

UNIVERSITY OF LAMPUNG

FACULTY OF TEACHER TRAINING AND EDUCATION Department of Physics Education Jl. Prof. Dr. Soemantri Brodjonegoro No. 1 Bandar Lampung 35145

MODULE HANDBOOK

Bachelor in Physics education

Module name	Fundamentals of Waves and Electrodynamics
Module level	Undergraduate
Code	KFI620104
Courses	Fundamentals of Waves and Electrodynamics
	·
Description	This course is a prerequisite for the Expertise group of the study
	programme. After attending this lecture, students are expected to
	be able to explain the basic knowledge of vibrations and waves,
	electricity, magnetism, and be able to develop and apply them to
	learn higher physics knowledge, and apply them to study higher
	physics knowledge. This lecture discusses harmonic vibrations,
	symptoms of waves, sound waves, optical geometry, waves, sound
	waves, geometric optics, physical optics, charge and electric field,
	Gauss' law, electric potential and potential energy,resistance and
	direct current, direct current (DC) circuits, magnetism,
	electromagnetic induction, and alternating current (AC) circuits.
Semester	Odd
Lecturer	Dr. Kartini Herlina, M.Si.
Contact Person	+62 815-4657-4647
Language	Indonesian
Relation to curriculum	Undergraduate degree program, Mandatory, 2rd semester
Type of teaching,	Lecture, Experiment and Discussion
contact hours	
Workload	Contact hours: 14 weeks x 100 minutes
	Structured learning: 14 weeks x 120 minutes
	Independent study: 14 weeks x 120 minutes
	Practicum sessions: 14 weeks x 170 minutes

Credit points	3 (2-1) CP or 4.8 (ECTS)
	((14 weeks x 100 minutes) + (14 weeks x 120 minutes) + (14
	weeks x 120 minutes) + (14 weeks x 170 minutes) : 60
	minutes/hour = 119 hours : 25 hours of study/ ECTS = 4.8 (ECTS)
Requirements	A student must have attended at least 80% of the lectures to sit in
according to the	the exams.
Examination	are exams.
regulations	
Learning	After completing this module, a student is expected to:
_	, , ,
outcomes (course	After completing this module, a student is expected to:
outcomes) and	1. KNO 1 : Demonstrate knowledge of classical physics
their	(mechanics, electrodynamics, thermodynamics, oscillations,
corresponding	waves and optics) and are familiar with the fundamentals of
PLOs	quantum, atomic and molecular, nuclear, elementary particle
	and solid state physics.
	2. KNO 2 : Formulate physical systems using mathematics to
	solve physics problems.
Competencies/	Students are able to analyse the relationship between force and
Course Learning	vibration in everyday life.
Outcomes	Students are able to determine transverse waves with
	longitudinal waves, and formulates the equation of running
	waves.
	2. Students are able to analyse the magnitude in sound waves
	related to the equations of intensity, energy, and power, and
	analyse the Doppler effect and sound resonance.
	3. Students are able to analyse the phenomenon of reflection
	and refraction of light graphically and mathematically.
	4. Students are able to explain the working principle of various
	optical devices: lup, microscope, and binoculars.
	5. Students are able to determine Coulomb force, electric field
	strength, electric potential, and electric potential energy at
	point charges.
	6. Students are able to analyse the application of field strength
	to capacitors, the value of series and parallel circuit
	capacitance in capacitors, revealing the characteristics of
	capacitors at unidirectional tolerance, and the decrease in
	capacitor energy.
	7. Students are able to analyse the strong quantities of current
	and voltage in series and parallel electrical circuits using the
	concepts of Ohm's Law and Kirchoff.

	 8. Students are able to explain the concept of magnetic field strength and the concept of the occurrence of Lorentz force on straight conductors in the magnetic field and its application. 9. Students are able to explain the concept of electromagnetic induction emf and its application to AC generators. 10. Students are able to do experiments a simple harmonic motion experiment (GHS) Determining the factors affecting the oscillation period in GHS
Contents	Harmonious motion on pendulum and mass spring systems
	Complex numbers
	1. Wave symptoms
	2. Geometric optics
	3. Optical tools
	4. Static electricity
	5. Capacitor
	6. Dynamic Electricity
	7. Magnetic
	8. Electromagnetic induction
Study and examination requirements and forms of examination	Participants evaluated based on; 1. Participation Activities (5%) 2. Quizzes (25%) 3. Assignment (20%) 4. Final Semester Exam (25%) 5. Midterm exams (25%) Performance in practicum (100%): 1. Practicum exam (30%) 2. Pre-test or post-test (10%) 3. Experiment reports (40%) 4. Laboratory Skills (20%)
	· · ·
Media employed	LCD, whiteboard, and online resources
Assessments and	Written tests, assignments and quizzes.
Evaluation	
Reading list	Basic Physics Team II. 2014. Basic Physics Teaching Materials II.
	Bandar Lampung: Unila.
	1. Giancoli, Douglas C. 2014. Physics (translation 7th ed.) .
	Jakarta: Erlangga.
	2. Halliday and Resnick. 2010. Fundamental Physics.