environment
○​ Authorship on a scientific manuscript (conditional on if we decide to write

one)
●​ How to Apply

○​ Get acquainted with gencode_regions, GTF, BED file formats (before
GSoC!)

○​ Provide a cover letter that explains why your skills would be a good fit. If
you don’t have the skills, explain why you would like to learn those skills. 2
pages maximum.

○​ Provide a resume with a list of skills and experience. 2 pages maximum.
○​ Provide a breakdown of how you’d run this project – i.e. Features A, B

delivered in the first two weeks, Features C, D delivered in later weeks.
○​ Show your proposal to mentors for feedback as they may be able to

suggest improvements!

○​ Provide links to any code you might have contributed to eg. github,
bitbucket repos/commits

Genomic Context Visualization modules - ETEToolkit/eggNOG

●​ Project description

This proposal involves two bioinformatic resources that enable phylogenomic analysis
at the large scale: ETE Toolkit and eggNOG.

○​ ETE (Environment for Tree Exploration) is a Python computational framework
that assists in the programmatic reconstruction, analysis and visualization of
phylogenetic trees and multiple sequence alignments. It provides both a
comprehensive API to interact with phylogenomic data, and a collection of
general-purpose command-line tools.

○​ eggNOG (evolutionary genealogy of genes - Non-supervised Orthologous
Groups) consists of a public database of phylogenomic data, and a set of
open-source tools (e.g. eggNOG-mapper) for fast functional annotation of newly
sequenced genomes and metagenomes. eggNOG resources use ETE libraries
extensively for i) building the evolutionary histories of all gene families (4.4M
phylogenetic trees in current eggNOG), ii) computing fine-grained orthology
assignments (identifying the same genes over multiple genomes) across 5,000
reference species and iii) improving functional annotation of novel genes.

The purpose of this proposal is to develop an ETE Toolkit extension that allows for the

visualization of genomic context (i.e. synteny) of the orthologous groups provided by eggNOG.

●​ Languages and skills needed
○​ Python (intermediate)
○​ Javascript (intermediate)
○​ Visualization libraries, including low level drawing with SVG, Qt,

etc.(intermediate/advance)
●​ Difficulty

○​ Easy if you know ETEToolkit and have experience with general visualization
libraries.

●​ Mentors
○​ Jaime Huerta Cepas (jhcepas@gmail.com, @jhcepas)
○​ Joaquín Giner Lamia (ginerorama@gmail.com)
○​ Carlos Perez Cantalapiedra (cpcantalapiedra@gmail.com)

●​ Student Benefits
○​ Full integration into a genomics research lab
○​ Implementations would have a direct impact on well established resources
○​ Training in bioinformatics

http://github.com/etetoolkit/ete
http://eggnog.embl.de
mailto:cpcantalapiedra@gmail.com

●​ How to Apply
○​ Send (by email) resume, links to previous work and a short motivation letter.

Developing WellcomeML further for visualisation of academic
research data

WellcomeML (https://github.com/wellcometrust/WellcomeML) currently contains a good set of
utils for reading, processing, embedding, extracting entities, and classifying academic text data
(publications, grants, and other documents) using machine learning. However the visualisation
modules of that library are a bit thin. Some code has been developed in this space, including
(BertViz) https://github.com/jessevig/bertviz, and other internal/external repositories, but they
are very ad-hoc. There has been some discussions about standardising the way we visualise
the results of that library, currently reflected on the following issues:

●​ #220: Meta-issue about all visualisation discussions
●​ #221: Visualising academic topics/clustering results
●​ #222: Visualising predictions of text classifiers

In this project, the student will be involved in the proposal of a new feature regarding one of the
visualisation themes above. The project will be deemed successful if we end up with one (or
more) RFC pull-request(s), and a set of examples using open academic research data, provided
by the core maintainers.

Languages and skills needed

Python​
Some interactive visualisation experience is desirable (e.g. plotl.ly/ dash, bokeh.
https://docs.bokeh.org/en/latest/, hv https://holoviews.org)

Difficulty

Medium/Hard, it depends on how far into the visualisations the student wants to go.

Mentors

Antonio Campello (@aCampello)
Liz Gallagher (@lizgzil)
Nick Sorros (@nsorros)

Student benefits

https://github.com/wellcometrust/WellcomeML
https://github.com/jessevig/bertviz
http://plotl.ly/
https://docs.bokeh.org/en/latest/
https://docs.bokeh.org/en/latest/
https://holoviews.org

The student will work with open-research data, be involved with a very active team on the topic
through discussions/code reviews, RFCs PRs, and will be able to do hands-on work-on with
python visualisation frameworks.

How to apply
Comment directly on one of the issues above (https://github.com/wellcometrust/WellcomeML)
demonstrating interest in pursuing it. Alternatively, you can e mail one of the maintainers
directly: (a.campello, e.gallagher, n.sorros)@wellcome.org.

Development of the Journal Code Policy Backend operations and
routes (Code Is Science)

●​ Project description
○​ In CodeIsScience, a journal code review policy database is under development,

with its front/backend split in two different repositories
(https://github.com/codeisscience/codecompliance-backend/ and
https://github.com/codeisscience/codecompliance-frontend/). The
code-compliance will be used to retrieve information about scientific journals and
check which of them do or not have policies in respect to open-source code and
how much they enforce it (for example, if it must be fully peer-reviewed or just
partially, or even if there’s any code peer-review).

●​ Languages and skills needed
○​ Python (basics)

●​ Difficulty
○​ Medium, easier if familiar with Flask

●​ Mentors
○​ João Paulo Taylor Ienczak Zanette, (jpaulotiz@gmail.com, @jptiz)
○​ Yo Yehudi, yochannah@gmail.com

●​ Student Benefits
○​ Gain experience implementing and deploying hands-on flask applications based

on a predefined specification, with small
●​ How to Apply

○​ Please visit our GitHub repos above to comment on issues (primarily the
backend one) or join the Slack to chat.

Mentor list
1.​ Michael R. Crusoe

https://github.com/wellcometrust/WellcomeML
https://github.com/codeisscience/codecompliance-backend/
https://github.com/codeisscience/codecompliance-backend/
https://github.com/codeisscience/codecompliance-backend/
https://github.com/codeisscience/codecompliance-backend/
https://github.com/codeisscience/codecompliance-backend/
https://github.com/codeisscience/codecompliance-backend/
mailto:jpaulotiz@gmail.com
https://join.slack.com/t/codeisscience/shared_invite/zt-olg2i9ck-itgSqIrFT533Q1bb6_o5wg

2.​ Timo Sachsenberg (@timosachsenberg)
3.​ Julianus Pfeuffer (@jpfeuffer)
4.​ Oliver Alka (@oliveralka)
5.​ Jaime Huerta Cepas (jhcepas@gmail.com, @jhcepas)
6.​ Joaquín Giner Lamia (ginerorama@gmail.com)
7.​ Carlos Perez Cantalapiedra (cpcantalapiedra@gmail.com)
8.​ Saket Choudhary- saketkc@gmail.com
9.​ Amal Thomas- amalthomas111@gmail.com
10.​Kasun Samarasinghe, kasun.wijesiriwardana@sib.swiss
11.​Lydie Lane, lydie.lane@sib.swiss
12.​Evan Nemerson <evan@nemerson.com>
13.​Ng Zhi An (@ngzhian)
14.​Yo Yehudi yochannah@gmail.com
15.​Antonio Campello (@aCampello)
16.​Liz Gallagher (@lizgzil)
17.​Nick Sorros (@nsorros)
18.​João Paulo Taylor Ienczak Zanette (jpaulotiz@gmail.com, jptiz)

mailto:amalthomas111@gmail.com
mailto:evan@nemerson.com
mailto:jpaulotiz@gmail.com

	Read this first
	PROJECT TITLE + ORGANISATION
	●​Languages and skills needed
	●​Difficulty
	●​Mentors
	●​ Student Benefits
	●​How to Apply

	2021 OBF projects
	PROJECT TITLE + ORGANISATION
	●​Languages and skills needed
	●​Difficulty
	●​Mentors
	●​ Student Benefits
	●​How to Apply

	Distributed workflow execution with data streaming (Common Workflow Language project / Toil)
	●​Languages and skills needed
	●​Difficulty
	●​Mentors
	●​ Student Benefits
	●​How to Apply

	Enabling and prototyping JavaScript visualizations in the Qt-based viewer TOPPView (OpenMS)
	2.​Languages and skills needed
	3.​Difficulty
	4.​Mentors
	5.​ Student Benefits
	6.​How to Apply

	
	Deploying deep learning models (OpenMS)
	8.​Languages and skills needed
	9.​Difficulty
	10.​Mentors
	11.​ Student Benefits
	12.​How to Apply

	Implementations of NEON functions (SIMDe)
	●​Languages and skills needed
	●​Difficulty
	●​Mentors
	●​ Student Benefits
	●​How to Apply

	Implementations of AVX-512 functions (SIMDe)
	●​Languages and skills needed
	●​Difficulty
	●​Mentors
	●​ Student Benefits
	●​How to Apply

	Development of a user interface for the Ensembl Variant Effect Predictor neXtProt plugin as one of the community tools hosted on the neXtProt portal (Swiss Institute of Bioinformatics/CALIPHO)
	●​Languages and skills needed
	●​Difficulty
	●​Mentors
	●​ Student Benefits
	●​How to Apply

	gtfbase - A curated resource of multispecies genomic regions
	●​Languages and skills needed
	●​Difficulty
	●​Mentors
	●​Student Benefits​
	○​Implementing and extending a bioinformatics software project that is a requirement of every bioinformatics researcher in one way or another
	○​Gaining practical experience in writing a scientific manuscript
	○​Improving your oral and written communication skills in a team environment
	○​Authorship on a scientific manuscript (conditional on if we decide to write one)
	●​How to Apply
	○​Get acquainted with gencode_regions, GTF, BED file formats (before GSoC!)
	○​Provide a cover letter that explains why your skills would be a good fit. If you don’t have the skills, explain why you would like to learn those skills. 2 pages maximum.
	○​Provide a resume with a list of skills and experience. 2 pages maximum.
	○​Provide a breakdown of how you’d run this project – i.e. Features A, B delivered in the first two weeks, Features C, D delivered in later weeks.
	○​Show your proposal to mentors for feedback as they may be able to suggest improvements!
	○​Provide links to any code you might have contributed to eg. github, bitbucket repos/commits
	Genomic Context Visualization modules - ETEToolkit/eggNOG
	●​Languages and skills needed
	●​Difficulty
	●​Mentors
	●​ Student Benefits
	●​How to Apply

	Developing WellcomeML further for visualisation of academic research data
	Development of the Journal Code Policy Backend operations and routes (Code Is Science)
	●​Languages and skills needed
	●​Difficulty
	●​Mentors
	●​ Student Benefits
	●​How to Apply

	Mentor list

