ANDHRA LOYOLA INSTITUTE OF ENGINEERING AND TECHNOLOGY (Approved by AICTE, New Delhi & Affiliated to JNTU-Kakinada) An ISO 9001:2015 Certified Institution, A NAAC Accredited Institution Vijayawada #### DEPARTMENT OF CIVIL ENGINEERING #### MICRO LESSON PLAN A.Y. : 2019-2020 Class : II B.Tech I Semester Subject: Fluid Mechanics (R19) Faculty: G. Lenin Reddy #### **Course Objectives:** 1. To understand fluid properties, variation and measurement of Pressure - 2. To derive equations of law of conservation of mass, energy, momentum and apply it to fluid kinematics and dynamics - 3. To Apply Bernouli's equation to measure the discharge of the flow. - 4. To analyze laminar and turbulent flows. - 5. To study in detail about the boundary layer theory. #### **Course Outcomes:** **Upon successful completion of this course you should be able to:** - 1. Understand the various properties of fluids and their influence on fluid motion and analyse a variety of problems in fluid statics and Calculate the forces that act on submerged planes and curves.. - 2. Understand and apply Continuity equation, Bernouli's equation and Impulse momentum equation - 3. Apply Bernouli's equation to measure the discharge of the flow. - 4. Determination of minor losses, major losses, HGL, TEL and studying the flow through pipe, parallel plates. - 5. Understands and apply the concept of boundary theory for laminar, trasition, turbulent flow. ### **LESSON PLAN - DAY WISE** ### **Course Outcomes:** | <u>S. No</u> | <u>Outcomes</u> | <u>Lesson Objectives</u> | |--------------|-----------------|---| | 1 | Factual | Students will get introduced to Fluid Mechanics | | 2 | Conceptual | To identify concepts of mathematics, Physics/Science behind and Possess a good understanding of the Methods | | 3 | Procedural | Students should be able to learn basic principles of Fluid Mechanics | | 4 | Applied | Students can be able to get ease of understanding a problem principles in getting a solution | ### **Detailed Text:** ## **Lesson - 1 Introduction** | <u>S. No</u> | Outcomes | Contents/Activities for Lesson - 1 | |--------------|------------|---| | 1 | Factual | Reading basic information | | 2 | Conceptual | Relevant Examples, Video Lectures, Animations | | 3 | Procedural | Concepts | | 4 | Applied | Reading, Understanding & Solving problems | **Schedule and Sequence: Day Plan for Lesson-1** **Lesson: 1 Introduction** | Session/
Module
/
Da
y | Topic | Objectives | Before Class
(Videos,
E-Books,
Case
Studies) | In Class
(Activities, Quiz,
Solving
Problems) | Post Class
(Assignment,
Discussion
Forum) | |------------------------------------|------------------------------------|---|--|--|--| | Day - 1 | Units and
Dimensions | To make students familiarize with units and dimensions | • Text Book | Explanation with/without PPT (15 Min) Unit conversions (10 Min) Solving numerical on unit conversions (20 Min) | Quiz | | Day - 2 | Physical
Propertie
of fluids | To make the student understand mass density, weight density, specific volume, | • Text Book | Explanation with/without PPT (25 Min) Solving numerical (20 Min) | Quiz,
Numericals | | | | specific | | | | |----------------|--------------|-------------------|---------------|--------------------|---------------| | | | gravity, | | | | | | | Viscosity, | | | | | | | Derivation of | | | | | | | Newton's law | | | | | | | of viscosity, | | | | | | | Units of | | | | | | | viscosity | | | | | | Effect of | · | . Total Deeds | • Explanation | | | | temperature | To familiarize | • Text Book | with/without PPT | | | | on viscosity | student with | | (25 Min) | | | | of fluids, | effect of | | Solve Numerical | Numerical | | • | Surface | temperature | | (20 Min) | | | | tension | on viscosity, | | (= 0 = 1 = 1 = 1) | | | | | Concept of | | | | | | | surface | | | | | | | tension, | | | | | | | derivation of | | | | | | | expressions | | | | | | | for excess | | | | | | | pressure for | | | | | | | water droplet, | | | | | | | soap bubble, | | | | | | | liquid jet in | | | | | | | terms of | | | | | | | surface | | | | | | | tension | | | | | | | | Text Book | • Explanation | | | | | To make | | with/without PPT | | | | | understand | | (25 Min) | | | Day - 4 | Capillarity | concept of | | Solve Numerical | Numerical | | | | Capillarity, | | on capillarity | | | | | derivation of | | | | | | | expression for | | | | | | | capillary rise, | | | | | | | depression, | | | | | | | Applications | | | | | | | of capillarity | | | | | | | | Text Book | • Explanation | | | | Vapour | To make the | | with/without PPT | | | | Pressure, | student gain | | (25 Min) | | | Day - 5 | Cavitation, | knowledge & | | • Video (10 Min) | Quiz on | | | Bulk | to know | | • Quiz | topics of Day | | | modulus, | Vapour | | | 1 to Day 5 | | | Compressib | Pressure, | | | · V = | | | ility | Cavitation, | | | | | | | Bulk | | | | | | | modulus, | | | | | | | Compressibili | | | | | | | ty | | | | | | | To make the | Towt Dools | • Explanation | | | | | student gain | Text Book | with/without PPT | | | | | knowledge & to | | (25 Min) | | | Day - 6 | Hydrostatic | know concept of | | • Video (20 Min) | Queries | | • | pressure | Pressure, | | • Student Creative | | | | | Pressure at a | | Response (5 Min) | | | | | point, Pascal's | | | | | | | law and its proof | | | | | Day - 7 | Hydrostatic
pressure | To make the student gain derivation of variation of pressure in vertical direction only | • Text Book | Explanation with chalk and talk (25 Min) Solving numericals (20 Min) | Numericals | |----------------|---|--|-------------|--|---------------------| | Day - 8 | Hydrostatic
pressure | To make the student understand the concept of Atmospheric pressure, Gage pressure, Absolute pressure and relation between them and simple Manometers | • Text Book | Explanation with chalk and talk (25 Min) Derivation of expression of pressure for U-tube manometer, Solving numericals (20 Min) Student Creative Response (5 Min) | Solve
Numericals | | Day - 9 | Hydrostatic
pressure | To make the student gain knowledge & to know Single column manometer, Differential manometers | • Text Book | Explanation with chalk and Talk the derivation of expression of pressures for single column manometer, U-tube manometer, Inverted U – tube manometer (25 Min) Solving numerical on U-tube manometer (20 Min) | Solve
Numerical | | Day -
10 | Hydrostatic
pressure | To make the student gain knowledge & to know Micro manometers, Mechanical gages | • Text Book | Explanation with/without PPT (25 Min) Video (20 Min) Student Creative Response (5 Min) | Queries | | Day -
11 | Hydrostati
c forces,
Centre of
pressure of
plane
submerged
surfaces | To make the student gain knowledge & to know Hydrostatic force, center of pressure | • Text Book | Explanation with/without PPT definition of hydrostatic force, Centre of pressure (10 Min) Derivation of expression for hydrostatic force, centre of pressure for horizontal, | Solve
Numericals | | Day - 12 | Hydrostatic
forces, Centre
of pressure of
plane
submerged
surfaces | To make the student gain knowledge & to know Hydrostatic force, Centre of pressure on inclined submerged bodies | • Text Book | vertical submerged areas (20 Min) Solving Numerical (15 Min) Explanation with/without PPT Derivation of expression for hydrostatic force, centre of pressure for horizontal, vertical submerged areas (30 Min) Solving numerical (20 Min) Student Creative Response(5 Min) | Solve
Numerical | |-------------|---|--|-------------|--|--------------------| | Day -
13 | Hydrostatic
forces,
Centre of
pressure of
Curved
submerged
surfaces | To make the student gain knowledge & to know Hydrostatic force, center of pressure on curved submerged surfaces. | • Text Book | Explanation with/without PPT (25 Min) Solving numerical (20 Min) Student Creative Response(5 Min) | Solve
Numerical | # **Schedule and Sequence: Day Plan for Lesson-2** Lesson: 2 | | <u> </u> | | | | I | |-----------------------------|---------------------|--|--|--|---| | Session/
Module
/ Day | <u>Topic</u> | <u>Objectives</u> | Before Class (Videos, E-Books, Case Studies) | In Class
(Activities, Quiz,
Solving
Problems) | Post Class
(Assignment
, Discussion
Forum) | | Day - 1 | Fluid
Kinematics | To make the student gain knowledge & to know Velocity, acceleration Description of fluid flow, Classification of fluid flows | • Text Book | Explanation with/without PPT (25 Min) Video (20 Min) Student Creative Response(5 Min) | Quiz Assignment on Velocity, acceleration | | Day - 2 | Fluid
Kinematics | To make the student gain knowledge & to know Stream line, Streak line, path line, stream tube, Continuity equation | • Text Book | Explanation with/without PPT (10 Min) Video (05 Min) Derivation of 3D continuity equation(25 Min) | Assignment on deducing 3D continuity equations for different conditions viz., Steady, Incompresssible, 2D | | Day - 3 | Fluid
Kinematics | To make the student gain knowledge & to know Continuity equation of 1D flow | • Text Book | Explanation with/without PPT (25 Min) Solving numerical on continuity equation (20 Min) Student Creative Response(5 Min) | Numericals
on
continuity
equation | | Day - 4 | Fluid
Kinematics | To make the student gain knowledge & to know Stream function, Velocity potential function, flownet and | • Text Book | Explanation with/without PPT (25 Min) Derivation of proof of streamlines and equipotential lines are | Assignment on plotting of potential function, Stream function | | | | their uses | | | perpendicular to
each other (20
Min) | | |----------------|-------------------|---|---|-----------|---|---| | Day - 5 | Fluid
Dynamics | To make the student gain knowledge & to know Lagrange, Euler approach, Euler equation | • | Text Book | Explanation with/without PPT (10 Min) Derivation of Euler equation (35 Min) | QUIZ | | Day - 6 | Fluid
Dynamics | To make the student gain knowledge & to know Bernouli's equation | • | Text Book | Explanation with/without PPT Derivation of Bernouli equation(35 Min) Solving Numerical on Bernouli's equation(15Min) | Solve
Numericals
on
Bernouli's
equation | | Day - 7 | Fluid
Dynamics | To make the student gain knowledge & to know Bernouli's equation | • | Text Book | Explanation with/without PPT Derivation of Bernouli equation along a stream line (20 Min) Solving Numerical on Bernouli's equation(15Min) | Solve
Numericals
on
Bernouli's
equation | | Day - 8 | Fluid
Dynamics | To make the student gain knowledge & to know Impulse momentum | • | Text Book | Explanation with/without PPT Derivation of Impulse momentum equation (40 Min) Application of Impulse momentum equation on pipe Bends (15Min) | Solve
Numericals
on Impulse
momentum
equation | | Day - 8 | Fluid
Dynamics | To make the student gain knowledge & to know Impulse momentum | • | Text Book | • Solving Numericals onapplication of Impulse momentum equation (50 Min) | Solve
Numericals
on Impulse
momentum
equation | ### Schedule and Sequence: Day Plan for Lesson-3 Lesson: 3 | Session/
Module
/ Day | Topic | Objectives | Before
Class
(Videos,
E-Books,
Case
Studies) | In Class
(Activities, Quiz,
Solving
Problems) | Post Class
(Assignment
, Discussion
Forum) | |-----------------------------|---|---|---|---|--| | Day - 1 | Venturimeter: Principle, derivation of expression for C _d | To make the student gain knowledge & to know Venturimeter: Principle, derivation of expression for C_d | • Text Book | Explanation with/without PPT (20 Min) Derivation (25 Min) Student Creative Response (5 Min) | Derive the
derivation
of Cd on
own | | Day - 2 | Expression for 'h' when venturimeter is horizontal, inclined, vertical, and also specific weight of manometric fluid, lesser, heavier than flowing fluid. Numerical on venturimeter | To make the student gain knowledge & to know expressions for 'h' in Qact for different cases | • Text Book | Explanation with/without PPT (20 Min) Numerical (25 Min) Student Creative Response (5 Min) | To solve
Numericals
on Qact of
Venturimete
r | | Day - 3 | Orificemeter:
Principle,
derivation of
expression for
C _d | To make the student gain knowledge & to know orificemeter: Principle, derivation of expression for C _d | • Text Book | Explanation with/without PPT (20 Min) Derivation (25 Min) Student Creative Response (5 Min) | Derive the
derivation
of Cd on
own | | Day - 3 | Nozzle meter
of flow
nozzle,
Rotameter,
Elbowmeter(
pipe bend
meter) | To make the student gain knowledge & to know Nozzle meter of flow nozzle, Rotameter, Elbowmeter(pipe bend meter) | • Text Book | Explanation with/without PPT (25 Min) Numerical on venturimeter (20 Min) Student Creative Response (5 Min) | Solve
numerical
on
orificemeter | |---------|---|--|-------------|---|---| | Day - 4 | Pitot tube: Principle, derivation of expression for velocity, expression for 'h' | To make the student gain knowledge & to know Pitot tube: Principle, derivation of expression for velocity, expression for 'h' | • Text Book | Explanation with/without PPT (25 Min) Numerical on measurement of velocity with a pitot tube (20 Min) Student Creative Response (5 Min) | Numerical
on
measureme
nt of
velocity
with a pitot
tube | | Day - 5 | Classificatio n of orifices: Derivation of Toricelli formula, Coefficient of velocity C_v , Coefficient of contraction C_c , relation between C_v , C_c , C_d | To make the student gain knowledge & to know Classification of orifices: Derivation of Toricelli formula, Coefficient of velocity C _v , Coefficient of contraction C _c , relation between C _v , C _c , C _d | • Text Book | Explanation with/without PPT (25 Min) Derivation of Toricelli formula (20 Min) Student Creative Response (5 Min) | Description of classificatio n of orifices on their own with neat labeled diagrams. | | Day - 6 | Experimen tal Determinat ion of coefficient of velocity Cv-Jet distance measureme | To make the student gain knowledge & to know Experiment al Determinati on of coefficient of velocity Cv | • Text Book | Explanation with/without PPT (25 Min) Numerical on jet distance measurement method (20 Min) Student Creative | Different
methods of
determinati
on of Cv | | Day - 7 | nt method, Velocity measureme nt method, momentum method Determinati on of coefficient of velocity Cc, coefficient of discharge Cd, Flow through large vertical orifice, Derivation for discharge through large orifice-recta ngular orifice | To make the student gain knowledge & to know Determination of Cc, Cd, Large orifice, Derivation of discharge through large rectangular orifice | • | Text Book | • | Response(5 Min) Explanation with/without PPT (25 Min) Numerical on rectangular large orifice (20 Min) Student Creative Response (5 Min) | Numerical
on
rectangular
large orifice | |---------|--|--|---|-----------|---|--|---| | Day - 8 | Derivati on for discharg e through large orifice- circular orifice | To make the student gain knowledge & to know Discharge through large Circular orifice | • | Text Book | • | Explanation with/without PPT (25 Min) Numerical on Circular large orifice (20 Min) Student Creativ e Response (5 | Numerical
on Circular
large orifice | | Day - 8 | Definition of Notch, Weir, classification of Notches and weirs, flow over rectangular notch, Sharp crested weir(includin g velocity of approach)-D erivation of expression for discharge with and without end contraction., | To make the student gain knowledge & to know Definition of Notch, Classification of Notch, discharge through notch | • | Text Book | • | Explanation with/without PPT (25 Min) Derivation of discharge through notch (20 Min) Student Creativ e Response (5min) | Classificatio
n of notches | | Day - 9 | Derivation
of discharge
through
triangular
notch | To make the student gain knowledge & to know discharge through triangular notch | • Text Book | Derivation of discharge through notch (25 Min) Numerical on rectang ular notch with end contract ion Student Creativ e Response (5min) | Numeric al on rectangul ar notch with out end contracti on | |---------|---|--|-------------|--|---| | Day-10 | Derivation
of discharge
through
Trapezoidal
notch notch | To make the student gain knowledge & to know discharge through Trapezoidal notch | • Text Book | Explanation with/without PPT (25 Min) Numerical on triangular notch, trapezoidal notch (20 Min) Student Creative Response (5 Min) | Nemerical
on
triangular,
trapezoidal
notch | | Day-11 | Derivation of discharge through Cippoletti weir, Stepped Notch | To make the student gain knowledge & to know discharge through Cippoletti weir, Stepped Notch, Empirical formulae for discharge-Francis formula, Bazins formula, Rehbock's formula | • Text Book | Explanation with/without PPT Derivation of discharge through Cippoletti (25 Min) Derivation of discharge through stepped notch (20 Min) Student Creative Response (5 Min) | Numericals
on
Cippoletti
weir,
Stepped
Notch | | Day-12 | Ventillatio
n of weirs,
different
types of
Nappe,
Broad
crested-De
rivation of
expression
for
discharge | To make the student gain knowledge & to know Ventillation of weirs, Types of Nappe, discharge through broad crested weir | • Text Book | discharge through broad crested weir(20 Min) Student Creative Response(5 Min) | erical
croad
d weir | |--------|---|--|-------------|--|-------------------------------| | Day-13 | Submerged weir-Derivati on of expression for discharge, Submergence ratio Siphon and Siphon spillway, Proportional Weir or Sutro weir | To make the student gain knowledge & to know Submerged weir, Submergence ratio, Siphon, Siphon spillway, Proportional weir | • Text Book | discharge control of through | erical
on
nerged
eir | ## Schedule and Sequence: Day Plan for Lesson-4 Lesson: 4 | Session/
Module
/ Day | Topic | Objectives | Before
Class
(Videos,
E-Books,
Case
Studies) | In Class
(Activities, Quiz,
Solving
Problems) | Post Class
(Assignment
, Discussion
Forum) | |-----------------------------|--|---|---|---|--| | Day - 1 | Laminar
flow
through
pipes | To make the student gain knowledge & to know Laminar flow through pipes: Reynolds experiment , Froude's experiment , Laws of fluid friction for laminar, turbulent flow | • Text Book | Explanation with/without PPT (35 Min) Video (10 Min) Student Creative Response (5 Min) | Describe
Reynold's
experiment,
Froude's
experiment,
laws of fluid
friction | | Day - 2 | Derivation
of friction
losses or
Darcy's
Weisbach
equation | To make the student gain knowledge & to know Derivation of friction losses or Darcy's Weisbach equation | • Text Book | Explanation with/without PPT (35 Min) Numerical on friction losses (10 Min) Student Creative Response (5 Min) | Numerical
on friction
losses | | Day - 3 | Minor losses: sudden enlargemen t, sudden contraction, entrance, exit, obstruction in flow | To make the student gain knowledge & to know Minor losses | • Text Book | Explanation with/without PPT (10Min) Derivation of expression for sudden expansion, Sudden contraction(30 Min) Numericals on minor losses (10 Min) | Numericals
on major
and minor
losses | | Day - 4 | passage,
bend, pipe
fittings,
Head loss
due to pipes
in series –
pipes in
parallel, | To make the student gain knowledge & to know Head loss due to pipes in series – pipes in parallel, | • Text Book | Explanation with/without PPT (10 Min) Numerical on 2 reservoir problem (35 Min) Student Creative Response (5 Min) | Numerical
on 3
reservoir
problem | |---------|--|--|-------------|---|---| | Day - 5 | Total energy line and hydraulic gradient line, sketching HGL, TEL | To make the student gain knowledge & to know HGL, TEL and sketching of HGL and TEL for different pipe problems | • Text Book | Explanation with/without PPT (10 Min) Numerical on Sketching of HGL, TEL (35 Min) Student Creative Response (5 Min) | Numerical
on
sketching
HGL, TEL | | Day - 6 | Variation of friction factor with Reynold's number – Moody's Chart, Hardy Cross pipe networks distribution | To make the student gain knowledge & to know Moody's Chart Hardy Cross pipe networks distributio n | • Text Book | Explanation with/without PPT (20 Min) Numerical on Pipe Networks (35 Min) | Numerical
on Pipe
Networks | | Day - 7 | Derivation
of Hagen
Poisuelle
equation,
through
straight
pipe | To make the student gain knowledge & to know Hagen Poiseulle equation through straight pipe | • Text Book | Explanation with/without PPT (20 Min) Numerical on Hagen Poiseulle equation through straight pipe (30 Min) | Numerical on sketching Hagen Poisuelle equation, through straight pipe | |----------------|---|---|-------------|---|---| | Day - 8 | Derivation
of Hagen
Poisuelle
equation
through
inclined
pipe | To make the student gain knowledge & to know Hagen Poiseulle equation through inclined pipe | • Text Book | Explanation with/without PPT (20 Min) Numerical on Hagen Poiseulle equation through inclined pipe (30 Min) | Numerical
on Hagen
Poiseulle
equation
through
inclined
pipe | | Day - 9 | Flow
between
parallel
plates-Both
plates at
rest | To make the student gain knowledge & to know Flow between parallel plates-Bot h plates at rest | • Text Book | Explanation with/without PPT (20 Min) Numerical on Flow between parallel plates-Both plates at rest (30 Min) | Numerical
on Flow
between
parallel
plates-Both
plates at
rest | | Day - 10 | Flow between parallel plates-Both plates at rest & inclined | To make the student gain knowledge & to know Flow between parallel plates-Bot h plates at rest & inclined | • Text Book | Explanation with/without PPT (20 Min) Numerical on Flow between parallel plates-Both plates at rest and inclined(30 Min) | Numerical
on Flow
between
parallel
plates-Both
plates at
rest and
inclined | | Day - 11 | Flow
between
parallel
plates-Uppe
r plate
moving | To make the student gain knowledge & to know Flow between parallel plates-Upp er plate moving | • Text Book | • | Explanation with/without PPT (20 Min) Numerical on Flow between parallel plates-Upper plate moving (30 Min) | Numerical
on Flow
between
parallel
plates-Uppe
r plate
moving | |----------|---|---|-------------|---|---|---| |----------|---|---|-------------|---|---|---| # Schedule and Sequence: Day Plan for Lesson-5 Lesson: 5 | Session/
Module
/ Day | Topic | Objectives | Before
Class
(Videos,
E-Books,
Case
Studies) | In Class
(Activities, Quiz,
Solving
Problems) | Post Class
(Assignment
, Discussion
Forum) | |-----------------------------|---|---|---|--|---| | Day - 1 | Boundary layer – concepts, Displacem ent, Energy, Momentu m thickness, Prandtl contributi on, Characteri stics of boundary layer along a thin flat plate, | To make the student gain knowledge & to know Boundary layer – concepts, Displaceme nt, Energy, Momentum thickness, Prandtl contribution , Characteris tics of boundary layer along a thin flat plate, | • Text Book | Explanation with/without PPT (30 Min) Video ((20 Min) | Derivation of mathematic al expressions for displacemen t, energy, momentum thickness | | Day - 2 | Bound ary layer equatio ns, Von-Ka rman Integra l Momen tum equatio n | To make the student gain knowledge & to know Boundary layer equations, Von-Karma n Integral Momentum equation | • Text Book | Explanation with/without PPT (25 Min) Video (20 Min) Student Creative Response (5 Min) | Queries | | Day - 3 | Bound ary layer equatio ns, Von-Ka rman Integra | To make the student gain knowledge & to know Boundary layer equations, Von-Karma | • Text Book | Explanation with/without PPT (25 Min) Video (20 Min) Student Creative Response | Queries | | | Momen
tum
equatio
n | n Integral
Momentum
equation | | (5
Min) | | |---------|--|--|-------------|---|--| | Day - 4 | Deriva tion of Von-Ka rman Integra I Momen tum equatio n | To make the student gain knowledge & to know Derivation of Von-Karma n Integral Momentum equation | • Text Book | Explanation with/without PPT (40 Min) Student Creative Response (5 Min) | Queries | | Day - 4 | Bound ary layer equatio n for lamina r flow | To make the student gain knowledge & to know Blasius equation for Nominal thickness, displacemen t thickness, Momentum thickness. Equations for local drag coefficient, Drag force. Equation for average drag coefficient, Friction drag force | • Text Book | Explanation with/without PPT (40 Min) Numerical in computing Drag force (15 Min) | Numerical in computing Friction Drag force | | | Bound
ary
layer | To make the student gain | • | Text Book | • | Explanation with/without PPT (40 | Numerical
in
computing | |----------------|-----------------------|--------------------------|----------|-----------|---|----------------------------------|------------------------------| | Day - 5 | equatio | knowledge
& to know | | | | Min) | Friction | | Day - S | n for | equation for | | | • | Numerical in | Drag force, | | | Turbul | Nominal | | | | computing Drag | laminar sub | | | ent
flow | thickness, | | | | force, laminar sub layer | layer | | | HOW | Equations | | | | (15 | | | | | for local | | | | Min) | | | | | drag | | | | , | | | | | coefficient, | | | | | | | | | Drag force.
Equation | | | | | | | | | for average | | | | | | | | | drag | | | | | | | | | coefficient, | | | | | | | | | Friction | | | | | | | | | drag force | | | | | | | | | for | | | | | | | | | Transition, | | | | | | | | | Turbulent flow, | | | | | | | | | Schlichting, | | | | | | | | | Prandtl | | | | | | | | | equation, | | | | | | | | | Prandtl- | | | | | | | | | Schlichting | | | | | | | | | equation for | | | | | | | | | Average | | | | | | | | | drag
coefficient | | | | | | | | | for different | | | | | | | | | ranges of | | | | | | | | | Reynold's | | | | | | | | | number. | | | | | | | | | Equation of | | | | | | | | | laminar | | | | | | | | | sub-layer | | | | | | | | | | | | • | Explanation | | | | | To make the | • | Text Book | | with/without | | | | | student gain | • | Video | | PPT (25 | | | D (| Hydrodyna | knowledge | | links/UR | | Min) Video (20 Min) | 0 : | | Day - 6 | mically
smooth | & to know
Hydrodyna | | L | • | Video (20 Min) | Queries | | | and rough | mically | | | • | Student
Creative | | | | surfaces, | smooth and | | | | Response | | | | Seperation | rough | | | | (5 Min) | | | | of | surfaces, | | | | ` ' | | | | boundary | Seperation | | | | | | | | layer, | of boundary | | | | | | | | methods of | layer, | | | | | | | | controlling | methods of | <u> </u> | | | | | | | separation
of
boundary
layer. | controlling
separation
of boundary
layer. | | | | |--------|---|--|-------------|--|--| | Day -7 | Flow
around
submerged
objects:
Drag and
Lift-
Magnus
effect. | To make the student gain knowledge & to know Flow around submerged objects: Drag and Lift-Magnus effect. | • Text Book | Explanation with/without PPT (25 Min) Video (20 Min) Student Creative Response (5 Min) | Numericals
on
computatio
n of Drag
and lift
force | ### **TEXT BOOK:** 1. Hydraulics & Fluid mechanics including fluid machines-Modi & Sethi, Standard Publishers.