Introduction
Contents
g wi There is no dearth of pood C programming books in the market.
A mxmdlniidiﬂﬂm I However, | found that there is not moch material which could help &
3 C Hn 1 17 C programmer 1o test his programming strengths, help improve his
3 iy 27 confidence and in the process hone his C skills. Hence this book.
; Fioating Point lssues i: This is not & text book on C. In fact it is far from it
'.i; Thrchprmmr 653 Tt contzins & lot of questions segregated topic-wise according o my
g M :buu Priiiers e perception of the language. Almost all the guestions are real one's
9 Ar::'s : 9 asked by real people attempting to leamn or program in C.
10 Sirings. w .)
. ¥ There is no reason why you should read the questions in the same
:; ;&:mﬁ.uﬂnmmdmm tg; order as they appear in this book. You can pick up any topic that you
3 Closr A Line e 141 ﬁkmmgﬂdn{mpﬂmmmqwmmmnsmm
14 Bitwise Operators 157 —
i rped 1
:: .?;Eﬂm on efm l:g There is a good chamce that if you are learning or using C and you
17 Memory Allocation 159 have questions sbout C that aren't answered in any of the other boolks
T Variahle Number of Arguments A you've checked, you would find them answered here. It would be oo
19 Cooniticassd Dncleraings 717 much 1o expect that you would find in this book answer 10 every
0 Lit F— 237 question you would have when you're programming in C. This is
because many of the questions that may come up in your program-
ming would have 1o do with your problem domain, wherezs this book
concentrates only on the C language. Also it doesn’t cover every
aspect of every operating sysiem under which C isrunning. Problems
specific 10 an operating systems, and general-purpose algorithms are
properly discussed in books devoted o those topics.
At the end of each chapter you would find comect answers to the
questions in that chapter. You would find some answers more
elaborate than others. At first sight this may seem unnecessary.
Howewver, | have done this 1o give you the complete picture rather
than oversimplifying or leaving out imporant details.
v vii
Contents

12345678910111213141516171819 20

Introduction Declarations and Initializations Control Instructions Expressions Floating Point Issues Functions The C
Preproc®ssor Pointers More About Pointers Arrays Strings Structures, Unions and Enumerations

Input/Output Command Line Arguments

Bitwise Operators Subtleties of

typedef The

const
Phenomenon Memory Allocation Variable Number of Arguments Complicated Declarations Library Functions

Vi

vii 1172737475569 779199 107 129 141 157 169 179 189 209 227 237

Introduction

There is no dearth of good C programming books in the market. However, I found that there is not much material which could
help a

C programmer to test his programming strengths, help improve his confidence and in the process hone his C skills. Hence this
book.

This is not a text book on C. In fact it is far from it.

It contains a lot of questions segregated topic-wise according to my perception of the language. Almost all the questions are real
one's asked by real people attempting to learn or program in C.

There is no reason why you should read the questions in the same order as they appear in this book. You can pick up any topic
that you think you are good at (or poor at) and try to test your skills on that

topic.

There is a good chance that if you are learning or using C and you have questions about C that aren't answered in any of the other
books you've checked, you would find them answered here. It would be too. much to expect that you would find in this book
answer to every question b

o

cause many you would of the have questions when that you're may programming come up in your in C. program This is

mmg would have to do with your problem domain, whereas this book concentrates only on the C language. Also it doesn't cover

every

aspect of every operating system under which C is running. Problems specific to an operating systems, and general-purpose

algorithms are
properly discussed in books devoted to those topics.

At the end of each chapter you would find correct answers to the questions in that chapter. You would find some answers more
claborate than others. At first sight this may seem unnecessary. However, I have done this to give you the complete picture rather
than oversimplifying or leaving out important details.

vii

I have tried 1o avoid the questions whose answers are most obvious
because the idea was not 10 increase the number of questions, but to
present guestions which would forcethe readers o think twice bef ore
answering. That'sin tane with the spirit of C - be precise, breviry has

ilS W imponance. Chapter 1

5o roll your sleeves and get on with the real questions. Good luck!!

Declarations and Initializations

Yashavant . Kanetkar

MNov., 1996
Q 1
Whart would be the owpat of ihe following program?
main(|
i
charfar *s1, 52 ;

print! | "% %", sizeel 51), sizeo (52}) ;
}

Q) iz

What would be the output of the following program?
nix=40;
mainy |
1
intx =20
prindf [", x)

Q 13

What would be the ompot of the following program?

I have tried to avoid the questions whose answers are most obvious because the idea was not to increase
the number of questions, but to present questions which would force the readers to think twice before
answering. That's in tune with the spirit of C- be precise, brevity has its own importance.

So roll your sleeves and get on with the real questions. Good luck!!
Yashavant P. Kanetkar Nov., 1996
viii

Chapter 1

Declarations and Initializations

Q

1.1

What would be the output offne-folluwing-progmm]1.

main() {
char far *s1, *s2; pr

intf ("%d %d", sizeof (sl), sizeof (s2)) ;

Q

1.2
What would be the output of the following program?

int

40; main() {

20; printf ("\n%d",

Q

1.3

What would be the output of the following program?

2 ___ Test Your C Siills
main{)
‘ iink x = 40;

| ntx =20;

; prnti | nd ", x) .

printf{ *%d’, x)

Q 14

Is the following statement a declaration or a definition?

axtem it i
Q 15

What would be the owput of the following program?

lﬂ'!ll
extemint i;
i=M;
pontf ("%d", sizeaf (i}]

—_

2

d]

‘Would vary from compiler o comgiler
Error, i undefined

SRR

wionld be the output of the following program?

¥ ' printf (e, 3) ' W

.2
Test Your C Skills
main() {

int X

20; printf ("\n%d

x) ; } printf ('%d", x) ;

1.4
Is the following statement a declaration or a definition?

externinti;

Q

1.5
What would be the output of the following program?
main() {

externinti;i

20 ; printf ("%d', sizeof (1))

2B.c.

I Would vary from compiler to compiler D.
Error, 1 undefined
Chapter 1: Declarations and Initialisations

3

Q

1.6

Is it true that a global variable may have several declarations, but only one definition? <Yes/No>

Q

1.7

Is it true that a function may have several declarations , but only one definition? <Yes/No>

Q

1.8
In the following program where is the variable a getting defined and where is it getting declared?
main() {
}
ext ern int a; printf ('%d', a) ;

inta=20;

Q

1.9

What would be the output of the following program?
main() {

externint a; printf ("\n%d', a);

int a=20;

4 Test Your Skills
A 20

B. O

C. Garbage valoe

D. Emor

Q) 110

What's the differemce between a defintion and declaraiion of a
vaniable?

Q 1u

I the definition of an exiermnal variable occurs in the source file before
its wse in a pamicular funciion, then there is po peed for an extérn
declaration in the fanction. <True/False>

Q 112

Suppose a program is divided into three files §7. f2 and /3. and a
variable is defined in she file f7 but used in the files /2 and /3. In such
acase would we need the exiernal declaration for the variables inthe
files j2 and 37 <YesMoz>

Q 113

When we mention the prototype of 2 function are we defining the
function or declaring n?

Q 114

‘What's the difference berween the following declarations?

I Chaprer I Declararions aed Dniialisarions
4

extemint fun() ;
int funf) ;

Q 115

Why does the following program report a redeclaration error of
fumction display 7

main{ |
{ display(} ;
‘}Bﬂﬁﬂhy[i

printf { “nCithanger” | ;

Q 115

What would be the output of the following program?

ina'm{]
exhem int fun| foat) ;
inta;
a=fun{3.14);
printf{ %", a);

retm (it)aa);

Test 4

Your C Skills
A. 20 B. 0 c. Garbage value D. Error

Q

1.10

What's the difference between a defintion and declaration of a variable?

Q

1.11

If the definition of an external variable occurs i n the source file before its use in a particular function, then there is

no need for an extern declaration in the function. <True/False>

Q

1.12

Suppose a program is divided into three files fl , j2 and f3, and a variable is defined in the filefl but used in the
filesj2 andf3. In such a case would we need the external declaration for the variables in the filesj2 andf3? <Yes/No>

Q

1.13

When we mention the prototype of a function are we defining the function or declaring it?

Q

1.14

What's the difference between the following declarations?

Chapter 1: Declarations and Initialisations

extern in! fun() ; in! fun() ;

Why does the following program report a rcdeclaration error of function display{)?
mai n() {

display() ; } void display() {
pri ntf ("\nCiifthanger") ;

Q

1.16
What would be the output of the following program?
main() {

extern int fun (float) ;inla;a

fun (3.14) ; printf ("%d", a) ;
int fun (aa) float aa; {
r

etum ((int)aa);

6 d : Test Your C Skills

A. 3

B. 314
c. 0

D. Ermor

Q L7

Point out the error, if any, in the following program.

struct emp

[
char name[20]
il age ;

1

I soee mare code may go hare *f

fum (ind aa)

mbb;
bb=aa"ma;
redom | bb) ;

Chapier I: Declarations and Initialisations 7

Q 115

If you are to share the wariables or functions across several source
files how would you ensure that all definitons and declarations are
consistent?

Q L5

How would you rectify the error in the following program?

i{sinctemp);
I any ciher prolotypss may go here

strucd omp & =| "Soicher, 34] ;
te);:
1{ struct emp 8)

: printf ["eka %", eename, ee.agn)

Q 120

Global wariables are available to all functions. Does there exist a
mechanism by way of which I can make it available to some and not
to others.

6 Test Your C Skills
A.3B.3.14 c. 0 D. Error

Q

1.17
Point out the error, if any, in the following program.
struct emp {
char name(20) ; int age;
r some more code may go here */
fun
(intaa) {
1

intbb; bb=aacaa; retum

(

bb);

main() {

inta; a= fun (20); printf ("\n%d"
1

a);

Chapter 1: Declarations and Initialisations

7

Q

1.18

If you are to share the variables or functions across several source files how would you ensure that all definitions and declarations
are

consistent?

Q

1.19
How would you rectify the error in the following program?

f (struct emp

)

,ra

n

y other prototypes may go here *I struct emp {
char

name{20] ; int age; } : main() {
struct emp €
{ "Soicher"
1
341}

struct emp ee

)
printf

(

"\rflos %d", ee.namel ee.age) ;

Q

1.20

Global variables are available to all functions. Does there exist a mechanism by way of which I can make
it

available to some and not to others.

L

8 Test Your C Skills Chapter I: Declarations and Initialisations g

Q 12

A 0 0000000
Garbage values
What do you mean by a iranslation unit? E’ E:W g
D. Mone of the shove

Q 122

What would be the output of the following program?

Q 1:4

Some books suggest that the following definitions should be

;"*'” preceded by the word srarice. Is it correct?
 mals)=(2.3); mtall={2 3 4, 12,32);
peinl { "n%d %d %", alZ), a3} 44): sinact emp & = { “sandy”, 23 } 5
A. Garbape walues Q 125
B. 233
E‘ ;é‘& Point out the error, if any, inthe following program
main)
Q 12 3
“'!['F]H=fll1:
‘What wouald bethe output of the following program? J PN
fum }
) {
J inf { “nlLowd and dear”) ;
v | pind { }
{
char namef2d] ; 3
int 2ge : W Q 13
fioat sl ;

_I.;marma: Y Pointowt the erroe, if any, inthe following program.
it | “n%d %7, e.age. esdl); frain(}

8 Test Your C Skills

Q

1.21

What do you mean by a translation unit?

Q

1.22
What would be the output of the following program"™
main() {

int a[S]

{2,3}; printf ("\n%d %d %d", a[2], a[3], a[4)) ;
A. Garbage values B.233¢.322D.000

Q

1.23

What would be the output of the following program?
main() {

struct emp {

¥

char name[20] ; int age; float sal ;

. structemp e

{ "Tiger" } ; prin tf ("\n%d %f", e.age, e.sal);

1: Chapter
Declaratitms and Initialisations
9
A.

0 0.0000 B. Garbage values c.

Error D. None of the above

Q

1.24

Some books suggest that the following definitions should be preceded by the word static. Is it correct?

inta[|

{2,3,4,12,32 } ;structemp e
{ "sandy", 23 } ;
1.25

Point out the error, if any, in the following program.

main() {

int (*p)()

fun 5 (*p)()

; } fun() {

printf ("\nloud and clear") ;

Q

1.26
Point out the error, if any, in the following program.

main() {

10 Test Fowr C Skills Chapter 1: Declararions and Inirtalisarions 11
ILlum a A 13
nli;
char chi?]; 20 40. In case of a conflict between bocal variables, the one which is
1H mare local thar gets the priority.
union &z = 512 ;
print | *%d %%, ch{0], ze1]) A 14
. .
Q 127 Dieclarztion
A 15

What do you mezan by scope of a variable? What are the 4 different
types of scopes that a varizble can have?
D. extern inr i s 8 declaration and not a definition, hence the error.

€ 12 A

1.6
What zre the different types of linkages?
Yes
Answers A 17
A 11
Yes
42
A s
A 12
exlern ind a is the declaration wheress inra = 20 is the definition.
2. Whenever there is a conflict berween & local variable and a global A
19

variable it is the bocal variable which gets & priority.

A

Test Your C Skills
union a {

inti; char ch[2]; } ; union a z

10
512; printf ("%d %d", z.ch[O], z.ch[1]);

Q

1.27

What do you mean by scope of a variable? What are the 4 different types of scopes that a variable can
have?

Q

1.28

What are the different types of linkages?
Answers.

A

1.1
42

A
1.2

20. Whenever there is a conflict between a local variable and a global variable it is the local variable
which gets a priority.

1: Chapter

Declarations and Initialisations 11

A
1.3

20 40. In case of a conflict between local variables, the one which is more local that gets the priority.

A
1.4
Declaration
A
L.s

D. extern inti is a declaration and not a definition, hence the error.

A
1.6
Yes

A

1.7
Yes

A
1.8

extern int a is the declaration whereas int a

20 is the definition.

1.9

[- Test Your C Skills

Inthe definion of a variable space is reserved for the variable and
soime initizl valwe is given toit, whereas a declaration only identifies
the type of the variable for a function. Thos definition is the place
where the variable is created or assigned storage whereas declarstion
refiers toplaces where the nature of the varizble is stated but no storage
is allocated.

A n
True
A 1
Yes
A 113

‘Wi are declaring it ‘When the function alongwith the ststements
belonging o it are mentioned we are defining the function.

A

There is no difference except for the fact tharthe first one gives a hint
that the function funf) is probably in another source file.

A s

Here display)is called before it is defined. [m swch cases the comipiler
assumes that the function displaw) is declered as

E!l_aﬂr I: Declaranions and Initialisarions 13

i displyy) .

Theat is. an undeclared function is assumed to returm &0 infand scoept
an unspecified sumber of argumems. Then when we define the
famction the compiler finds that itis retuming woid hence the compiler
reports the discrepancy.

A 16

[The error occurs because we have mixed the ANSI prodotype with
K & R siyle of function definition.

When we use ANSI protprype for 2 function and pass a fToar o the
function it s promoted 1o 2 double. When the function sccepis this
doudde mio & flear a type mismatch occurs hemce the ermor.

The remedy for this error could be 1o define the function as:

ok fun | et a2)
{

}

A 117

Because of the missing semicolon at the end of the structure decla-
ration {the inervening comement further obscures i) the compiler
believes that fiw) would return something of the the type sirwcr emp,
whereas in actuality it 15 stlempling o retwrn an iaf. This causes a
mismatch, hence an error resulis.

12 Test Your C Skills

A
1.10

In the defintion of a variable space is reserved for the variable and some initial value is given to
it, whereas a declaration only identifies the type of the variable for a function. Thus definition is
the place where the variable is created or assigned storage whereas declaration refers to places

where the nature of the variable is stated but no storage is allocated.

A
111

True

A
112

Yes
A

1.13

We are declaring it. When the function alongwith the statements belonging to it are mentioned
we are defining the. function.

A
1.14

There is no difference except for the fact that the first one gives a hint that the function fun() is
probably in another source file.

A
1.1s

Here display() is called before it is defined. In such cases the compiler assumes that the function
display() is declared as

Chapter

1:

Declarations and Initialisations 13
int display() ;

That is, an undeclared function is assumed to return an int and accept an unspecified number of
arguments. Then when we define the function the compiler finds that it is returning void hence
the compiler reports the discrepancy.

A
1.16

D. The error occurs because we have mixed the ANSI pro@otype with K & R style of function
definition.

Whe® funct109 we It

u.se IS

promoted ANSI protptype to a double. for a When function the and function pass afl
accepts o

at to this the

double mto afl

(4]

at a type mismatch occurs hence the error.

The remedy for this error could be to define the function as:

int fun (floataa) {

A

1.17

Because of the missing semicolon at the end of the structure decla
w belt ration @

ereas eves (the €hat m intervening fun(J wo@l

? comment return something further obscures of the the it) the compiler type struct emp, actuality
1F1s attempting to return an int. This causes a mismatch, hence an error results.

M4 Test Your C Skills

A 115

The best arrangement is to place each definition in a rebevant .c file.
Then, put an external declaration in 3 header file (h file) and wse
Finclide 1o bring in the declaration wherever needed.

The c file which contains the definition should also include the

header file, so that the compiler can check that the definition marches
the declaration.

A 119

Declare the structure before the prototype of).

Chapier I Declarations and fnitialisarions 15
A 123

A_When an awtomatic structure is partially initialised, the remaining
elemenis of the struciwre are initialised w0,

A 124

Pre-ANSI C compiers had such a requirement. Compilers which
conform 1o ANSI C standard do not have such a requirement.

A 135

Here we are initialising the function pointer p to the address of the
function funf). But during this initialisation the function has not been

A Sl defined. Hence an error.

To eliminate this error add the prototype of the funf) before declara-

No. The only way this can be achieved is 1o define the variable locally
tion of p, as shown below:

in main() instead of defining it globally and then passing it to the
functions which need it.

afemint fun|] ;
A 1= -
A translation unit is a setof source files seen by the compiler and ind fun() ;
translated & a unit: generally one ¢ file, plus all header files men-
tioned in #include directives. A 136
A 122 . Wt s
In a pre-ANSI compiler a wrion variable cannot be initialised. How-

ever, ANSI C permits initialisation of first memeber of the union
D. When an swtomatic array is partially imitialised, the remaining
array elements are initialised to 0.

14 Test Your C Skills
A

1.1s

The best arrangement is to place each aefinition in a relevant .c file. Then, put an external declaration in a
header file (.h file) and use #include to bring in the declaration wherever needed.

The .c file which contains the definition should also include the header file, so that the compiler can check

that the definition matches the declaration.

A
1.19
Declare the structure before the prototype off().

A
1.20

No. The only way this can be achieved is to define the variable locally in main() instead of defining it
globally and then passing it to the functions which need it.

A
1.21

A translation unit is a set of source files seen by the compiler and translated as a unit: generally one .c file,
plus all header files men tioned in #include directives.

A
1.22

D. When an automatic array is partially initialised, the remaining array elements
are

initialised to 0.

Chapter
I:

15
A

1.23

A. When an automatic structure is partially initialised, the remaining elements of the structure are
initialised to 0.

A
1.24

Pre-ANSI C compilers had such a requirement. Compilers which conform to ANSI C standard do not
have such a requirement.

A
1.2s

Here we are initialising the function pointer p to the address of the function fun(). But during this
initialisation the function has not been defined. Hence an error.

To eliminate this error add the prototype of the fun() before declara tion of

p;

Declarations and Initialisations
as shown below:
extern int fun() ;

or simply

int fun() ;
A

1.26

In a pre-ANSI compiler a union variable cannot be initialised. How ever, ANSI C permits initialisation. of
first memeber of the union.

16 Test Your C Skills

A 197

Scope indscates the region over which the variable' s declaration has
an effect. The four kinds of scopes are: file, function, block and
prototype.

A 128

There are three different types of linkages: external, internal and
none. External linkage means global, non-static variables and func-
tons, internal linkage means static variables and functions with file
scope, and no linkage means local variables.

ChaEter 2

Control Instructions

Q :z1

What would be the output of the following program?

i

main{ |
.
inti=4;
switch | i}
I
delaul :
printf | "nA mouse i an slaphant bult by the Japanese®) ;
case 1:
pranif | “\nBreeding rabbils is ahare raising expenence” | ;
break ;
cased:
prinf | "\nFrictionis a drag’ } ;
break ;
cased:
pntf { " pract makes perledt, then nobody's par ~ §;

Q ==

Point out the arror, if any, in the for loop.

@
16 Test Your C Skills
A

1.21

Scope indicates the region over which the variable's declaration has an effect. The four kinds of

scopes are: file, function, Block and prototype.

A

1.2s

There are three different types of linkages: external, internal and none. External linkage means

global, non-static variables and func tions, internal linkage means static variables and functions

with file scope, and no linkage means local variables.

Chapter 2

Control Instructions

Q

2.1

What would be the output of the following program?
main() {
inti=4; switch (1) {
default :
printf ("\nA mouse is an elephant built by the Japanese") ; case 1 :
pr intf ("\nBreeding rabbits is a hare raising experience) ; break ; case 2:
pr intf ("\nFriction is a drag") ; break ; case 3:

printf ("\n If prac tice makes perfect , then nobody's pe rfect") ;

Q

2.2

Point out the error, if any, in the for loop.

