
Reference shapes

(def purple-triangle
 (poly

 0

 0

 0.75

 3

 {:stroke (p-color 0 0 0),

 :fill (p-color 150 0 255),

 :stroke-weight 1}))

(def black-square

 (poly

 0

 0

 0.75

 4

 {:stroke (p-color 0),

 :fill (p-color 0)}))

patterning.layouts
alt-cols
(alt-cols n groups1 groups2)

Fills a group-stream with cols from alternative group-streams

alt-cols-grid-layout
(alt-cols-grid-layout n groups1 groups2)

Every other column from two streams

(alt-cols-grid-layout 4 (repeat purple-triangle) (repeat black-square))

alt-rows
(alt-rows n groups1 groups2)

Fills a group-stream with rows from alternative group-streams

alt-rows-grid-layout
(alt-rows-grid-layout n groups1 groups2)

Every other row from two streams​

cart
(cart colls)

Cartesian Product of two collections

check-seq
(check-seq n groups1 groups2)

returns the appropriate lazy seq of groups for constructing a checked-layout

checked-layout
(checked-layout number groups1 groups2)

does checks using grid layout

(checked-layout 5 (repeat purple-triangle) (repeat black-square))

clock-rotate
(clock-rotate n group)

Circular layout. Returns n copies in a rotation

(clock-rotate 7 purple-triangle)

This didn’t do what I expected when I tried to pass a grid-layout to it…todo: figure out how this one works
(clock-rotate 7 (grid-layout 3 (repeat purple-triangle)))

diamond-layout
(diamond-layout n groups)

Like half-drop

(diamond-layout 4 (repeat black-square))

Tighter spacing than half-drop, rather than rows and columns being placed next to each other they are interleaved.

diamond-layout-positions
(diamond-layout-positions number)

Diamond grid, actually created like a half-drop

drop-every
(drop-every n xs)

(grid-layout 5 (drop-every 2 (cycle [black-square purple-triangle])))

(drop-every 3 (grid-layout 5 (repeat purple-triangle)))

flower-of-life-positions
(flower-of-life-positions r depth [cx cy])

Flower of Life layout ... these are recursive developments of circles

four-mirror
(four-mirror group)

Four-way mirroring. Returns the group repeated four times reflected vertically and

horizontally

(four-mirror purple-triangle)

(four-mirror (checked-layout 3 (repeat purple-triangle) (repeat black-square)))

four-round

(four-round group)

Four squares rotated

(four-round purple-triangle)

frame
(frame grid-size corners edges)

Frames consist of corners and edges.

(frame 5 (repeat black-square) (repeat purple-triangle))

Note: I was expecting it to treat corners and edges as a list (so you could use, say, a random sequence for edge
and corners and have them all be different). Looks like it does this for corners, but not edges. Example:

(frame 5 (cycle [black-square purple-triangle]) (cycle [(v-mirror purple-triangle)

purple-triangle]))

framed
(framed grid-size corners edges inner)

Puts a frame around the other group

(framed 5 (repeat black-square) (repeat purple-triangle) black-square)

grid-layout
(grid-layout n groups)

Takes an n and a group-stream and returns items from the group-stream in an n X n grid

(grid-layout 4 (repeat shape))

grid-layout-positions
(grid-layout-positions number)

calculates the positions for a grid layout

h-mirror
(h-mirror group)

Reflect horizontally and stretch

(h-mirror purple-triangle)

(grid-layout 4 (repeat (h-mirror shape)))

half-drop-grid-layout
(half-drop-grid-layout n groups)

Like grid but with half-drop

(half-drop-grid-layout 4 (repeat black-square))

half-drop-grid-layout-positions
(half-drop-grid-layout-positions number)

Like a grid but with a half-drop every other column

nested-stack
(nested-stack styles group reducer)

superimpose smaller copies of a shape

PLACEHOLDER (TODO: figure out styles parameter)
(nested-stack {:stroke (p-color 0) :fill (p-color 200)} purple-triangle (fn [x] (* x 0.75)))

one-col-layout
(one-col-layout n i groups1 groups2)

Takes a total number of cols, an index i and two group-streams.​
Makes an n X n square where col i is from group-stream2 and everything else is group-stream1

uses one-x-layout with rows

(one-col-layout 8 2 (repeat black-square) (repeat purple-triangle))

one-row-layout
(one-row-layout n i groups1 groups2)

Takes a total number of rows, an index i and two group-streams.​
Makes an n X n square where row i is from group-stream2 and everything else is group-stream1

uses one-x-layout with rows

(one-row-layout 5 3 (repeat black-square) (repeat purple-triangle))

n is number of rows/columns, i is row index at which to place the unique row

one-x-layout
(one-x-layout n i f groups1 groups2)

Takes a total number of rows, an index i and two group-streams.​
Makes an n X n square where row or col i is from group-stream2 and everything else is

group-stream1

place-groups-at-positions
(place-groups-at-positions groups positions)

Takes a list of groups and a list of positions and puts one of the groups at each position

q1-rot-group
(q1-rot-group group)

Used in random-turn-groups.

For reference: (v-mirror purple-triangle)

(q1-rot-group (v-mirror purple-triangle))

q2-rot-group
(q2-rot-group group)

Used in random-turn-groups.

For reference: (v-mirror purple-triangle)

(q2-rot-group (v-mirror purple-triangle))

q3-rot-group
(q3-rot-group group)

Used in random-turn-groups.

For reference: (v-mirror purple-triangle)

(q3-rot-group (v-mirror purple-triangle))

random-grid-layout
(random-grid-layout n groups)

Takes a group and returns a grid with random quarter rotations

(random-grid-layout 4 (repeat purple-triangle))

random-turn-groups
(random-turn-groups groups)

(checked-layout 5 (repeat black-square) (random-turn-groups (repeat (v-mirror

purple-triangle))))

ring
(ring n offset groups)

Better clock-rotate

(ring 7 0.5 (repeat shape))

(ring 7 0.5 (repeat (grid-layout 3 (repeat purple-triangle))))

(to research: what exactly does the offset parameter do?)

scale-group-stream
(scale-group-stream n groups)

sshape-as-layout
(sshape-as-layout sshape group-stream scalar)

Looks like it draws at positions defined by an sshape (but what is an sshape?)

sshape-to-positions
(sshape-to-positions {:keys [style points], :as sshape})

Used by sshape-as-layout

stack
(stack & groups)

superimpose a number of groups

(stack black-square (scale 0.6 purple-triangle) (scale 0.25 black-square))

(stack black-square (scale 0.6 (grid-layout 5 (repeat purple-triangle))) (scale 0.5

purple-triangle))

superimpose-layout
(superimpose-layout group1 group2)

simplest layout, two groups located on top of each other

(superimpose-layout (four-mirror purple-triangle) black-square)

v-mirror
(v-mirror group)

Reflect vertically and stretch

patterning.groups

bottom
(bottom group)

clip
(clip p? group)

clips all sshapes in a group

clip-sshape
(clip-sshape p? {:keys [style points]})

takes a predicate and a sshape, splits the sshape at any point which doesn't meet the

predicate, return group

color-set
(color-set group)

empty-group
(empty-group)

extract-points
(extract-points {:keys [style points]})

filter-group
(filter-group p? group)

filter-sshapes-in-group
(filter-sshapes-in-group p? group)

this removes entire sshapes from the group that have points that don't match the criteria

flatten-group
(flatten-group group)(flatten-group style group)

Flatten all sshapes into a single sshape

group
(group & sshapes)

a vector of sshapes

h-centre
(h-centre group)

Assumes group is taller than wide so move it to horizontal centre

h-reflect
(h-reflect group)

height
(height group)

leftmost
(leftmost group)

mol=
(mol= group1 group2)

more or less equal groups

over-style
(over-style style group)

Changes the style of a group

reframe
(reframe group)

reframe-scaler
(reframe-scaler sshape)

Takes a sshape and returns a scaler to reduce it to usual viewport coords [-1 -1][1 1]

rightmost
(rightmost group)

rotate
(rotate da group)

scale
(scale val group)

stretch
(stretch sx sy group)

style-attribute-set
(style-attribute-set group attribute)

top
(top group)

translate
(translate dx dy group)

translate-to
(translate-to x y group)

v-reflect
(v-reflect group)

width
(width group)

wobble
(wobble noise group)

patterning.library.std
background
(background color pattern)

bez-curve
(bez-curve points style)(bez-curve points)

cross
(cross color x y)

A cross, can only be made as a group (because sshapes are continuous lines) which is why we

only define it now

diamond

drunk-line

h-sin

horizontal-line

nangle

ogee
(ogee resolution stretch style)

An ogee shape

poly

quarter-ogee

rand-angle
(rand-angle seed)

random-rect
(random-rect style)

rect

spiral

spiral-points
(spiral-points a da r dr)

square

star

vertical-line

patterning.library.symbols
flower-of-life
(flower-of-life sides style)(flower-of-life style)

folexample
(folexample)

god-pattern
(god-pattern)

khatim
(khatim style)

ringed-flower-of-life
(ringed-flower-of-life sides style)(ringed-flower-of-life style)

seed-of-life
(seed-of-life style)

patterning.library.complex_elements
all
(all count)

f-left
(f-left count)

f-right
(f-right count)

face-group
(face-group [head-sides head-color] [eye-sides eye-color] [nose-sides nose-color]
[mouth-sides mouth-color])
[head, eyes, nose and mouth] each argument is a pair to describe a poly [no-sides color]​

petal-group
(petal-group style dx dy)
Using bezier curves​

petal-pair-group
(petal-pair-group style dx dy)
reflected petals​

polyflower-group
(polyflower-group sides-per-poly no-polies radius style)(polyflower-group sides-per-poly
no-polies radius)
number of polygons rotated and superimosed​

r-scroll
(r-scroll d da number style extras)

scroll
(scroll [x y] d da number style extras)

spoke-flake-group
(spoke-flake-group style)
The thing from my 'Bouncing' Processing sketch​

vase
(vase d da count style)

zig-zag
(zig-zag [x y])

patterning.library.turtle
basic-turtle
(basic-turtle start-pos d init-angle d-angle string leaf-map style)
turns a string from the l-system into a number of lines​

l-string-turtle-to-group-r
(l-string-turtle-to-group-r [ox oy] d angle da string leaf-map style)
A more sophisticated turtle that renders l-system string but has a stack and returns a group

patterning.library.l_systems
applicable
(applicable [from to] c)

apply-rule-to-char
(apply-rule-to-char rule c)

apply-rules
(apply-rules rules string)

apply-rules-to-char
(apply-rules-to-char rules c)

l-system
(l-system rules)

multi-apply-rules

(multi-apply-rules steps rules string)

	
	
	patterning.layouts
	alt-cols
	

	alt-cols-grid-layout
	alt-rows
	

	alt-rows-grid-layout
	cart
	

	check-seq
	checked-layout
	clock-rotate
	diamond-layout
	diamond-layout-positions
	drop-every
	flower-of-life-positions
	four-mirror
	four-round
	frame
	framed
	grid-layout
	grid-layout-positions
	h-mirror
	half-drop-grid-layout
	half-drop-grid-layout-positions
	nested-stack
	one-col-layout
	one-row-layout
	one-x-layout
	place-groups-at-positions
	q1-rot-group
	q2-rot-group
	q3-rot-group
	random-grid-layout
	random-turn-groups
	ring
	scale-group-stream
	sshape-as-layout
	sshape-to-positions
	stack
	superimpose-layout
	v-mirror
	(v-mirror group)

	patterning.groups
	bottom
	clip
	clip-sshape
	color-set
	empty-group
	extract-points
	filter-group
	filter-sshapes-in-group
	flatten-group
	group
	h-centre
	h-reflect
	height
	leftmost
	mol=
	over-style
	reframe
	reframe-scaler
	rightmost
	rotate
	scale
	stretch
	style-attribute-set
	top
	translate
	translate-to
	v-reflect
	width
	wobble

	patterning.library.std
	background
	bez-curve
	cross
	diamond
	drunk-line
	h-sin
	horizontal-line
	nangle
	ogee
	poly
	quarter-ogee
	rand-angle
	random-rect
	rect
	spiral
	spiral-points
	square
	star
	vertical-line

	patterning.library.symbols
	flower-of-life
	folexample
	god-pattern
	khatim
	ringed-flower-of-life
	seed-of-life

	patterning.library.complex_elements
	all
	f-left
	f-right
	face-group
	petal-group
	petal-pair-group
	polyflower-group
	r-scroll
	scroll
	
	spoke-flake-group
	
	vase
	
	zig-zag
	

	patterning.library.turtle
	basic-turtle
	l-string-turtle-to-group-r

	patterning.library.l_systems
	applicable
	apply-rule-to-char
	apply-rules
	apply-rules-to-char
	l-system
	multi-apply-rules

