

The Linux Foundation
GSoC 2021 Proposal

TABLE OF CONTENTS

Contact Information
0.Introduction
1.Organization Information
2.Project Interested
3.Why this project?
4.Deliverables
5.Project Description
6.Timeline
7.Commitment & Availability
8.Support required
9.Post GSoC Period
10.Open Source Contributions​ & Experiences

Shankho Boron Ghosh​
​ ​ ​ ​ ​

1

 Contact Information

Full Name

Shankho Boron Ghosh <resume>

Email shankhoghosh123@gmail.com <primary>
sghosh_be18@thapar.edu <secondary>

Country India

College
Academic Programme

Thapar Institute of Engineering & Technology
B.E. Electronics & Communication Engineering

Current Year Undergraduate - Junior / 3rd Year

Expected Graduation June 2022

Postal Address

C215, Hostel A,
Thapar Institute of Engineering & Technology,

Patiala, Punjab, India - 147004

Phone +91-9819674639

Github Username growupboron

IRC Nick boron

LinkedIn Profile

www.linkedin.com/in/shankho-ghosh/

Telegram Handle growupboron

Preferred Communication Email, Video Conference

Website

growupboron.github.io/

https://drive.google.com/file/d/1CvAtzpUkH9ePN2srcmYhbl9lBDt6mPzX/view?usp=sharing
mailto:shankhoghosh123@gmail.com
mailto:sghosh_be18@thapar.edu
http://www.thapar.edu/
http://www.thapar.edu/academics/departpages/be-ece-scheme92
https://github.com/growupboron
https://www.linkedin.com/in/shankho-ghosh/
https://growupboron.github.io/

2

 0. Introduction:

I am Shankho Boron Ghosh, a junior at Thapar Institute of Engineering &

Technology, Patiala (India). I am pursuing my majors in Electronics & Communication
Engineering with minors in Computer Science.

I have project-based experience in Python, C, C++, Robot Operating System
(ROS), tensorflow, OpenCV and IoT using Arduino, esp8266 and Raspberry Pi. Being a
quick learner and a natural improviser, and having applied this skill of problem-solving to
win multiple national level hackathons including the prestigious Smart India Hackathon.

I recently interned as a ​Robotics Research Intern ​ at the Indian Institute of
Information Technology, Allahabad. I am also the On-Board Computer engineer​, for the
Student Satellite Team of our university, ThapSat and the ​Data Acquisition Lead for the
Formula Student Team​, FSAE Team Fateh at my university.

I have a good understanding and experience of software and hardware
engineering related development methodologies, tools and usage.

 1. Organization Information: The Linux Foundation

●​ Group Interested: Automotive Grade Linux
●​ Mentors: Jan-Simon Möller, Walt Miner

The Linux Foundation is the nonprofit consortium dedicated to fostering the growth of
Linux. Automotive Grade Linux is an open source project hosted by The Linux
Foundation that is building an open operating system and framework for automotive
applications.

 2. Project Interested: <idea page>

●​ LIDAR visualization application on AGL using ROS2
○​ Integration of the meta-ros layer with Automotive Grade Linux (AGL), to

support Robot Operating System (ROS2) which is an open source
robotics middleware suite.

○​ Develop an application using ROS2 on AGL to visualize LIDAR sensor
data streams to accurately map 2D depth points with the surrounding
environment.

○​ This project would benefit the Automotive Grade Linux (AGL) platform by
making the platform development ready for Advanced Driver Assistance
systems (ADAS) and Autonomous Driving systems using the powerful
Robot Operating System (ROS) framework.

https://drive.google.com/open?id=1-AUpsG_wUS_RT8rhhgdQts_EhuECMCi2
https://www.sih.gov.in/
https://drive.google.com/open?id=1-p4Y3dczNs6mJee2u6RMYssNs_te46RN
http://thapsat.thapar.edu/
http://teamfateh.com/
mailto:jsmoeller@linuxfoundation.org
mailto:wminer@linuxfoundation.org
https://wiki.linuxfoundation.org/gsoc/2021-gsoc-agl

3

 3. Why this project?:
●​ Having first encountered Automotive Grade Linux when we (Team Fateh) had to

decide on a robust platform that could handle low latency data communication
and concurrently be reliable enough for automotive data acquisition (on the
Raspberry Pi prototyping board), part of my duties as Data Acquisition Engineer
at the Formula Student Team​, FSAE Team Fateh at my university. Subsequently,
the principle on which Automotive Grade Linux worked fascinated me.

●​ Having previously used AGL (on Raspberry Pi) for designing a Data Acquisition
System, it’s very clear to me, the minute specificity and the refinement needed
from a user’s perspective and concurrently I possess the relevant desired
development experience.

●​ I have also been participating and actively interacting and engaging in the AGL
community, regularly attending the Weekly Developer Calls, and further
understanding the organization’s development and production pipeline along with
their developer tools and practices.

●​ Local development system specifications :
○​ Lenovo Thinkpad L470 - Intel i5 7th Gen, 16 GB RAM, 512 GB SSD
○​ Operating System -

■​ Primary - Ubuntu LTS
■​ Secondary - Windows 10

●​ I truly believe Open Source is the future and the best technique of learning is by
doing. The perks, opportunities and prestige that are associated with Google
Summer of Code (GSoC) are just added benefits to this.

●​ This project would give the necessary experience and rigor to contribute
meaningfully and efficiently as Data Acquisition Engineer​ to FSAE Team Fateh.

4. Deliverables:
●​ Integrate yocto based meta-ros layer with Automotive Grade Linux (AGL) layers

to support Robot Operating System (ROS 2) infrastructure.
●​ Create custom recipes for ROS modules to support LIDAR drivers and other

unmet dependencies that might arise.
●​ Develop a visualization application for AGL by implementing hector mapping

using LIDAR using ROS2.
●​ Ultimately documenting the whole implementation methodology, so that the

developer community can easily carry on with and independently develop
relevant ROS applications on AGL.

https://www.teamfateh.com/team.html
https://www.teamfateh.com/team.html
https://wiki.automotivelinux.org/dev-call-info
https://teamfateh.com/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-ros/
https://docs.automotivelinux.org/en/master/#3_Developer_Guides/6_AGL_Layers/1_Overview/
https://wiki.yoctoproject.org/wiki/TipsAndTricks/Creating_Recipes_for_ROS_modules
https://github.com/YDLIDAR/ydlidar_ros2_driver
https://layers.openembedded.org/layerindex/recipe/33068/

4

5. Project Description:

Objective: To integrate, deploy and test meta-ros with AGL
layers using the Yocto based Poky and OpenEmbedded Build system
to support Robot Operating System (ROS 2) infrastructure.

1.​Automotive Grade Linux is an open operating system and framework for

automotive applications which is developed using the Yocto Project. Benefits of
using Yocto are :

a.​Develop using common linux OS for all major architecture and boards.
b.​Flexible framework allowing reuse of software.
c.​Changing hardware platforms is easy due to the presence of BSPs.
d.​Access to wide collections of layers and recipes.

2.​Yocto maintains the OpenEmbedded core and poky is the reference distribution
of the Yocto project.

a.​ Poky = OpenEmbedded Build system + metadata
i.​ Metadata: Task definitions / Set of instructions. This contains the

files that OpenEmbedded build system parses when building an
image. It includes recipes, configuration files and instructions on
how to build an image.

b.​ Open Embedded Build system = BitBake + OE-Core (meta/ directory)
i.​ BitBake: A task executor and scheduler. It is a build engine that

works through recipes written in a specific format in order to
perform sets of tasks.

ii.​ OpenEmbedded-Core: OpenEmbedded-Core (OE-Core) is a
common layer of metadata (i.e. recipes, classes, and associated
files) used by OpenEmbedded-derived systems, which includes the
Yocto Project. It consists of foundation recipes, classes and
associated files that are meant to be common among many
different OpenEmbedded systems.

https://layers.openembedded.org/layerindex/branch/master/layer/meta-ros/
https://docs.automotivelinux.org/en/master/#3_Developer_Guides/6_AGL_Layers/1_Overview/
https://www.automotivelinux.org/
https://www.yoctoproject.org/
https://www.openembedded.org/wiki/OpenEmbedded-Core
https://www.yoctoproject.org/software-item/poky/

5

3.​Particularly in Yocto infrastructure, packages are grouped into layers and recipes
are part of layers which are nothing but individual pieces of software. Layers are
different kinds of repositories or folders and multiple recipes can be present
within each layer. Different components of the Yocto project :

a.​ Configuration files (.conf) : Global definition variables [types of machine
architecture, global variables, build path, compiler flags]

b.​ Classes (.bbclass) : Encapsulation and inheritance of build logic [defines
how we build linux kernel, how to generate RPM package, how to create
root file system image]

c.​ Recipes (.bb) : Logical units of SW / Images to build [individual piece of
SW to be built, what packages get included in final file system image.
Recipes includes meta data for the SW such as where we download
upstream sources from, build or runtime dependencies, what feature we
enable in our application, configuration, compilation options, define what
files goes in to what output package]

d.​ Layers (bblayers): Repositories that contain related metadata, set of
recipes.

4.​ Due existence of multiple yocto layers in AGL like :

●​ poky
●​ meta-agl
●​ meta-agl-cluster-demo
●​ meta-agl-demo
●​ meta-agl-devel
●​ meta-agl-extra
●​ meta-agl-telematics-demo
●​ meta-openembedded
●​ etc … … …

●​ meta-security
●​ meta-virtualization
●​ meta-qt5
●​ meta-updater
●​ meta-spdxscanner
●​ meta-clang
●​ BSP layers :

○​ meta-raspberrypi4
○​ meta-intel
○​ meta-ti
○​ meta-renesas-rcar-gen3
○​ meta-sancloud, etc.

It is possible to implement AGL as per the requirement specifications of the
architecture. This leads to the formation of the AGL Unified Code Base (UCB)
which is a Linux distribution built from the ground up through a joint effort by
automakers and suppliers to deliver a modern in-vehicle infotainment and
connected car experience for consumers. The goal of the UCB platform is to
provide 70-80% of the starting point for a production project. This enables
automakers and suppliers to focus their resources on customizing the other
20-30% to meet their unique product needs. The Automotive Grade Linux

https://docs.automotivelinux.org/en/master/#1_Hardware_Support/Overview/
https://docs.automotivelinux.org/en/master/#2_Architecture_Guides/1_Introduction/1_AGL_Requirements_Specifications/
https://www.automotivelinux.org/software/unified-code-base/

6

Software Architecture diagram is as mentioned below. The App/HMI layer
contains applications with vendor associated business logic and HMI.

5.​Robot Operating System is an open source robotics middleware suite. Although

ROS is not an operating system but a collection of software frameworks for robot
software development, it provides services designed for a heterogeneous
computer cluster such as hardware abstraction, low-level device control,
implementation of commonly used functionality, message-passing between
processes, and package management.

6.​Despite the importance of reactivity and low latency in robot control, ROS itself is
not a real-time OS (RTOS). It is possible, however, to integrate ROS with
real-time code. The lack of support for real-time systems has been addressed in
the creation of ROS 2.0, a major revision of the ROS API which will take

https://www.ros.org/
https://en.wikipedia.org/wiki/Real-time_operating_system
https://design.ros2.org/articles/why_ros2.html

7

advantage of modern libraries and technologies for core ROS functionality and
add support for real-time code and embedded hardware with the introduction of
meta-ros layer.

7.​ROS allows you to stop reinventing the wheel and focus on code for new
implementation due to the presence of countless support packages and active
developer community. Software in the ROS ecosystem can be separated into
three groups:

a.​language-and platform-independent tools used for building and distributing
ROS-based software.

b.​ROS client library implementations such as roscpp rospy, and roslisp.
c.​packages containing application-related code which uses one or more

ROS client libraries.

8.​Although the meta-ros layer takes care of most language and
platform-independent tools used for building and distributing ROS-based
software and ROS client library implementations such as roscpp rospy, and
roslisp. There might be some missing packages containing application-related
code which uses one or more ROS client libraries. These can be resolved by
creating custom recipes to port required unmet dependencies (like YDLIDAR
driver) and make it AGL layer compatible.

9.​Finally, the integrated system would be tested on Raspberry Pi 4 hardware board
to finalize the AGL + ROS 2 system and debug corresponding issues that might
arise.

https://layers.openembedded.org/layerindex/branch/master/layer/meta-ros/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-ros/
https://wiki.yoctoproject.org/wiki/TipsAndTricks/Creating_Recipes_for_ROS_modules
https://github.com/YDLIDAR/ydlidar_ros2_driver
https://github.com/YDLIDAR/ydlidar_ros2_driver
https://docs.automotivelinux.org/en/master/#3_Developer_Guides/6_AGL_Layers/1_Overview/

8

Objective: Develop a visualization application for AGL by
implementing hector mapping using LIDAR using ROS2.

1.​ Light detection and ranging (LiDAR) is a remote sensing technology. It usually
has a source of laser (a source of optically amplified light) pulse and a receiver
that accepts the reflection. It uses different computational techniques to find the
distance between the source and the target. The output is usually a point cloud
carrying range/distance information and orientation of the corresponding
line-of-sight.

2.​ The basic principles for traditional LiDAR have been seen in time-of-flight-based
distance measurement and triangulation-based measurement. The ToF concept
uses the delay time between the signal emission and its reflection to compute the
distance to the target. The time delay is not measured for one particular beam’s
round trip. Instead, the phase shifts for multiple signals are used to indirectly
obtain the ToF and then compute the distance. The triangulation method is used
to measure the distance between the source and the obstruction.

3.​ YDLIDAR X4 is a low cost 2D LIDAR solution developed by Shenzhen EAI
Technology Co. The X4 is a triangulation-principle-based LiDAR with a rotating
platform that carries a laser emitter and a receiver lens. It is a 360° 2D
rangefinder with up to 5kHz frequency and 6Hz-12Hz motor speed, and has a
USB interface. It also has a fine angular resolution of 0.48°-0.52° and a range of

https://layers.openembedded.org/layerindex/recipe/33068/
https://en.wikipedia.org/wiki/Lidar
https://www.microcontrollertips.com/lidar-and-time-of-flight-part-2-operation/
https://www.ydlidar.com/products/view/5.html

9

0.12-10m.The output of YDLIDAR is very suitable to build maps, do SLAM, or
build 3D models.

4.​ Hector mapping is a SLAM approach that can be used without odometry as well
as on platforms that exhibit roll/pitch motion (of the sensor, the platform or both).
This method leverages the high update rate of modern LIDAR systems.

5.​ The implementation would be initially performed and tested on a desktop based
conventional ROS 2 system and later be shifted to the Raspberry Pi 4 based
AGL + ROS 2 system. The corresponding LIDAR depth map would look like :

6.​ The possible ways for developing the AGL application to process and visualize
real time LIDAR sensor data can be Qt or HTML 5 based because AGL supports
them well. The probable methods for this are :

a.​ Port existing Qt based rviz application to AGL by creating custom recipes.
Since rviz application is well supported in ROS platform and is still
experimental with respect to ROS2 platform, substantial efforts would be
required to port rviz to ROS2 and later to AGL platform.

b.​ If the above approach fails, develop Qt application from scratch,
something very similar to github.com/malichao/XV11-LIDAR-Visualizer.

The approach would be finalized after deliberation with mentor (Jan-Simon
Möller) at a later stage of GSoC.

​

http://wiki.ros.org/hector_mapping
https://docs.automotivelinux.org/en/master/#3_Developer_Guides/3_Creating_a_New_Application/
https://index.ros.org/r/rviz/
https://wiki.yoctoproject.org/wiki/TipsAndTricks/Creating_Recipes_for_ROS_modules
https://index.ros.org/r/rviz/
https://docs.automotivelinux.org/en/master/#3_Developer_Guides/3_Creating_a_New_Application/
https://github.com/malichao/XV11-LIDAR-Visualizer
mailto:jsmoeller@linuxfoundation.org
mailto:jsmoeller@linuxfoundation.org

10

6. Timeline:

Time Period Milestones

Pre GSoC
14th Apr - 17th May

❏​ Engage within the AGL community.
❏​ Set up a personal blog at

https://growupboron.github.io/.

 Community Bonding Period

18th May - 6th Jun

❏​ Research and gain experience with
relevant tech stacks :
❏​ OpenEmbedded / Yocto

Project
❏​ Robot Operating System

(ROS2)
❏​ Application development on

AGL.

Week 1 & 2
7th Jun - 20th Jun

❏​ Setup development repository.
❏​ Integrate, deploy and test meta-ros

with AGL layers.

Week 3 & 4
21st Jun - 3rd Jul

❏​ Setup YDLIDAR X4 and
experiment with hector mapping
algorithm and test on a desktop
based conventional ROS 2 system.

Week 5 & 6

4th Jul - 17th Jul

❏​ Create custom recipes to port
required unmet dependencies and
YDLIDAR driver to make it AGL
layer compatible and test on
Raspberry Pi 4 based AGL + ROS
2 system.

Week 7 & 8
18th Jul - 1st Aug

❏​ Develop AGL application to
process and visualize real time
LIDAR sensor data on Raspberry
Pi 4 based AGL + ROS 2 system.

Week 9 & 10

2nd Aug - 16th Aug

❏​ Buffer for debugging code /
unintentional delays

❏​ Compile resource list that future
developers can follow.

❏​ Write down and submit the final
project report.

https://growupboron.github.io/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-ros/
https://docs.automotivelinux.org/en/master/#3_Developer_Guides/6_AGL_Layers/1_Overview/
https://www.ydlidar.com/products/view/5.html
http://wiki.ros.org/hector_mapping
https://wiki.yoctoproject.org/wiki/TipsAndTricks/Creating_Recipes_for_ROS_modules
https://github.com/YDLIDAR/ydlidar_ros2_driver
https://docs.automotivelinux.org/en/master/#3_Developer_Guides/6_AGL_Layers/1_Overview/
https://docs.automotivelinux.org/en/master/#3_Developer_Guides/3_Creating_a_New_Application/

11

7. Commitment & Availability:
●​ I have always been keen to learn more, especially about Open Source Software

Development. An opportunity like Google Summer of Code with The Linux
Foundation seems like the perfect path for it. The mentors have been very kind,
patient and helpful to all my queries. I would be honored to continue working with
them.

●​ I am sure that I would be able to devote 20+ hours per week to this cause. My
work timings are very flexible, but I usually start working after 18:00 all the way till
23:00 in UTC+5:30.

●​ I expect to give my full participation during the GSoC period and have no prior
engagements during this period, except that I'm a junior, so there might be time
when I would be unavailable due to academic commitments.

●​ I would suggest starting work earlier than the original GSoC timeline in order to
avoid any unforeseen notices by my university regarding academic examinations.

8. Support Required:

●​ Raspberry Pi 4 as an implementation and testing platform.
●​ LIDAR (YDLIDAR X4) sensor for developing ROS2 visualization application.

9. Post-GSoC Period:

●​ I will add to Automotive Grade Linux’s ROS2 integration documentation and
demo application repository for the foreseeable future and work on continually
improving it.

●​ I will keep contributing and assist other new contributors to explore and learn
projects with this organisation.

10. Open Source Contributions & Experiences​:

●​ Contributions to Open Source :
○​ Automotive Grade Linux : Reworked documentation hosting &

generation and restructured getting started pages and developer guides
as a part of Google Season Of Docs (GSoD'20) program.

○​ Data Version Control : Renamed a function and correspondingly updated
the documentation.

○​ The Turing Way : Wrote and improved some chapters and existing
documentation.

https://www.ydlidar.com/products/view/5.html
https://gerrit.automotivelinux.org/gerrit/q/(status:open+OR+status:merged)+owner:shankhoghosh123%2540gmail.com
https://growupboron.github.io/blog/the-linux-foundation-gsod-2020-project-report/
https://github.com/iterative/dvc/pulls?q=author%3Agrowupboron
https://github.com/iterative/dvc/pull/3797
https://github.com/iterative/dvc.org/pulls?q=author%3Agrowupboron
https://github.com/iterative/dvc.org/pulls?q=author%3Agrowupboron
https://github.com/alan-turing-institute/the-turing-way/issues?q=author%3Agrowupboron+

12

○​ Veritas : Engineering Logbook Project : Maintaining and leading,
university’s official logbook portal.

●​ I have actively developed as well as contributed to several projects; for more
details please refer to my resume and GitHub.

●​ Being an avid hackathon hunter, I have participated in over a dozen hackathons
collecting many laurels, helping me to become a quick learner and a natural
improviser.

●​ I can truly say that my experiences taught me the value of patience,
perseverance, and to constantly strive for honor and excellence.

●​ I believe in learning by doing and have been exposed to a lot of things and I will
always treasure the insights that I’ve earned both in and outside the portals of the
university.

https://github.com/EngineerLogbook
https://drive.google.com/file/d/1CvAtzpUkH9ePN2srcmYhbl9lBDt6mPzX/view?usp=sharing
https://www.github.com/growupboron
https://drive.google.com/open?id=1-AUpsG_wUS_RT8rhhgdQts_EhuECMCi2

