
1 Project 1​
CS 118: Cloud Computing

Assigned: 09/24/25​
Due: 10/15/25 at 11:59 PM Medford Time​

HW should be completed in your presentation group​
Please submit on Gradescope in .zip format or via Github option

Contents
1 Introduction​ 1
2 Get Started & Submission​ 3
Here is the link to our GitHub template repo that contains the starting code. This
assignment will be done individually.​ 3
3 Requirements​ 4
4 Specifying an API with Protocol Buffers​ 5
5 Implementing an API​ 6
6 Context and Metadata​ 11
7 gRPC Interceptors​ 12
8 Your task​ 13

1 Introduction
This project is intended to get you more familiar with gRPC. The official docs are an
excellent resource for learning gRPC concepts. You can learn how to set up and install
everything via this quickstart guide.

gRPC is Google’s RPC framework. An RPC framework allows you to execute functions
remotely - a function pointer (and arguments for said function) get passed to another
computer that executes it, and the result is sent back to your local computer. In practice,
RPC frameworks look and behave very much like traditional HTTP requests, and, in
fact, gRPC uses HTTP/2 under the hood.

1 Last updated 09/24/2025 by Zhaoqi(Roy) Zhang

1

https://www.grpc.io/docs/
https://www.grpc.io/docs/quickstart/go/

So why use gRPC instead of a vanilla HTTP request? Because (a) gRPC has higher
throughput than regular HTTP, and (b) it lets you specify the schema for your server’s
entire API just once, and then automatically generate code implementing your API in
multiple programming languages. It takes away some of the pain of updating distributed
systems components - if you make changes to your server API, you can easily update
clients by just having them import the newly generated code.

gRPC itself is built on Protocol Buffers. Think of protocol buffers as an alternative to
JSON or gzip for formatting messages before they are sent over a network (the wire
format). Protocol buffers convert objects in a programming language to a
highly-compressed binary representation that can be sent over the network, allowing
throughput to be very high.

A consequence of this design is that both client and server must implement custom
converters (serializers and deserializers) to parse message formats back into objects for
your programming language - the good news is that these converters are automatically
generated for you. All your code has to do is call it.

In this project, you will implement the core functionality of a simple chat application that
utilizes gRPC and protocol buffers. You shall learn how to write an API specification
using protocol buffers, how to generate code stubs implementing this API automatically,
how to create clients and servers that invoke gRPC methods, and how to use some
extra goodies (like metadata and interceptors) provided by gRPC - all while getting a
nice distributed service out of it too!

2

https://en.wikipedia.org/wiki/Protocol_Buffers

2 Get Started & Submission

Here is the link to our GitHub template repo that contains the starting code. This
assignment will be done on a group basis. GitHub makes team collaboration easier.

Start & Submission note:

1.​ Don’t clone our template repo. Use create repo with template instead. You have
to work on the created repo.

a.​ As the TA will read your code, you will have to push your code to your own
repo to get grades.

2.​ On submission, upload the following stuff to Gradescope:
a.​ Compressed .zip file of everything you have in the created project repo

i.​ A text file containing the URL of your created repo for this project.
b.​ Your project 1 GitHub repo that is linked to Gradescope

A brief high-level overview of the application we’re building (called WhatsUp) follows. ​
​
We’ve kept the design deliberately simple for pedagogical purposes:

1.​ At heart, it resembles a very naive email service. Users use a client to connect to
a server, can send messages to users currently logged-in with the server, and
can check for new messages. No additional features - like push updates, folder
organization, or message filters - are provided. ​

2.​ Our service is both stateful (users are either logged-in or not) and offers some
security: you shouldn’t be able to log in from a different client as a user if that
user is logged in on a separate client. To implement this, we have a notion of
authentication. When users connect, they are given a unique authentication
token that they must provide in all future requests. When they disconnect, they
must explicitly invalidate the token. Our tokens never expire - we expect our
clients will never abruptly disconnect (an assumption you should never rely on in
production!).

In the assignment, you will find three folders / files:

1.​ client and pkg/client_core.go: Contains code for a WhatsUp client. Its
primary job is querying the server and rendering query results for the command
line.

3

https://github.com/Tufts-CS-118/Project1-gRPC

2.​ server and pkg/server_core.go: Contains code for a WhatsUp server. Its
primary job is to maintain state to verify authentication, and store messages from
users until a client retrieves them.

3.​ pkg/whatsup.proto: The protocol buffer definition. You will generate code
from this file.

WhatsUp client allows you to send and fetch messages. It also allows you to list all
logged in users. In this assignment, your task will be to implement sending and fetching
messages, as well as logging in and ensuring the received authentication token is used
in every subsequent message until logout.

3 Requirements
To receive full credit for this project, we will build and run your binary against integration
tests we’ve written. If your code passes these tests on your working Linux machine, you
should be fine! ​
​
For your benefit, the source code for these integration tests is included in this repository.

4

4 Specifying an API with Protocol Buffers

Let’s take a look at a piece of our whatsup/proto file:

syntax = "proto3"; // required boilerplate - always have this at top

package whatsup; // used in the generated code, see example below

message Registration {

 string source_user = 1;

}

message AuthToken {

 string token = 1;

}​
​
service WhatsUp {

 rpc Connect(Registration) returns (AuthToken);

}

This simplified .proto file essentially says: there exists an API endpoint (belonging to
our service WhatsUp) called Connect. This endpoint accepts a message of type
Registration and responds with a message of type AuthToken. This information is
all indicated by the rpc keyword in the service WhatsUp object.

An rpc can accept only one input type and only one return type, and (if not otherwise
specified) will close the endpoint connection once one message of each type is
exchanged, exactly like a regular HTTP request.

A message itself is just an aggregate containing a set of typed fields. In the above
example, Registration has a single string field called source_user, and
AuthToken has a single string field called token. The = 1, = 2 etc. markers on each
of these fields are required syntactic sugar - under the hood, Protocol Buffers uses them
to order these fields in the binary format of the message. Tags must start from 1.

Many standard simple data types are available as field types, including bool, int32,
float, double, and string. You can also add further structure to your messages by
using other message types as field types, mark some fields as optional and even use
enums. A field may be repeated any number of times (including zero) if the repeated

5

keyword is added before the type. The order of the repeated values will be preserved in
the Protocol Buffers. You can think about repeated fields as dynamically sized arrays.

There is a lot more to Protocol Buffers that can be learned via the documentation.
However this information should be more than sufficient for this class.​
​
Note: technically, only messages are part of the protocol buffers specification. Service
objects and the rpc keyword belong to gRPC, which extends the protocol buffers
specification. While it is rare to use protocol buffers without also using gRPC, knowing
this will help you greatly when looking up documentation - in general, annotations that
seem network-specific (rpc, stream, service) will be found in the gRPC documentation;
all others will be in the protocol buffers documentation. The reason for this split is
because protocol buffers are meant to be use case-agnostic, while gRPC is not.

5 Implementing an API
Once we have our .proto file created, we need to convert it into something that we
can use in our Go code. That is where the magic comes in.

Download and install protoc if you haven’t. Be sure to add protoc to the PATH
variable for your environment, so that you can call protoc from the command line.​
​
Assuming you are in the root of the assignment’s directory, we can run the following
commands:

For the first time, get protoc-gen executable

Locally

go get google.golang.org/protobuf/cmd/protoc-gen-go

go get google.golang.org/grpc/cmd/protoc-gen-go-grpc

To generate go code from proto while in the root folder of this

project​
protoc --go_out=. --go_opt=paths=source_relative --go-grpc_out=.

--go-grpc_opt=paths=source_relative pkg/whatsup.proto

The above command will generate corresponding Go code for all proto files in the
current working directory. For convenience, a Makefile has been provided in this
project that will run the last command for you.

6

https://developers.google.com/protocol-buffers/docs/proto3#simple
https://www.grpc.io/docs/
https://developers.google.com/protocol-buffers/docs/proto3#simple
https://developers.google.com/protocol-buffers/docs/downloads

When you now inspect the whatsup folder, you should see two new files generated for
you:​

1.​ pkg/whatsup.pb.go: This file contains the generated code for all of the
protocol buffer messages.

2.​ pkg/whatsup_grpc.pb.go: This file contains the generated client and server
code for your RPCs

You don’t have to inspect these files too thoroughly - much of it is deep implementation
code needed for gRPC to work properly. There are a few key things you should take
note of, though.

Message Types have Become Go Structs​

In whatsup.pb.go, all of your message types have now been implemented as structs
- for example, the protobuf type

message Registration {

 string source_user = 1;

}

has been converted into the Go struct definition

package whatsup // produced by the `package` keyword in .proto​
​
…​

type Registration struct {

​ state protoimpl.MessageState

​ sizeCache protoimpl.SizeCache

​ unknownFields protoimpl.UnknownFields

​ SourceUser string `protobuf:"..."`

}

This means you can now create Registration objects like any other Go object:

7

import (​
 "whatsup/whatsup",​
 "fmt"​
)​

func main() {

 r := whatsup.Registration{SourceUser: "foo"}​
 fmt.Println("%+v", r)

}

RPC Definitions Have Become Go Interfaces

In whatsup_grpc.pb.go, your RPC call has now been implemented as interfaces
satisfied by a client and a server - for example, the RPC call

service WhatsUp {

 rpc Connect(Registration) returns (AuthToken);

}

has been converted into the following Go interfaces and helper functions / structs

package whatsup // produced by the `package` keyword in .proto​

type WhatsUpClient interface {

​ Connect(ctx context.Context,

 in *Registration,

 opts ...grpc.CallOption) (*AuthToken, error)

}

​
// returns a struct that implements WhatsUpClient​
func NewWhatsUpClient(_ grpc.ClientConnInterface) WhatsUpClient {...}​
​
type WhatsUpServer interface {

​ Connect(context.Context, *Registration) (*AuthToken, error)

}

8

// this becomes important when implementing WhatsUpServer interface

type UnimplementedWhatsUpServer struct {}

For clients, the interfaces have already been implemented by gRPC, so you can just
ask for a new client using whatsup.NewWhatsUpClient():

import (​
 "whatsup/whatsup",

 "google.golang.org/grpc",

 "context",​
 "fmt"​
)​

func main() {​

​ // Establish a connection to the chat server

​ connection, _:= grpc.Dial(

​ ​ // specify the address of the server - example below

​ ​ "localhost:8000",

​ ​ // indicate we should connect using plain TCP without SSL

​ ​ grpc.WithInsecure(),

 // block thread until connection is established

​ ​ grpc.WithBlock(),

​)

 // create a new gRPC client over this connection

 client := whatsup.NewWhatsUpClient(connection)

 // send a message that returns an AuthToken; blocks until done​
 auth, _:= client.Connect(

 // take a look at the `context` standard library

 context.Background(), ​
 // our payload​
 &whatsup.Registration{

​ ​ SourceUser: user,

​ }

)

​

9

 // should print whatsup.AuthToken{Token: “...”}

 fmt.Println(“%+v”, auth)

}

Server code is slightly more complicated in two ways:​

1.​ Before being used, it must be registered with a “true” server listening on a port. ​

2.​ gRPC does not let you use its default implementations for the server interface -
you must “subclass” UnimplementedWhatsUpServer and implement the
methods yourself. ​

import (​
 "whatsup/whatsup",

 "google.golang.org/grpc",

 "context",

 "net",​
 "fmt"​
)​
​
// a new type that implements whatsup.UnimplementedWhatsUpServer​
type server struct {

​ whatsup.UnimplementedWhatsUpServer

}​
​
// an example implementation of our server interface​
func (s server) Connect(_ context.Context, r *whatsup.Registration)

(*whatsup.AuthToken, error) {​
 token := r.SourceUser + " has been authenticated"​
 return &whatsup.AuthToken{Token: token}, nil

}​

func main() {

​ realServer := grpc.NewServer()

​ whatsup.RegisterWhatsUpServer(realServer, server{})

 // example port and address​
 listen := net.Listen("tcp4", “localhost:8000”)

10

 if err := realServer.Serve(listen); err != nil {

​ ​ fmt.Printf("failed to serve: %v", err)

​ }

}

6 Context and Metadata
Our generated client interface seems to ask for a context.Context object. What is
this mysterious entity? ​
​
Think of context.Context objects as HTTP headers or cookies. They can store
values that a request can supply as meaningful metadata - for example, a context might
contain an authentication token that servers can inspect before honoring the request.
Contexts enable an advanced distributed systems debugging technique known as
distributed tracing, which allows you to collect performance data across all the servers
and functions touched by a single request, by storing all the performance data seen so
far inside a request. ​
​
Contexts have some special properties that HTTP headers or cookies don’t. Contexts
can be programmatically cancelled, letting the server know that the user has requested
the connection to close prematurely. They can also have deadlines, killing the gRPC
request if it does not complete within a certain amount of time. These properties make
contexts very powerful, and can be used in many systems as a way to coordinate work
concurrently or at scale. A good overview of contexts is available in the official docs. ​
​
In our WhatsUp application, we store authentication tokens retrieved by Connect inside
a single context. This context is then passed on to all other requests within the users’
session. Contexts erase the type of the keys and values stored in them, converting
them to interface{} objects, so we recommend gRPC’s official solution to this: the
metadata package, which ensures all values are stored concretely as strings (keys) and
a list of strings (values).​

import (

 "context",​
 "google.golang.org/grpc/metadata",​
 "fmt"​
)​

11

https://opentracing.io/docs/overview/what-is-tracing/
https://golang.org/pkg/context/
https://github.com/grpc/grpc-go/blob/master/Documentation/grpc-metadata.md

​
func main() {​
 ctx := context.Background()​
 // store a key-value pair inside a context ​
 ctx = metadata.AppendToOutgoingContext(ctx, "key", "value")​
​
 // extract the key-value pair before being sent​
 md, _:= metadata.FromOutgoingContext(ctx)

 // Note: to read the same data on the server, use

 // metadata.FromIncomingContext​
​
 // prints a slice, not a string - []string{"value"}​
 fmt.Println("%+v", md["key"])​
}

7 gRPC Interceptors
gRPC interceptors essentially serve as middleware for gRPC calls. Client interceptors
capture the request before the client sends it off to the server. Server interceptors
receive the request before the server processes it. Some use cases for interceptors
could be setting default timeouts, authentication, logging, and testing. See here for a
more in-depth explanation of interceptors. ​
​
In our WhatsUp application, we have implemented and registered a server interceptor
for you that checks if the accompanying request has the appropriate authorization
token. This interceptor then inserts the actual username into the request’s context
before calling the method it was originally supposed to call. It’s not important to know
too much about them, so we won’t touch too much on them - just that they exist, and
serve an important role in building many gRPC applications.

12

https://github.com/grpc/grpc-go/tree/master/examples/features/interceptor

8 Your task

You are expected to complete the core functionality of the WhatsUp application by
implementing two new RPCs (Send and Fetch) using custom message types. You are
also expected to fill out `Register`, a client function that calls our Connect RPC and
returns a context object populated with the authorization token.

●​ Complete the demo.proto file that defines these two RPC services
●​ Generate .pb.go file from demo.proto
●​ Implement the RPCs on the server in the server_core.go file.
●​ Implement calling the RPCs on the client in the client_core.go file.

9 Handin

Once you finish the project, you should submit either

-​ A compressed .zip file of everything you have in the created project repo to
Gradescope.

-​ Make sure all files are in the root directory of the submitted .zip file
-​ Also, upload a text file containing URL to your GitHub repository along

with the code.
-​ Or Github repository directly to Gradescope (check this guide for details)

The autograding will run and give you feedback. You can resubmit the project multiple
times.

Acknowledgements
Special thanks to Theo Benson at Brown University (at CMU now), as we reused some
materials from his distributed system course.

13

https://www.gradescope.com/courses/1116310/assignments/6771054
https://guides.gradescope.com/hc/en-us/articles/21865616724749-Submitting-a-Code-assignment

	1 Project 1​CS 118: Cloud Computing
	Assigned: 09/24/25​Due: 10/15/25 at 11:59 PM Medford Time​HW should be completed in your presentation group​Please submit on Gradescope in .zip format or via Github option

	1 Introduction
	
	2 Get Started & Submission
	Here is the link to our GitHub template repo that contains the starting code. This assignment will be done on a group basis. GitHub makes team collaboration easier.
	3 Requirements
	4 Specifying an API with Protocol Buffers
	5 Implementing an API
	6 Context and Metadata
	7 gRPC Interceptors
	
	8 Your task

