

ANDHRA LOYOLA INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, New Delhi & Affiliated to JNTU-Kakinada)
An ISO 9001:2015 Certified Institution, A NAAC Accredited Institution
Vijayawada

DEPARTMENT OF CIVIL ENGINEERING

MICRO LESSON PLAN

A.Y. : 2019-2020 Class : II B.Tech I Semester

Subject: Fluid Mechanics (R19) Faculty: G. Lenin Reddy

Course Objectives:

1. To understand fluid properties, variation and measurement of Pressure

- 2. To derive equations of law of conservation of mass, energy, momentum and apply it to fluid kinematics and dynamics
- 3. To Apply Bernouli's equation to measure the discharge of the flow.
- 4. To analyze laminar and turbulent flows.
- 5. To study in detail about the boundary layer theory.

Course Outcomes:

Upon successful completion of this course you should be able to:

- 1. Understand the various properties of fluids and their influence on fluid motion and analyse a variety of problems in fluid statics and Calculate the forces that act on submerged planes and curves..
- 2. Understand and apply Continuity equation, Bernouli's equation and Impulse momentum equation
- 3. Apply Bernouli's equation to measure the discharge of the flow.
- 4. Determination of minor losses, major losses, HGL, TEL and studying the flow through pipe, parallel plates.
- 5. Understands and apply the concept of boundary theory for laminar, trasition, turbulent flow.

LESSON PLAN - DAY WISE

Course Outcomes:

<u>S. No</u>	<u>Outcomes</u>	<u>Lesson Objectives</u>
1	Factual	Students will get introduced to Fluid Mechanics
2	Conceptual	To identify concepts of mathematics, Physics/Science behind and Possess a good understanding of the Methods
3	Procedural	Students should be able to learn basic principles of Fluid Mechanics
4	Applied	Students can be able to get ease of understanding a problem principles in getting a solution

Detailed Text:

Lesson - 1 Introduction

<u>S. No</u>	Outcomes	Contents/Activities for Lesson - 1
1	Factual	Reading basic information
2	Conceptual	Relevant Examples, Video Lectures, Animations
3	Procedural	Concepts
4	Applied	Reading, Understanding & Solving problems

Schedule and Sequence: Day Plan for Lesson-1

Lesson: 1 Introduction

Session/ Module / Da y	Topic	Objectives	Before Class (Videos, E-Books, Case Studies)	In Class (Activities, Quiz, Solving Problems)	Post Class (Assignment, Discussion Forum)
Day - 1	Units and Dimensions	To make students familiarize with units and dimensions	• Text Book	 Explanation with/without PPT (15 Min) Unit conversions (10 Min) Solving numerical on unit conversions (20 Min) 	Quiz
Day - 2	Physical Propertie of fluids	To make the student understand mass density, weight density, specific volume,	• Text Book	 Explanation with/without PPT (25 Min) Solving numerical (20 Min) 	Quiz, Numericals

		specific			
		gravity,			
		Viscosity,			
		Derivation of			
		Newton's law			
		of viscosity,			
		Units of			
		viscosity			
	Effect of	·	. Total Deeds	• Explanation	
	temperature	To familiarize	• Text Book	with/without PPT	
	on viscosity	student with		(25 Min)	
	of fluids,	effect of		Solve Numerical	Numerical
•	Surface	temperature		(20 Min)	
	tension	on viscosity,		(= 0 = 1 = 1 = 1)	
		Concept of			
		surface			
		tension,			
		derivation of			
		expressions			
		for excess			
		pressure for			
		water droplet,			
		soap bubble,			
		liquid jet in			
		terms of			
		surface			
		tension			
			Text Book	• Explanation	
		To make		with/without PPT	
		understand		(25 Min)	
Day - 4	Capillarity	concept of		Solve Numerical	Numerical
		Capillarity,		on capillarity	
		derivation of			
		expression for			
		capillary rise,			
		depression,			
		Applications			
		of capillarity			
			Text Book	• Explanation	
	Vapour	To make the		with/without PPT	
	Pressure,	student gain		(25 Min)	
Day - 5	Cavitation,	knowledge &		• Video (10 Min)	Quiz on
	Bulk	to know		• Quiz	topics of Day
	modulus,	Vapour			1 to Day 5
	Compressib	Pressure,			· V =
	ility	Cavitation,			
		Bulk			
		modulus,			
		Compressibili			
		ty			
		To make the	Towt Dools	• Explanation	
		student gain	Text Book	with/without PPT	
		knowledge & to		(25 Min)	
Day - 6	Hydrostatic	know concept of		• Video (20 Min)	Queries
•	pressure	Pressure,		• Student Creative	
		Pressure at a		Response (5 Min)	
		point, Pascal's			
		law and its proof			

Day - 7	Hydrostatic pressure	To make the student gain derivation of variation of pressure in vertical direction only	• Text Book	 Explanation with chalk and talk (25 Min) Solving numericals (20 Min) 	Numericals
Day - 8	Hydrostatic pressure	To make the student understand the concept of Atmospheric pressure, Gage pressure, Absolute pressure and relation between them and simple Manometers	• Text Book	 Explanation with chalk and talk (25 Min) Derivation of expression of pressure for U-tube manometer, Solving numericals (20 Min) Student Creative Response (5 Min) 	Solve Numericals
Day - 9	Hydrostatic pressure	To make the student gain knowledge & to know Single column manometer, Differential manometers	• Text Book	 Explanation with chalk and Talk the derivation of expression of pressures for single column manometer, U-tube manometer, Inverted U – tube manometer (25 Min) Solving numerical on U-tube manometer (20 Min) 	Solve Numerical
Day - 10	Hydrostatic pressure	To make the student gain knowledge & to know Micro manometers, Mechanical gages	• Text Book	 Explanation with/without PPT (25 Min) Video (20 Min) Student Creative Response (5 Min) 	Queries
Day - 11	Hydrostati c forces, Centre of pressure of plane submerged surfaces	To make the student gain knowledge & to know Hydrostatic force, center of pressure	• Text Book	 Explanation with/without PPT definition of hydrostatic force, Centre of pressure (10 Min) Derivation of expression for hydrostatic force, centre of pressure for horizontal, 	Solve Numericals

Day - 12	Hydrostatic forces, Centre of pressure of plane submerged surfaces	To make the student gain knowledge & to know Hydrostatic force, Centre of pressure on inclined submerged bodies	• Text Book	vertical submerged areas (20 Min) Solving Numerical (15 Min) Explanation with/without PPT Derivation of expression for hydrostatic force, centre of pressure for horizontal, vertical submerged areas (30 Min) Solving numerical (20 Min) Student Creative Response(5 Min)	Solve Numerical
Day - 13	Hydrostatic forces, Centre of pressure of Curved submerged surfaces	To make the student gain knowledge & to know Hydrostatic force, center of pressure on curved submerged surfaces.	• Text Book	 Explanation with/without PPT (25 Min) Solving numerical (20 Min) Student Creative Response(5 Min) 	Solve Numerical

Schedule and Sequence: Day Plan for Lesson-2

Lesson: 2

	<u> </u>				I
Session/ Module / Day	<u>Topic</u>	<u>Objectives</u>	Before Class (Videos, E-Books, Case Studies)	In Class (Activities, Quiz, Solving Problems)	Post Class (Assignment , Discussion Forum)
Day - 1	Fluid Kinematics	To make the student gain knowledge & to know Velocity, acceleration Description of fluid flow, Classification of fluid flows	• Text Book	 Explanation with/without PPT (25 Min) Video (20 Min) Student Creative Response(5 Min) 	Quiz Assignment on Velocity, acceleration
Day - 2	Fluid Kinematics	To make the student gain knowledge & to know Stream line, Streak line, path line, stream tube, Continuity equation	• Text Book	 Explanation with/without PPT (10 Min) Video (05 Min) Derivation of 3D continuity equation(25 Min) 	Assignment on deducing 3D continuity equations for different conditions viz., Steady, Incompresssible, 2D
Day - 3	Fluid Kinematics	To make the student gain knowledge & to know Continuity equation of 1D flow	• Text Book	 Explanation with/without PPT (25 Min) Solving numerical on continuity equation (20 Min) Student Creative Response(5 Min) 	Numericals on continuity equation
Day - 4	Fluid Kinematics	To make the student gain knowledge & to know Stream function, Velocity potential function, flownet and	• Text Book	 Explanation with/without PPT (25 Min) Derivation of proof of streamlines and equipotential lines are 	Assignment on plotting of potential function, Stream function

		their uses			perpendicular to each other (20 Min)	
Day - 5	Fluid Dynamics	To make the student gain knowledge & to know Lagrange, Euler approach, Euler equation	•	Text Book	 Explanation with/without PPT (10 Min) Derivation of Euler equation (35 Min) 	QUIZ
Day - 6	Fluid Dynamics	To make the student gain knowledge & to know Bernouli's equation	•	Text Book	 Explanation with/without PPT Derivation of Bernouli equation(35 Min) Solving Numerical on Bernouli's equation(15Min) 	Solve Numericals on Bernouli's equation
Day - 7	Fluid Dynamics	To make the student gain knowledge & to know Bernouli's equation	•	Text Book	 Explanation with/without PPT Derivation of Bernouli equation along a stream line (20 Min) Solving Numerical on Bernouli's equation(15Min) 	Solve Numericals on Bernouli's equation
Day - 8	Fluid Dynamics	To make the student gain knowledge & to know Impulse momentum	•	Text Book	 Explanation with/without PPT Derivation of Impulse momentum equation (40 Min) Application of Impulse momentum equation on pipe Bends (15Min) 	Solve Numericals on Impulse momentum equation
Day - 8	Fluid Dynamics	To make the student gain knowledge & to know Impulse momentum	•	Text Book	• Solving Numericals onapplication of Impulse momentum equation (50 Min)	Solve Numericals on Impulse momentum equation

Schedule and Sequence: Day Plan for Lesson-3 Lesson: 3

Session/ Module / Day	Topic	Objectives	Before Class (Videos, E-Books, Case Studies)	In Class (Activities, Quiz, Solving Problems)	Post Class (Assignment , Discussion Forum)
Day - 1	Venturimeter: Principle, derivation of expression for C _d	To make the student gain knowledge & to know Venturimeter: Principle, derivation of expression for C_d	• Text Book	 Explanation with/without PPT (20 Min) Derivation (25 Min) Student Creative Response (5 Min) 	Derive the derivation of Cd on own
Day - 2	Expression for 'h' when venturimeter is horizontal, inclined, vertical, and also specific weight of manometric fluid, lesser, heavier than flowing fluid. Numerical on venturimeter	To make the student gain knowledge & to know expressions for 'h' in Qact for different cases	• Text Book	 Explanation with/without PPT (20 Min) Numerical (25 Min) Student Creative Response (5 Min) 	To solve Numericals on Qact of Venturimete r
Day - 3	Orificemeter: Principle, derivation of expression for C _d	To make the student gain knowledge & to know orificemeter: Principle, derivation of expression for C _d	• Text Book	 Explanation with/without PPT (20 Min) Derivation (25 Min) Student Creative Response (5 Min) 	Derive the derivation of Cd on own

Day - 3	Nozzle meter of flow nozzle, Rotameter, Elbowmeter(pipe bend meter)	To make the student gain knowledge & to know Nozzle meter of flow nozzle, Rotameter, Elbowmeter(pipe bend meter)	• Text Book	 Explanation with/without PPT (25 Min) Numerical on venturimeter (20 Min) Student Creative Response (5 Min) 	Solve numerical on orificemeter
Day - 4	Pitot tube: Principle, derivation of expression for velocity, expression for 'h'	To make the student gain knowledge & to know Pitot tube: Principle, derivation of expression for velocity, expression for 'h'	• Text Book	 Explanation with/without PPT (25 Min) Numerical on measurement of velocity with a pitot tube (20 Min) Student Creative Response (5 Min) 	Numerical on measureme nt of velocity with a pitot tube
Day - 5	Classificatio n of orifices: Derivation of Toricelli formula, Coefficient of velocity C_v , Coefficient of contraction C_c , relation between C_v , C_c , C_d	To make the student gain knowledge & to know Classification of orifices: Derivation of Toricelli formula, Coefficient of velocity C _v , Coefficient of contraction C _c , relation between C _v , C _c , C _d	• Text Book	 Explanation with/without PPT (25 Min) Derivation of Toricelli formula (20 Min) Student Creative Response (5 Min) 	Description of classificatio n of orifices on their own with neat labeled diagrams.
Day - 6	Experimen tal Determinat ion of coefficient of velocity Cv-Jet distance measureme	To make the student gain knowledge & to know Experiment al Determinati on of coefficient of velocity Cv	• Text Book	 Explanation with/without PPT (25 Min) Numerical on jet distance measurement method (20 Min) Student Creative 	Different methods of determinati on of Cv

Day - 7	nt method, Velocity measureme nt method, momentum method Determinati on of coefficient of velocity Cc, coefficient of discharge Cd, Flow through large vertical orifice, Derivation for discharge through large orifice-recta ngular orifice	To make the student gain knowledge & to know Determination of Cc, Cd, Large orifice, Derivation of discharge through large rectangular orifice	•	Text Book	•	Response(5 Min) Explanation with/without PPT (25 Min) Numerical on rectangular large orifice (20 Min) Student Creative Response (5 Min)	Numerical on rectangular large orifice
Day - 8	Derivati on for discharg e through large orifice- circular orifice	To make the student gain knowledge & to know Discharge through large Circular orifice	•	Text Book	•	Explanation with/without PPT (25 Min) Numerical on Circular large orifice (20 Min) Student Creativ e Response (5	Numerical on Circular large orifice
Day - 8	Definition of Notch, Weir, classification of Notches and weirs, flow over rectangular notch, Sharp crested weir(includin g velocity of approach)-D erivation of expression for discharge with and without end contraction.,	To make the student gain knowledge & to know Definition of Notch, Classification of Notch, discharge through notch	•	Text Book	•	Explanation with/without PPT (25 Min) Derivation of discharge through notch (20 Min) Student Creativ e Response (5min)	Classificatio n of notches

Day - 9	Derivation of discharge through triangular notch	To make the student gain knowledge & to know discharge through triangular notch	• Text Book	 Derivation of discharge through notch (25 Min) Numerical on rectang ular notch with end contract ion Student Creativ e Response (5min) 	Numeric al on rectangul ar notch with out end contracti on
Day-10	Derivation of discharge through Trapezoidal notch notch	To make the student gain knowledge & to know discharge through Trapezoidal notch	• Text Book	 Explanation with/without PPT (25 Min) Numerical on triangular notch, trapezoidal notch (20 Min) Student Creative Response (5 Min) 	Nemerical on triangular, trapezoidal notch
Day-11	Derivation of discharge through Cippoletti weir, Stepped Notch	To make the student gain knowledge & to know discharge through Cippoletti weir, Stepped Notch, Empirical formulae for discharge-Francis formula, Bazins formula, Rehbock's formula	• Text Book	 Explanation with/without PPT Derivation of discharge through Cippoletti (25 Min) Derivation of discharge through stepped notch (20 Min) Student Creative Response (5 Min) 	Numericals on Cippoletti weir, Stepped Notch

Day-12	Ventillatio n of weirs, different types of Nappe, Broad crested-De rivation of expression for discharge	To make the student gain knowledge & to know Ventillation of weirs, Types of Nappe, discharge through broad crested weir	• Text Book	discharge through broad crested weir(20 Min) Student Creative Response(5 Min)	erical croad d weir
Day-13	Submerged weir-Derivati on of expression for discharge, Submergence ratio Siphon and Siphon spillway, Proportional Weir or Sutro weir	To make the student gain knowledge & to know Submerged weir, Submergence ratio, Siphon, Siphon spillway, Proportional weir	• Text Book	discharge control of through	erical on nerged eir

Schedule and Sequence: Day Plan for Lesson-4 Lesson: 4

Session/ Module / Day	Topic	Objectives	Before Class (Videos, E-Books, Case Studies)	In Class (Activities, Quiz, Solving Problems)	Post Class (Assignment , Discussion Forum)
Day - 1	Laminar flow through pipes	To make the student gain knowledge & to know Laminar flow through pipes: Reynolds experiment , Froude's experiment , Laws of fluid friction for laminar, turbulent flow	• Text Book	 Explanation with/without PPT (35 Min) Video (10 Min) Student Creative Response (5 Min) 	Describe Reynold's experiment, Froude's experiment, laws of fluid friction
Day - 2	Derivation of friction losses or Darcy's Weisbach equation	To make the student gain knowledge & to know Derivation of friction losses or Darcy's Weisbach equation	• Text Book	 Explanation with/without PPT (35 Min) Numerical on friction losses (10 Min) Student Creative Response (5 Min) 	Numerical on friction losses
Day - 3	Minor losses: sudden enlargemen t, sudden contraction, entrance, exit, obstruction in flow	To make the student gain knowledge & to know Minor losses	• Text Book	 Explanation with/without PPT (10Min) Derivation of expression for sudden expansion, Sudden contraction(30 Min) Numericals on minor losses (10 Min) 	Numericals on major and minor losses

Day - 4	passage, bend, pipe fittings, Head loss due to pipes in series – pipes in parallel,	To make the student gain knowledge & to know Head loss due to pipes in series – pipes in parallel,	• Text Book	 Explanation with/without PPT (10 Min) Numerical on 2 reservoir problem (35 Min) Student Creative Response (5 Min) 	Numerical on 3 reservoir problem
Day - 5	Total energy line and hydraulic gradient line, sketching HGL, TEL	To make the student gain knowledge & to know HGL, TEL and sketching of HGL and TEL for different pipe problems	• Text Book	 Explanation with/without PPT (10 Min) Numerical on Sketching of HGL, TEL (35 Min) Student Creative Response (5 Min) 	Numerical on sketching HGL, TEL
Day - 6	Variation of friction factor with Reynold's number – Moody's Chart, Hardy Cross pipe networks distribution	To make the student gain knowledge & to know Moody's Chart Hardy Cross pipe networks distributio n	• Text Book	 Explanation with/without PPT (20 Min) Numerical on Pipe Networks (35 Min) 	Numerical on Pipe Networks

Day - 7	Derivation of Hagen Poisuelle equation, through straight pipe	To make the student gain knowledge & to know Hagen Poiseulle equation through straight pipe	• Text Book	 Explanation with/without PPT (20 Min) Numerical on Hagen Poiseulle equation through straight pipe (30 Min) 	Numerical on sketching Hagen Poisuelle equation, through straight pipe
Day - 8	Derivation of Hagen Poisuelle equation through inclined pipe	To make the student gain knowledge & to know Hagen Poiseulle equation through inclined pipe	• Text Book	 Explanation with/without PPT (20 Min) Numerical on Hagen Poiseulle equation through inclined pipe (30 Min) 	Numerical on Hagen Poiseulle equation through inclined pipe
Day - 9	Flow between parallel plates-Both plates at rest	To make the student gain knowledge & to know Flow between parallel plates-Bot h plates at rest	• Text Book	 Explanation with/without PPT (20 Min) Numerical on Flow between parallel plates-Both plates at rest (30 Min) 	Numerical on Flow between parallel plates-Both plates at rest
Day - 10	Flow between parallel plates-Both plates at rest & inclined	To make the student gain knowledge & to know Flow between parallel plates-Bot h plates at rest & inclined	• Text Book	 Explanation with/without PPT (20 Min) Numerical on Flow between parallel plates-Both plates at rest and inclined(30 Min) 	Numerical on Flow between parallel plates-Both plates at rest and inclined

Day - 11	Flow between parallel plates-Uppe r plate moving	To make the student gain knowledge & to know Flow between parallel plates-Upp er plate moving	• Text Book	•	Explanation with/without PPT (20 Min) Numerical on Flow between parallel plates-Upper plate moving (30 Min)	Numerical on Flow between parallel plates-Uppe r plate moving
----------	---	---	-------------	---	---	---

Schedule and Sequence: Day Plan for Lesson-5 Lesson: 5

Session/ Module / Day	Topic	Objectives	Before Class (Videos, E-Books, Case Studies)	In Class (Activities, Quiz, Solving Problems)	Post Class (Assignment , Discussion Forum)
Day - 1	Boundary layer – concepts, Displacem ent, Energy, Momentu m thickness, Prandtl contributi on, Characteri stics of boundary layer along a thin flat plate,	To make the student gain knowledge & to know Boundary layer – concepts, Displaceme nt, Energy, Momentum thickness, Prandtl contribution , Characteris tics of boundary layer along a thin flat plate,	• Text Book	 Explanation with/without PPT (30 Min) Video ((20 Min) 	Derivation of mathematic al expressions for displacemen t, energy, momentum thickness
Day - 2	Bound ary layer equatio ns, Von-Ka rman Integra l Momen tum equatio n	To make the student gain knowledge & to know Boundary layer equations, Von-Karma n Integral Momentum equation	• Text Book	 Explanation with/without PPT (25 Min) Video (20 Min) Student Creative Response (5 Min) 	Queries
Day - 3	Bound ary layer equatio ns, Von-Ka rman Integra	To make the student gain knowledge & to know Boundary layer equations, Von-Karma	• Text Book	 Explanation with/without PPT (25 Min) Video (20 Min) Student Creative Response 	Queries

	Momen tum equatio n	n Integral Momentum equation		(5 Min)	
Day - 4	Deriva tion of Von-Ka rman Integra I Momen tum equatio n	To make the student gain knowledge & to know Derivation of Von-Karma n Integral Momentum equation	• Text Book	 Explanation with/without PPT (40 Min) Student Creative Response (5 Min) 	Queries
Day - 4	Bound ary layer equatio n for lamina r flow	To make the student gain knowledge & to know Blasius equation for Nominal thickness, displacemen t thickness, Momentum thickness. Equations for local drag coefficient, Drag force. Equation for average drag coefficient, Friction drag force	• Text Book	 Explanation with/without PPT (40 Min) Numerical in computing Drag force (15 Min) 	Numerical in computing Friction Drag force

	Bound ary layer	To make the student gain	•	Text Book	•	Explanation with/without PPT (40	Numerical in computing
Day - 5	equatio	knowledge & to know				Min)	Friction
Day - S	n for	equation for			•	Numerical in	Drag force,
	Turbul	Nominal				computing Drag	laminar sub
	ent flow	thickness,				force, laminar sub layer	layer
	HOW	Equations				(15	
		for local				Min)	
		drag				,	
		coefficient,					
		Drag force. Equation					
		for average					
		drag					
		coefficient,					
		Friction					
		drag force					
		for					
		Transition,					
		Turbulent flow,					
		Schlichting,					
		Prandtl					
		equation,					
		Prandtl-					
		Schlichting					
		equation for					
		Average					
		drag coefficient					
		for different					
		ranges of					
		Reynold's					
		number.					
		Equation of					
		laminar					
		sub-layer					
					•	Explanation	
		To make the	•	Text Book		with/without	
		student gain	•	Video		PPT (25	
D (Hydrodyna	knowledge		links/UR		Min) Video (20 Min)	0 :
Day - 6	mically smooth	& to know Hydrodyna		L	•	Video (20 Min)	Queries
	and rough	mically			•	Student Creative	
	surfaces,	smooth and				Response	
	Seperation	rough				(5 Min)	
	of	surfaces,				` '	
	boundary	Seperation					
	layer,	of boundary					
	methods of	layer,					
	controlling	methods of	<u> </u>				

	separation of boundary layer.	controlling separation of boundary layer.			
Day -7	Flow around submerged objects: Drag and Lift- Magnus effect.	To make the student gain knowledge & to know Flow around submerged objects: Drag and Lift-Magnus effect.	• Text Book	 Explanation with/without PPT (25 Min) Video (20 Min) Student Creative Response (5 Min) 	Numericals on computatio n of Drag and lift force

TEXT BOOK:

1. Hydraulics & Fluid mechanics including fluid machines-Modi & Sethi, Standard Publishers.