
A plugin by Maxime Dupart: Twitter

Documentation
Discord Link

I.Presentation
Shader World plugin is a GPU-accelerated framework for World creation, and

population. It’s incredibly fast, does not require a strong CPU, and works with any entry level
GPU that supports compute-shaders : most GPUs and smartphones since 2013. It allows users
to generate at runtime detailed, vast, rich and interactive worlds from the comfort of the well
known Unreal Engine material editor.

It features: runtime layers, compute-shader powered density based asset spawning, a
high performance fully triplanar landscape material, adaptive terrain rendering topology for high
quality output, communication between Shader Worlds (ocean/terrain), a collection of premade
high quality noise nodes (Material Functions) ready to be combined, an interactive brush system
which can both edit the terrain and the runtime layers.
.

It’s built for performance, scalability, and fast iteration.

https://twitter.com/Max_Dupt
https://discord.gg/pHSvAQUTbU

Introduction on Youtube
II. Getting Started
1. The world

First of all you need to activate the plugin from the editor plugins menu, then enable
visibility of Engine content and Plugin content for your content browser.

From the Shader World plugin Content folder, navigate to the Maps subfolder and open
one of the demo maps. In the world outline select the blueprint named BP_NameOfMapDemo,
within its detail panel you can find its generator Material which defines the foundation of how
your world looks like, is generated.

See annex for how this world is generated

https://www.youtube.com/watch?v=eHars_dlYRg

If you open the generator material you will find a material function named MF_Define_*
which is actually responsible for creating your landscape/ocean: for each XY coordinate as
input, it outputs a height.

Creating a new world in shaderworld, consists in creating such a material function, using
the provided nodes toolbox and the well known Unreal Engine material editor. To visualize its
effect, first select the landscape in your currently opened demo map (better start with Blank
demo map), and check Update Height Data Over time in its detail panel ‘Config’ tab: this
option is usually used to create oceans, but allows instant feedback when iterating on
landscapes. Open the MF_Define_* Material Function associated with your current world, now
updating every frame, and replace the current computation by a simple constant to the output
pin, compile the material function and observe the result.

What this material function is doing is: given a world position input, outputs the height of
the terrain.

Node Based Workflow, connect those as you wish to create worlds

The intended design of Shader World plugin is to create a node based workflow to
generate worlds within the material editor, so you don’t have to be a professional technical artist
to create interesting worlds, similar to other terrain generator software available on the market.
The screenshot above displays the current state of the toolbox as of version 1.3, those nodes
are premade and calibrated (inputs being in 0..1 0..10 0…1000 ranges) and can be combined
as you want.

In Shader World plugin the nodes are actually material functions, you can develop your
own nodes, or even directly write your own shader logic without using them at all.

If you check the various demo map MF_Define_* material functions you can find some
reference on how to use world coordinates to read a heightmap to define your terrain, as well as
adding some lower scale noise variations to it, or relying exclusively on noise functions.

Alongside the provided toolbox you can use all the preexisting material functions within
the Unreal Engine material editor, notably the Noise node (prefer computational noises to avoid
precision issues). But we would recommend using Shader World's own noises which have been
extensively tested. The toolbox is set to expand over time.

As a general idea you could think of generating a node combination for mountains,
another for valleys, another for underwater, and blend between each other given a biome,
mapped using a texture or another set of nodes, possibilities are endless.

2. BP_ShaderWorld tabs:

1. World Settings and Config

For the rendering, we rely on GPU based geometry clipmaps, if you want to learn more
about it, understand what the vertices per patch/ring means check the link below:
https://developer.nvidia.com/gpugems/gpugems2/part-i-geometric-complexity/chapter-2-terrain-r
endering-using-gpu-based-geometry

By default ShaderWorld ‘cache’ the evaluation of the generator at a given location in a
texture. The resolution of this cache is independent from the terrain resolution which
corresponds to the real world distance between two vertices of your terrain ground at its highest
quality LOD. Clipmap cache intra vertice texel allows to define how many extra height
evaluations are gonna be generated in-between your terrain vertices, allowing a much more
precise computation of your terrain normal, a better looking shading, than if we were just
evaluating at each vertice.

With Clipmap cache intra vertice texel to 1, you will only precompute the height/normal
of the terrain at each vertice generating your world terrain triangles. The more you increase
‘Clipmap cache intra vertice texel’ the more you add details in between those vertices.

https://developer.nvidia.com/gpugems/gpugems2/part-i-geometric-complexity/chapter-2-terrain-rendering-using-gpu-based-geometry
https://developer.nvidia.com/gpugems/gpugems2/part-i-geometric-complexity/chapter-2-terrain-rendering-using-gpu-based-geometry

You have the option to add landscape layers in Land Data Layers. For each layer you
have to specify a unique name and a material to generate the layer. Each layer can access
the data computed before itself:

● Layer 1 can access: Heightmap, Normalmap
● Layer 2 can access: Heightmap, Normalmap, Layer 1
● …

Topology fix Under LOD : Allows to adjust the terrain patch rendering to better fit the
topology of the terrain and avoid ‘spikes’ of the terrain landscape. As this computation is
expensive, it’s recommended to only use it on the higher quality LODs around the players.

Experimental World Representation

2. Spawnables (Update Height Data Over time OFF)

Spawnables are of four different types: Meshes, Grass, Foliages, or Actors.
● Meshes : you provide one or multiple Static Meshes
● Grass : you provide a Landscape Grass Type
● Foliages: you provide one or multiple Static Mesh Foliage
● Actors: you provide one or multiple Actors

Each Spawnable will be computed on a set of grids dynamically placed around the
players: Number of Grid Rings let you know how many rings of grid will be computed around
the player, the less number of grids there is, the less draw calls will be generated, everything
being computed on GPU.

To lower the number of grid rings, increase the size of the grids, but be careful to not
have too many entities computed per grid (over 10 000 ?).

Example : Cull Distance Min indicates at which distance your instanced Meshes will
start fading away, and Cull Distance Max indicates at which distance your instances won’t be
rendered anymore (2350 cm | 23.5 meters): You don’t need to use 500 meters wide grids if you
render instances only at 23.5 meters! Here we use 25 meters wide grids.

As counter-intuitive as it may appear the number or rings is often a more relevant
information than the number of instances computed per grid regarding performances.

The important parameter is whether or not a spawnable has collision enabled: collisions
disabled allows 10000 instances per grid or more, as long as the meshes are simple enough for
your targeted hardware, but if the spawnable requires collisions it’s advised to stay below
400-1000 instances per grids or lower, depending on the complexity of the collision
representation.

By default spawnables will use the material M_SpawnDensity_Default to generate a
density map defining the probability for an asset to spawn.

If you want to add custom logic to a given spawnable, you can specify a Custom
Spawnables Mat, allowing to define advanced spawning conditions using all the informations at
your disposal within the Landscape Data layers, as well as Heightmap and Normal map (see
demo_heightmap for its custom grass spawning density function).

As spawnables are computed by drawing materials, you can define a specific draw call
budget for computing spawnables, which represent how many draw calls will be allowed per
frame to compute spawnables, each grid represents one draw call. Priority order for spawnables
computation depends on view distance (Objects close to camera first), collision status (collision
enabled first), and being within view frustum or not.

No Popping Range Meters, Spawnables improve their spawning location as you get
closer to them: As the landscape ground quality improves as you get closer, spawnables
locations are re-evaluated to leverage the higher quality terrain information computed.

One possible issue is that the higher quality terrain information might indicate that the
terrain which seemed suitable once evaluated at lower quality is actually not suitable for
spawning an asset (the ground slope is beyond the tolerated range for instance) the instance
should then be removed (or the terrain is suitable and it should now spawn). As it looks jarring
seeing asset spawning/despawning next to the camera, you have the option to prevent it from
happening within a specific range. Default value is 750meters.

Collecting resources: By default spawnables with collision enabled also have the
possibility to be collected if Resource Collectable is checked and a non-empty Resource
Name is provided, one of the demo maps showcases how to collect large rocks. Note that there
is no book-keeping of those spawnables, nor server authoritative management of resources, if
the player goes beyond the generation range and comes back, the resource will reappear. A bit
like No Man’s Sky procedural collectable vegetation.

Painting foliage (UE5 Only) : If your world generates collision, you can use the Foliage
Mode of Unreal Engine 5 to paint and place foliage on your Shader World terrain, as long as
BSP is selected as target, and within the range you’re computing collision for.

3. World Collision

Similar to spawnables computation, collisions are computed in grids around the players.
Collision Resolution defines the distance between two adjacent vertices for your collision
meshes. Collision vertices per patch defines the size of patches you will be computing
collisions for. When not simulating the game or playing, you can visualize the collision mesh in
Wireframe mode in blue, or by checking “Collision Visible”.

Export Physical Material ID, allows to specify that the ground material IDs are available
within one of your terrain runtime layers, and to specify in which channel (Red, Green or Blue).
By exporting those IDs you’ll be able to identify which material you are hitting during collision
events, line traces etc.. Allowing you to generate appropriate sounds and VFX for a given
ground material.

By default we provide a highly optimized fully triplanar landscape material using those
generated Material IDs as indexes to read three textures arrays storing respectively: Base
Color, Normal, and packed AO/Roughness/Displacement of a couple of free Megascan ground
materials.

You can of course use any landscape material that you want, given that you convert the
landscape specific nodes (layer blend) accordingly.

The provided landscape material and its ground materials arrays

4. Advanced | Clipmap Hack Culling

Our world relies on height being evaluated within a material on GPU, as a consequence,
the CPU has no information regarding the actual height of the terrain and will cull (hide by not
asking the GPU to render) pieces of the ground that it assumes we can’t see.

As far as the CPU is concerned we’re drawing an infinite flat plane, the higher/lower we
are from this original plane, the more it will start skipping pieces of the ground that we can
actually see once height is evaluated.

To prevent this issue, instead of sending a flat plane to the CPU we’ll alternatively move
vertically each point of the plane with +/- Vertical Range Meters meters, the bounding box of
our terrain patch will then pass CPU culling without issues. If your terrain seems to disappear,
increase this value.

5. Advanced | Dependencies

Allows one ShaderWorld to send its data to another, see Map_Ocean: the landscape
ShaderWorld sends its height information to the ocean, allowing the ocean to create more
interesting shoreline shading and adjust ocean transparency around the shore.

The Landscape ShaderWorld set the Ocean SshaderWorld as a Receiver.
The Ocean ShaderWorld set the Landscape ShaderWorld as a Source.

The Ocean ShaderWorld can then access Landscape data using the
MF_ExternalCacheRead material function inside its ocean material.

(ocean world read heightmap from landscape world in its material for shore blend)

3. Creating a new World

Creating a new Shader World consists at first in creating a generator material
and its recommended material function, as well as a landscape/ocean material.

We would suggest creating a dedicated folder in your content browser and
creating two new materials, one for generating the world,and the other to simply be the
landscape or ocean material.

The terrain/ocean material (not the generator material) has to toggle
usage “Used With Virtual Heightfield Mesh”, available inside the material
editor, detail panel, usage tab.

The Generator material has to use the blend mode Opaque, and
shading model Unlit.

Generator Material : simply copy the highlighted elements from the
demo maps generators (MFC_Position_ForCache, floatToRGBA)

Look for Shader World in your Place Actor Unreal Engine editor tab,and drag it into the
world, replacing both its Material and Generator. You’re done !

Inside the various MF_Define_* from the demo map you can find the available premade
nodes, noise, functions, from reading heightmaps, packed 16 bits heightmaps, noises, terracing,
crater…

Good to know: BP_ShaderWorld_* should not move at runtime. If you move your world
around, even in editor, don’t forget to check rebuild in its “World Settings” tab, to guarantee the
world is properly set up.

The LODs are defined by your vertical distance to the land/ocean: when collision is
enabled we’re using the collision mesh grids to accurately know the viewer altitude to the
ground, otherwise we’re using the altitude to the reference plane of the world.

III. Dynamic Blueprint Brush System

1. Presentation

ShaderWorlds can be further shaped and customized using a Blueprint brush system,
via a BP_BrushManager, of class AShaderWorldBrushManager, placed in the same level and
linked in the ‘Brush Manager’ tab.

Using the brush system, the ShaderWorld will send to the BrushManager its originally
created heightmap, which in turn will apply the relevant layers and their related brushes for this
given heightmap.

Brushes are Blueprint actors of class AShaderWorldBrush placed in the world as well,
and linked to the BP_BrushManager from a layer. Brushes are defined by a material to be
applied to the heightmap, and a world footprint on the XY plane, visible as a box, which allows
to efficiently compute only the necessary brushes for a given terrain LOD. Brush box
dimensions are the responsibility of the user, which can either use the scaling of the brush actor
to increase its footprint, or adjust the dimension of the BoxComponent directly.

2. How To

For a brush system demo, please refer to the map Map_Reference within the plugin
content folder.

Brushes actors are basically managing a dynamic material which will be applied to the
ShaderWorlds heightmap. From the brush blueprint you can access the dynamic material and
therefore manage any shader parameter you might want to add to your brush.

A blueprint function named DoesBrushNeedRedraw is called from c++ at a frequency
defined in the BP_BrushManager ‘required’ tab. It’s based on the update rate of the layer stack
defined in RedrawCheckPerSecond and IncludeBlueprintUpdateEvery.

Blueprint workload being performance intensive, the blueprint implementable functions
will only be called once every IncludeBlueprintUpdateEvery update of the layer stack.
Preferably, Blueprints should rarely update parameters outside of the context of modeling the
landscape in Editor. If a given brush has to update parameters regularly, it’s recommended to
create it using c++ by inheriting the AShaderWorldBrush class and overriding ApplyBrushAt and
Reset functions.

Update of the layer stack allows it to check if any enabled brush has moved, as well as
layers and brushes being toggled enabled/disabled, or influence changed, in which case it’ll ask
the ShaderWorlds to redraw the impacted LODs, update the appropriate collisions, and
spawnables.

BP_BrushManager Layer Stack

BP_BrushDemo updating parameters of its dynamic material from blueprint

Runtime changes of a Blueprint Brush Location

If spawnables locations aren’t updated, they were most likely out of the Brush footprint bounds
Force a vegetation update by checking ‘rebuild vegetation only’ in Spawnable tab

IV. Smartphone/Tablet Android&iOS

Shader World plugin is now fully compatible with smartphones and has been tested on
both Android OpenGL and Vulkan. Note that UE5 currently has a breaking bug for ShaderWorld
on Mobile, we would suggest using the UE4 version while targeting mobile for now

The ground material used during mobile testing can be found in :
Demo_Reference/Material/SmartphoneTest

V. Heightmap Import (16 bits Raw/PNG)

A blueprint tool has been made available in BP/BP_Heightmap_16bits_Import
Simply Locate Heightmap File you wish to import, currently supported formats are 16 bits RAW
and PNG. If your file format is RAW then you need to specify the dimension of the texture as
this format does not hold this information. If your file format is PNG the heightmap dimensions
should be automatically defined.

Specify an output folder and a name for the heightmap and then press Import. The
output file will split the 16 bits information between two channels. You can use
BP/ToolBox/UVing/MF_BicubicPackedHeightmap to make a high quality bicubic read of this
heightmap as featured in the Heightmap Brush BP/Brushes/Heightmap/M_HeightMapBrush

V. Heightmap Brush

A new brush has been added to Shader World: the heightmap brush ! Youtube Teaser
which showcases a new capability of the brush system: to write into the data layers of the
terrain.

While the brush system was previously able to only move the terrain around given the
shader deformation defined in the material of the brush (read a texture to make a road, flatten a
terrain, add a noise, etc…) brushes are now able to write into the landscape data layers.

As a reference implementation you can check.. Maps/Map_Reference !

The landscape BP_ShaderWorld_Reference has a dummy data layer named
HeightLayer which doesn’t do anything (we could derive the normal map to generate curvature
information?!) while the brush BP_Heightmap_Brush has specified this precise layer as a

https://www.youtube.com/watch?v=UYwX8Hv_Ego

target in its Details panel Layer Write tab, as well as provided a material which will draw a flow
map into this layer.

Examining BP/Brushes/Heightmap/M_HeightMapBrush_layer reveals that the
flowmap is read as well as faded away at brush influence radius borders, and used to change
the material of the terrain by editing the material ID stored in the Red Channel of the
HeightLayer landscape layer. If Flowmap > 0.5 draw material 1, otherwise material 0.

This layer is then read in the landscape material as any layer
BP_ShaderWorld_Reference: Cached Material, and we use its value to change the index of
the material we’re reading from the ground material texture 2D arrays.
(GroundDiffuse/GroundORDisp/GroundNormal).

VI. Annex

1.Fake Planet Node

Landscape plan projected on sphere, viable from space as long as you’re around the
north pole. Most of the area in the picture below is fully playable.

Check the demo_reference map for an example.

Known Issues:

● Spawned assets are currently refining their position as the camera gets closer to them
using the runtime generated cache (normal map/height map), goal being to be able to
spawn assets from very far away (based on cache of higher LODs/ low precision), but
having them not flying above ground while getting closer to them. Problem: if a ground
normal of higher precision suddenly meets the requirements for an asset to spawn, then
an asset will pop in while there weren’t any before. The other way around, a higher
precision terrain data might make a previously viable spawning location unviable and an
asset will disappear. Please use the No Popping Range Meters to prevent such asset
popping within a certain range.

● World Origin Rebasing is currently supported for the landscape and its collision but not
for the spawnables, note that this feature is UE4 specific as it is not required on UE5
thanks to ‘large world coordinates support.

