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This is where we collectively describe algorithms for these problems.  To see the problem 
statements follow this link.  To see the scoreboard, go to this page and select this contest. 
 
A. Destroying Array 
 
The key here is to work backwards.  Rather than destroying each element, we reverse the 
ordering array and simulate creating each element of the array.  We use a union find 
structure to track which elements are part of the same segment, augmented with the sum of 
the values in that segment. 
 
Each time we create an element, we check if its neighboring elements have already been 
created.  If so, we union them together, and update the sum of their segment.  We also track 
the running maximum value across all the segments, which we can update in O(1) time.  At 
each step, we record this maximum, then reverse it at the very end as the result. 

--Tom W 
 
B. Minimum spanning tree for each edge 
 
Associate to each vertex a binary tree with a single node representing the vertex. During 
Kruskal’s algorithm, when unioning two components A and B, associate to the new 
component a binary tree whose root represents the edge joining A and B and whose children 
are the trees associated with A and B. Once completed, we have the MST and a binary tree 
whose leaves represent the vertices of the graph, and the heaviest edge in the MST 
between any pair of vertices is represented by the LCA of the leaves. 
 
For each edge in the MST, the size of the MST is the answer. For every other edge uv with 
weight w, find the heaviest edge in the MST between u and v, of weight w’; the MST 
containing uv is obtained by replacing this heaviest edge with uv, so the answer is (size of 
MST) - w’ + w. 
 
For finding the LCA, because we know all the necessary queries after obtaining the MST, 
Tarjan’s offline LCA algorithm, which is also based on union-find, can be used. (The basic 
idea is to traverse the tree depth-first and keep track of the ancestors of visited nodes using 
union-find, checking at each step whether a query can be answered.) 

--bney 
 
Thanks bney.  I must point out an easier solution, which contains the building blocks for the 
solutions to E. Envy described below. 
 
We run Kruskal’s algorithm on the graph.  We use union by rank, and no path compression.  
Also, when we link two roots together by the union operation, the root node that got linked to 
a parent remembers the weight of the edge used to do that link. 
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Take a snapshot of the state of the world at some point in time.  There is a current set of 
trees that have been built by the edges selected by Kruskal’s algorithm.  Each of these trees 
T has a counterpart tree T’ in the union/find data structure that has the same nodes and 
same edges (weights) but different structure.  These union/find trees have two important 
properties: 
 

(1)​The length of a path from a node in T’ to the root is at most log n. 
(2)​Given two nodes (a,b) in T, let w(a,b) the weight of the most expensive edge on the 

path from a to b in T.  Let w’(a,b) be the same except using T’.  Then we have that 
w(a,b) = w’(a,b) 

 
These properties can be proven by induction.  Basically what is happening is this.  Say 
Kruskal’s is linking two trees T1 and T2 together by adding an edge e of weight w.  Say a is 
in T1 and b is in T2.  Then the most expensive edge on the path from a to b is w.  Note that 
when the union/find algorithm links T1’ and T2’ together the edge used to link them is the 
most expensive edge in T1 and T2.  Also, the path from a to b in the union/find tree MUST 
GO THROUGH that most expensive edge.  So although the path from a to b in the union/find 
tree is much shorter than the path in the MST, that path must contain the most expensive 
edge on the path. 
 
Now we have do queries of the form: what’s the cost of the MST containing edge (i,j)?  So at 
the end Kruskal’s has produced one tree T, and we have the corresponding union/find tree 
T’.  If edge (i,j) is in T, then our answer is the cost of the MST.  If (i,j) is not in T then we can 
introduce (i,j) and remove the most costly edge on the cycle in T that it creates.  That gives 
the MST containing (i,j). 
 
And we can find that most costly replacement edge to (i,j) by using T’.  We just find the least 
common ancestor of i and j, and take the maximum cost edge on the path between them.  
Since T’ has depth at most log n, we can do this easily in O(log n) just by walking up the two 
paths (from i and from j) and figuring out the deepest point in the tree where they meet.  As 
we’ve shown, that path contains the most expensive edge. 

--Danny 
C. Swaps in Permutation 
 
First we determine which indices can be swapped into which other positions.  We use a 
union find structure (with n sets) and union two indices if there is a swap between them.  
Then we sort digits of the permutation within each set.  One way to to this is to create a heap 
for each set and insert all the digits at indices within that set into the heap.  To create the 
final output, we loop over the indices, find which set it belongs to, and pop from the 
corresponding heap (if using a max-heap). 

--Tom W 
 
D. Table Compression 
 
E. Envy 
 

 



 

First, perform Kruskal’s as normal, doing union by rank, but not path compression, and store 
the edge weight of the joined edge at the top of the tree (like in problem B). 
 
Now, we need to figure out a way to answer the queries. To do this, we will simulate what 
would have happened if we had performed Kruskal’s with the edges we want to use sorted 
first. If we can figure out a way to detach an old edge of the same weight as the new edge 
we are adding while keeping the MST acyclic, we are done (note that here we cite a theorem 
that the sorted list of edge weights in any MST is constant for a given graph). 
 
Modify your find operation to not traverse edges of weight greater than the current weight of 
the original spanning tree (traverse all edges of the new ST). Then, if the find from each 
node that will be connected finds different nodes, we can detach the node of lower rank from 
its parent (provided the parent-edge has the same weight as the edge we are adding), and 
attach it to the node of higher rank. This simulates what would have happened had we 
actually run Kruskal’s with that edge. If at every point, we can remove an edge of equal 
weight and add in our desired edge, we have successfully transformed the spanning tree. If 
both endpoints of the edge end up at the same node, then this edge would have produced a 
cycle during Kruskal’s and the set of edges cannot be part of the minimum spanning tree. 
 
One trick for implementing this is to use round numbering in your nodes. Then, if the node’s 
round is equal to the current round, traverse the virtual edge. Otherwise, traverse the real 
edge if the weight is not larger. Then, when re-attaching a node, set its round to the current 
round. 

--Corwin 
 
The first half of my solution is the same as Corwin’s.  But mine does not actually change the 
tree at all when processing a query.  Let me start from the beginning and explain it. 
 
Think about what happens when you run Kruskal’s algorithm.  So the edges are sorted by 
weight.  Consider a contiguous, maximal, subsequence of edges in the sorted list that have 
the same weight.  This set of edges are is S = {e(i), e(i+1), … e(j)}.  Let their weights be 
w(i)...w(j) respectively.  We have: 
 

w(i-1) < w(i) = w(i+1) = w(i+2)= … = w(j) < w(j+1) 
 
After processing e(i-1) there exists a collection C of disjoint sets of vertices produced so far 
by the algorithm.  Consider a subset T of S.  We’d like to know if all the edges of T can be in 
an MST.   
 
Claim: Let G(C,T) be a graph where the vertices are the disjoint sets of C, and the edges are 
those induced by T on those sets of C.  The edges of T can be used in an MST iff the graph 
G(C,T) is acyclic. 
 
The proof is simply that if we reorder the edges of S with those of T being first, then 
Kruskal’s algorithm will use all the edges of T iff that graph G(C,T) is acyclic. 
 

 



 

So here’s my solution to this problem.  Run Kruskal’s algorithm using union by rank and no 
path compression (see problem B).  Each node of the tree keeps the weight of the edge that 
caused that union to occur.  (Same as Corwin’s) 
 
We process a query as follows.  Group the edges in the query in bundles of those with the 
same weight.  Let T be a set of equals in the query.   We have a modified find that only 
traverses edges with weight less than the edges of T.  Using this find we find the canonical 
element (elements of the collection C) of all the endpoints of the edges of T.  We build the 
graph G(C,T) described above and see if it’s acyclic.   If all groups of edges in the query 
satisfy this test then the subset can be used, otherwise not. 

--Danny 
 
F. Imbalance Value of a Tree 
 

 
 

 


