
Lecture 5 - Image Classification part 2 
 
 

Watch this video and this video first! 

Codes here (1.3.1 - Using Colab to Curate and Upload a Dataset) 

 

Introduction 
Now that you have created a dataset, let’s extract features and send them to Edge Impulse to 
train our first model. You have a couple of options for this project: 

1: Run the pre-made Google Colab script to extract features and upload raw features to your 
Edge Impulse project 

2: Edit the pre-made Colab to curate the dataset in a different manner. This will be more 
difficult, but it will give you practice using Python to manipulate files. 

Either option is fine. I recommend choosing the second option if you want a harder challenge, 
as you will actually need to read, understand, and modify my code. 

Create Edge Impulse Project 
If you have not done so already, create a profile on https://www.edgeimpulse.com/. Click your 
profile picture, and click Create new project. 

Give your project a name. If you get a pop-up window, close it. Go to Dashboard > Keys. 
You will need to copy both the API Key and the HMAC Key into your Colab notebook in the next 
part. 

https://drive.google.com/file/d/1Z-pf55d4o5Du0n01_W29zujGUmac_KE-/view?usp=share_link
https://drive.google.com/file/d/188iGRPMeKIMAnSae6KCboQRUX53L0JpE/view?usp=sharing
https://github.com/ShawnHymel/computer-vision-with-embedded-machine-learning
https://www.edgeimpulse.com/


 
Note: Even though the key(s) might look truncated, if you double-click on the key string and 
copy (e.g. ctrl+c), the entire key will be copied. 

Curate Dataset 
Here is where you get to choose one of two options for this project. Either way, you will need 
to open this Colab notebook. 

You should use the images you collected in the previous project. You are also welcome to use 
my dataset: 
https://github.com/ShawnHymel/computer-vision-with-embedded-machine-learning/blob/
master/Datasets/electronic-components-png.zip  

Option 1: No Editing (Easy Mode) 

Simply follow the directions in the notebook. You will need to paste in the API Key and HMAC 
Key from your Edge Impulse project. 

Additionally, you will need to upload your image dataset as shown in the description to create 
a particular directory structure. The individual folders should have the same names as the 
labels. 

https://colab.research.google.com/github/ShawnHymel/computer-vision-with-embedded-machine-learning/blob/master/1.3.1%20-%20Using%20Colab%20to%20Curate%20and%20Upload%20a%20Dataset/ei_image_raw_uploader.ipynb
https://github.com/ShawnHymel/computer-vision-with-embedded-machine-learning/blob/master/Datasets/electronic-components-png.zip
https://github.com/ShawnHymel/computer-vision-with-embedded-machine-learning/blob/master/Datasets/electronic-components-png.zip


Option 2: Edit the Notebook (Hard Mode) 

Instead of a multi-class classifier that uniquely identifies all of your classes, let’s say you want 
to train a model that identifies one of your classes versus the others. 

For example, instead of 

●​ background 
●​ capacitor 
●​ diode 
●​ led 
●​ resistor 

as your classes, let's say you wanted to identify just resistors. You might have resistor vs. other 
(binary classifier). However, I might recommend keeping the background class (multi-class 
classifier). So, you would end up with: 

●​ background 
●​ other 
●​ resistor 

The easy way to do this would be to copy all the files from the other classes into an “other” 
folder and create a new dataset. However, this might be infeasible when you are working with 
very large datasets. 

You should be able to do this in code: as you load each image, pay attention to the folder. If it’s 
“background” or “resistor,” simply leave the label alone. If it’s anything else, change the label 
to “other.” 

I recommend modifying the cell that starts with the comment ### Load images as 
Numpy arrays to accomplish this task. 

I have 50 images in each category. When I modify this cell to be resistor vs. other vs. 
background, it should show that there are 50 images in resistor, 50 images in background, and 
150 images in other. 

 
I recommend trying this option, as it will force you to read and understand Python code for 
data curation! If you get stuck or want to compare answers, my solution can be found here. 

https://colab.research.google.com/github/ShawnHymel/computer-vision-with-embedded-machine-learning/blob/master/1.3.5%20-%20Project%20-%20Curate%20Dataset%20and%20Train%20Model/solution_curation_and_raw_uploader.ipynb


Train Model 
Go back to your Edge Impulse project and click on Data acquisition. Feel free to look 
through your data to make sure everything was uploaded properly. 

Note: Edge Impulse thinks we’re using “time series” data for this project, as there’s no way to 
upload raw without any sort of units at this time (it’s either time series or 2D images). 
Remember, we’ve normalized and flattened our images to 1D vectors! This is a bit of a hack, 
as we are tricking Edge Impulse to think our raw 1D vectors are “time series” data. However, it 
will still work. Normally, you’d want Edge Impulse to do feature extraction for you on images, 
which we’ll explore later. 

 
Click on Impulse design and you should see a Time series data block. By default, the 
Window size is set to 1000 ms. However, we only have 784 data points per sample, so we need 
to change it to 784. 

Add a Raw Data block for your Processing block and a Classification (Keras) block for your 
Learning block. Click Save Impulse. 



 
Click on Raw Data in the explorer pane on the left side. Click on the Generate features tab, 
and click Generate features. Wait a moment while Edge Impulse extracts features (there are 
no real features to extract here--it’s just wrapping our vectors up in a way that can easily be 
used by Keras and reducing some dimensions for the Feature Explorer). 

Feel free to look at the Feature Explorer window to see if your classes are easily separable. 

 



Click on NN Classifier. I recommend changing the number of training cycles to 100, as 30 did 
not seem to be enough to have the model converge for me. Click Start training. Once training 
is done, take a look at the accuracy score and confusion matrix for the validation set. 

Scroll through the training output to compare the training loss/accuracy to the validation 
loss/accuracy. 

 
How well did your model perform? It looks like there was some overfitting for my model, as 
the training accuracy was 95% and the validation accuracy was 90%. 

Try changing the number of neurons in the first layer, adding additional dense layers, or 
adding dropout layers to see if that helps to fix any issues you might have, such as overfitting 
or underfitting. Note that as you make your model more complex, you might need to increase 
the number of training cycles. 



 
For example, I added a dropout layer (with 0.25 dropout) and increased the training cycles to 
200. Those changes seemed to help my model performance 

Note: Remember that we are working with a relatively small and simple dataset here! In 
future lectures, we will explore better models and learn how to increase the size of our dataset 
to make our model more robust. 

(Optional) Train a Model with Keras 
If you would like to see how to use code (Keras) to train a similar model, open my Colab 
example here. Detailed explanation available here. 

Upload your dataset and work through the notebook to train a model. How does the model 
trained with Keras compare with the one trained on Edge Impulse? 

You are welcome to try making changes to the model architecture (changing the number of 
nodes, adding dropout layers, etc.). Here is the Keras Layers API if you would like to see the 
reference documentation: https://keras.io/api/layers/  

 
 

https://colab.research.google.com/github/ShawnHymel/computer-vision-with-embedded-machine-learning/blob/master/1.2.3%20-%20Training%20an%20Image%20Classifier%20with%20Keras/image_classifier_dnn.ipynb
https://colab.research.google.com/github/ShawnHymel/computer-vision-with-embedded-machine-learning/blob/master/1.2.3%20-%20Training%20an%20Image%20Classifier%20with%20Keras/image_classifier_dnn.ipynb
https://drive.google.com/file/d/1qsC5IgiMQvv775undP6bwfglPssXT0bR/view?usp=share_link
https://keras.io/api/layers/

