Materials

- 5 coffee filters
- Vernier Video Physics
- Meter stick

<u>Plot - 20 pts</u> <u>Procedure</u> (5 pts)

1				
2				
3				_
4				
<u>Data</u> (5 pts)				
			2	
0	0	0	0	

Terminal Velocity Analysis

(6 pts each) 2 pt deduction if sentence is not complete

1.	Describe what happens to the motion of velocity?	a falling body when it reaches ter	minal
2.	Name two characteristics of objects that falling in air.	reach terminal velocity very quick	dy when
3.	All of your d vs t plots had essentially the below. Be sure to label the section of your velocity	·	•
4.	If you wanted to find the friction force of velocity, how would you go about doing answer w/ equation(s) and a free body	that? Use full sentences and support	
5.	Explain how you found the terminal velo	ocity from the d vs t plot you gener	rated?
6.		•	

7.	When the filters reach terminal velocity, are they in dynamic or static equilibrium? Explain in a sentence or two. Support your explanation with equations.
8.	Predict the velocity you would expect to get from coffee filters with a mass of 3.5. Show all your work on your graph. Locate the exact point on the graph that corresponds to your answer.
9.	Using $F_{\text{net}} = \text{ma}$, find the relationship between m, f_k , and g for a coffee filter that has reached terminal velocity.
10. ca	Predict the velocity you would get if you dropped 10 coffee filters. Show all alculations you performed to arrive at your solutions.