Department of Computer Engineering

CS319 Term Project

CS319-3C-CA
Fall /2019

Final Implementation Report

Team

Talha Sen 21702020
Hakan Sivuk 21601899
Rafi Coktalas 21601537
Cevat Aykan Seving 21703201
Yusuf Nevzat Sengun 21601720

Instructor: Eray Tuzln

Teaching Assistants: Baris Ardic, Alperen Cetin

Table of Contents

1. Introduction
2. Design Changes
3. Lessons Learnt

4. User’s Guide
4.1 MainMenu
4.2 Help
4.3 Player Local
4.4 Single-Player Game
4.5 Multiplayer Login
4.6 Profile Creation
4.7 Matchmaking
4.8 Multi-Player Game

5. Build Instructions (System Requirements & Installation)

6. Work Allocation Through Semester
Talha Sen
Hakan Sivuk
Rafi Coktalas
Cevat Aykan Seving
Yusuf Nevzat Sengun

a ~» O W

1

13
14

15

18
18
18
18
19
19

1. Introduction

At the beginning of iteration 2, we lacked four functionalities: bots, multi-player,
trading and development cards. Through the semester the team split into three
sub-teams: Talha and Hakan focused on multi-player, Yusuf and Cevat investigated
core logic and Rafi developed bots. Considering single-player and multi-player:

e Local 4-Player Single-Player

Every functionality players can perform have been implemented. The base game
has been delivered completely. Furthermore, two additional development cards have
been introduced. Nevertheless, the bot functionality we promised could not be
implemented before the deadline of iteration 2 due to its complexity and time
restrictions.

e 4-Player MultiPlayer

Multi-player is fully implemented. Every functionality players can perform in
single-player, can also be performed in multi-player. Players in Bilkent wifi environment
can connect our game server and play the full Catan experience.

2. Design Changes

For iteration 2, after the demo presentations of iteration 1, the team has focused
on improving the design and each design decision that was taken in design report have
been implemented in the project. There was not any error while the team was
developing/improving the project according to the iteration 2 design. Our design has not
changed and fully implemented. Moreover, for development cards, strategy design
pattern is introduced.

3. Lessons Learnt

Iterative/Agile Development

A software project consists of sub systems and each sub system has their own
tasks. There has to be a schedule for delivering these tasks. Otherwise, when the
deadline draws close, a feature has to be implemented with nothing prior has ever been
done. For each week in the iteration, a schedule for delivering these tasks must be
explicitly determined.

More Design, Less Trouble

Although we have made several meetings to discuss about the design of the
project, more hours could be spent on it. In those meetings, we prepared scenarios, use
case diagrams and analysis class diagram, however we have ignored issues such as
dynamic models, subsystem design, detailed class diagram. Especially lack of
subsystem design and detailed object design taught us a crucial lesson: design properly
then start to implement to save time and effort.

Communication

Each person in the group has a chance to communicate with other members
almost everyday. Therefore, each person in the group can update others about the
status of his tasks or show product of his work. However, one should also inform others
about some details about his task regularly so that people who are using his part can
implement compatible codes with it. The lesson we learned from this issue is that the
importance of the way we communicate. Communication must be open.

Importance of Structure

Although we have decided to use some design patterns, we should be more
determined to follow these patterns. We have seen that if the pattern determined is not
followed carefully, things can get messy easily. The lesson we learned from this issue is
that if the design pattern is determined, stick on it carefully.

Importance of Test

We have realized different bugs while playing our game. Some of them are
crucial and should be fixed, otherwise these bugs can result in serious problems. This
situation shows the importance and necessity of the test stage. The lesson we learned
from this issue is that after and during an implementation, the implementation should be
tested carefully.

4, User’s Guide

4.1 MainMenu

Fig. 1. Main menu when the game opens.

1: Opens player selection for single-player.

2: Opens multi-player login for multi-player.

3: Displays detailed information about the game.
4: Exits the system.

5: Adjusts the master volume of the game.

(MY Ny NIy Ny B

42 Help

Lumber) Road

Used for b“lldlng roads and settlements A road is built using 1 Lumber and 1 Brick and is
always placed on an unoccupied side of a hex,
- WOol connected to another road, settlement, or city.
Roads are worth 0 points but they are crucial for
N . advancing in the game because new settlements can
Used for building settlements and buying cards only be built next on an intersection adjacent to a
S — road.

Monopoly

Gra... SR T E T . Year of Plenty
Settlement

Used for building roads, settlements and cities B

A settlement is built using 1 Lumber , 1 Brick, 1 Road Building
‘Wool, and 1 Grain, and can only be placed on an

Ore unoccupied intersection that is at least two
intersections away from another settlement, or

Used for blulding cities and buying cards ci?y. It pro\'rides the player that builds it with 1
Victory Point. Settlements allow a player to collect
resource cards from adjacent resource hexes. You Victory Poi
s receive one resource per settlement adjacent to a

Brick resource hex whenever the number on that hex s

rolled.

Used for building roads and settlements Change of Fortune

City

A city is built using 2 Grain and 3 Ore and replaces an
P . A already-built settlement on the table. It provides the
You need 10 points to win the game. The ways to get points player that builds it with 2 Victory Points (as opposed
are: Settlement-1 point, City-2 POilltS, ViCtOI'y Point-1 to 1 Victory Point from a settlement).Cities double the
A . . resource production of adjacent resource hexes. You
point, Largest Army-2 points and Longest Road-2 points oo R ees eands mex ity Doederin . gt
resource hex.

Perfectly Balanced

Fig. 2. Help accessed from main menu.

(d 1: Return to the main menu.

4.3 Player Local

Player 1 Player 2 Player 3 Player 4

Fig. 3. Player selection for single-player.

Player name for blue player, default is “BLUE”.
Player name for white player, default is “WHITE”.
Player name for orange player, default is “ORANGE”.
Player name for red player, default is “RED”.
S

a 1:
a 2:
a 3:
a 4:
A 5: Starts the single-player with the given or default player names.

4.4

Single-Player Game

Status

Trade With Game

Lol dododo

Fig. 4, Single-player game.

1: Area for game guide, legend.

2: Opens the harbor and game trade options.

3: Buys a development card for the player.

4: Current player can see their information here.

5: Gameboard.

6: Status, displays information about the player actions.

7: Other players’ information, click to trade or hover over for detail information.
8: Click to roll the dice.

9: End the turn for the current player.

10: Any development cards current player has will be displayed here.

Fig. 5. Gameboard.

[Interaction: Corners of the hexagon are places where settlements/cities can be
build if it is not conflicting. Sides of the hexagons are locations for roads. Players
can interact with the board with their mouse. Simply click on anywhere on the
gameboard and status bar will display if the intended action can be performed or
not. Suitable places for constructing game pieces are highlighted when the
mouse is hovered upon corners and sides. The robber can be dragged by
clicking on the mouse on it and dragging it on to the selected hexagon before
dropping it.

Figures 6 and 7. Highlighted settlement and built settlement.

Fig. 8. Detailed player Information when hovered over player circle.

1: Displays the second in turn player’s score and color.
2: Displays the third in turn player’s score and color.

3: Displays the fourth in turn player’s score and color.
4:

a
Q
Q
d 4: Displays the hovered player circle’s detailed information.

Offering:

Wanted:

. Iw:-
o

Fig. 9. Trading popup when clicked on other player circle.

A 1: Adjusts the resources that are offered by the current player.

[d 2: Adjusts the resources that are wanted from the other player.

A 3: Sends trade offer to the other player.

A 4: Cancels the trade (players can also click on other game areas to close popup).

10

Offering Gaining

"2

Fig. 10. Trading with game popup when clicked on the trade with game button.

3 1: Choose the resource for trade offer.

A 2: Choose the resource to gain after the trading.

3 3: If any harbor is owned, trade option for them will be available.

A 4: Exits the trade popup (Players can click on elsewhere to exit too).

4.5 Multiplayer Login

Fig. 11. Multi-player login screen entered from play multi-player.

d 1: Enter registered account username.

d 2: Enter registered password for username.

d 3: Create a new account.

[4: Click to login into multi-player for matchmaking.
4 5: Enter registered account username.

11

4.6 Profile Creation

Fig. 12. Creating a profile for multi-player.

1: Username for registering.

2: Chosen password for the account.
3: Password check field.

4: Register the indicated account.

5: Return to the login screen.

oo doo

12

4.7 Matchmaking

Start Matchmaking !

Fig. 13. Searching for an online match 1.

4 1: Finds online games when clicked.
1 2: Returns to the login screen.

Fig. 14. Searching for an online match 2.

4 1: Displays the number of players left to start an online game.

13

4 2: Return to the start matchmaking.

4.8 Multi-Player Game

Status

talhasen123 accepted the offer!

Fig. 15. Multi-player game.
Multi-player screen is not different than single-player screen with only two differences:

d 1: Opens chat when hovered to communicate with other players.
[2: Always displays the local player’s information.

Multi-player can only be played in Bilkent internet environment. Outside Bilkent,
multi-player can be played with a VPN.

14

5.

Build Instructions (System Requirements & Installation)

Since the project is developed in Java, it can run as a desktop application on

MacOS and Windows platforms. The project was developed in IntelliJ IDEA (version
2019.1.3). Therefore this manual will refer to building the project on Intellid IDEA. Steps
to build the project are as follows:

15

Download the project folder from the Github. Once downloaded, open IntelliJ
IDEA and choose to create a new project. Choose JavaFX application and select
Java SDK as 14 or 11 as 13 may cause conflicts. Choose the downloaded
CS319-3C-CA project folder as the source. Project name should be
CS319-3C-CA after the selection. Click finish and click on yes everything that are
prompted. Project must be opened by the IDEA now

Download javaFX from this link: https://gluonhg.com/products/javafx/ (Download
11.0.2 for your specific operator)

Put the javafx folder inside zip to your Catan project (place is your choice, but
make sure it is okay)

Open up Intellij

Go to File > Project Structure > Global Libraries

Click on the plus symbol on the upper left and click Java

From the file selector window, go to the javafx folder you downloaded and put, go
to lib and select every file except the src zip and the properties file (so select
every executable file)

Click OK on file selector

Right click the module you just added and click "Add Module to the Project" (or
something similar | don't remember exactly), click Apply on bottom right and then
you are done with modules.

For the files you want to run (In our case the GameStart, but you may have Test
Ul files you want to run) go to Run > Edit Configurations and select your main
class. For its VM Options, copy paste this in there (except change the part |
marked below): --module-path **PATH TO YOUR JAVAFX
FOLDER**\javafx-sdk-11.0.2\lib --add-modules javafx.controls,javafx.fxml

Click Apply then OK. You are done with JavaFx

In Intellij go to File > Project Structure > Global Libraries and click the plus sign on the

upper left and click Maven
Copy and paste this to the text box:

https://gluonhq.com/products/javafx/

<dependency>
<groupld>io.github.typhonO</groupld>
<artifactld>AnimateFX</artifactld>
<version>1.2.1</version>
<type>pom</type>

</dependency>

Click OK, it will download it for you

You are done with installing AnimateFX

Open edit configuration of GameApplication

At VM options, add javafx.media to the end of the line

Click OK

Go to
https://jar-download.com/artifacts/io.socket/socket.io-client/1.0.0/source-code
Download socket-io (1.0.0)

In the zip files you just downloaded, there are 5 jar files, put them in a folder and
put the folder in a place of your choice (make note of path)

In Intellij, go to File > Project Structure

Go to libraries

Click the plus sign, select java and select all 5 jar files you downloaded.

Click ok and add the jar files to the modules.

Click apply and ok.

Now, you should be able to build and run the project.

After the dependencies are installed, project can be run through the main method
of the GameApplication class which can be found in the package:
CS319-3C-CA.src.SceneManagement.GameApplciation. Simply right click Application
class and choose “Run GameApplication.main().”

Server side of the project was implemented by node js and mongodb was used
as a database. Therefore, in order to run the server you should have them on your
computer. Steps for installing them as follows:

e You should first install node js on your computer. Go to the link
https://nodejs.org/en/download/ and download the one proper for your operating
system.

e Open the downloaded file and complete the installation by following steps.

e After installation, you can check if it is installed successfully by typing your
terminal “node -v”. If it gives the version, it means you completed installation
successfully.

16

https://jar-download.com/artifacts/io.socket/socket.io-client/1.0.0/source-code
https://nodejs.org/en/download/

17

e Now install mongodb.
e For Windows operating system:

o

Go to the link https://www.mongodb.com/download-center/community and
download the setup file.

After it is downloaded, open it. You can follow the steps straightforward but
be careful about choosing complete setup, running service as network
service user, and not selecting to install MongoDB Compass.

e For Macos:

o
o

O

Install XCode which can be found on the App Store.

Install homebrew by typing the following command on terminal:
lusr/bin/ruby -e "$(curl -fsSL
https://raw.qgithubusercontent.com/Homebrew/install/master/install)" or you
can find other options on official website: https://brew.sh/index_tr

Type this command: brew tap mongodb/brew

Type this command: brew install mongodb-community@4.2

You can check whether the installation is successfully completed by typing
mongod --version on terminal.

Also go to your user directory and create mongodb/data/db directories. In
other words, when you type pwd command in db directory you should see
/Users/your_user_name/mongodb/data/db

When you want to run the server, you should run mongodb manually. You

should run it by typing “‘mongod
--dbpath=/Users/your_user_name/mongodb/data/db" command on
terminal.

e Finally, installations are completed. Now come to the backend directory of the
project on terminal.

e Type “npm install” command to install the necessary packages.

e After package installation is completed, you can run the server by typing “npm
run start”. Now server is running.

https://www.mongodb.com/download-center/community
https://raw.githubusercontent.com/Homebrew/install/master/install

6.

18

Work Allocation Through Semester

A Talha Sen

At the start of the project | implemented the Card and Player classes for the
game. | also designed the view and controller system for our MVC design at the
start. | then started to implement both Uls and controllers. | implemented the Uls in
fxml and css files and | implemented the controllers in a single controller class. After
the first iteration, we had a design rework and we also had multiplayer going on so |
split controllers to the respective scenes, singleplayer/multiplayer types and to their
game related sub controllers. | implemented the additional controllers for single
player then | started working for the multiplayer with Hakan. Hakan already
implemented the backend so we prepared the frontend and edited the backend
according to that. | designed and implemented multiplayer views and controllers. |
also implemented the SoundController class which controls the whole music and
effect sound flow of the game with Hakan. At the end, | mostly worked on bug fixes
and tests for singleplayer, multiplayer, Uls and the server. For the analysis reports of
iteration 1 and 2 | made the dynamic diagrams, and for the design report | made the
ui and controller class diagrams, subsystem decomposition and in iteration 2 | made
the server diagrams and subsystem decomposition with Hakan.

d Hakan Sivuk

At the beginning of the project | implemented some basic classes for the logic of
the game. Also | had small roles in some parts of the design plans. Apart from these,
my main work was on multiplayer part of the project. | made researches about server
implementations, authentication, communication between client and the server
throughout the game, database systems and so on. As a result of these researches,
| designed backend server and server related parts of the frontend. By using these
designs | implemented backend server and since Talha has experiences in terms of
the logic of the game and Ul, together we implemented frontend parts. Also we
added sounds to the game with Talha. | prepared several kinds of diagrams for
reports especially ones related to multiplayer or server part of the project. Through
the end of the project, | worked on resolving mistakes and making the project bug
free.

A Rafi Coktalas

At the beginning, | take place in the general low level design plan we follow
throughout the project. For every modification in the design choices, | investigated
the possible negative effects. Moreover, | implemented the structure classes.

19

Negative effects of the design choices result in a design rework. After the design
rework, as all the choices are constructed with greater care, | started to design the
Al algorithm. | have finished the algorithm right before the completion of the design
rework. In the end, an unexpected amount of bugs we encounter pushed us to
spend a great time on both analyzing and solving these bugs. Therefore, the bot
player is put on the shelf. Thus, | also allocate my time to solve these bugs. The way
in which | constructed the Al algorithm pave the way for me while | investigated the
bugs as the Al algorithm requires me to look through all the possibilities each
scenario has. Even though the Al did not become a feature, it proves to be beneficial
in the bug fixing process.

A Cevat Aykan Seving

| was the project manager of group 3C-CA. | strictly followed deadlines and
arranged meetings for the group. Furthermore, | helped my team with managing
GitHub and almost always giving code reviews. Next, | played a great role in writing
analysis, design and implementation report as | had a great understanding of the
development of our project except multi-player development. | have been involved in
the development of each single-player implementation. During implementation, my
main responsibility was to connect the logic in single-player my teammates have
provided. Later, | have also been involved in creating GUI for trading with players
and game. Last, | have tested the game and fix bugs consist of core logic and GUI.

d Yusuf Nevzat Sengiin

At the beginning of the project, | implemented the core classes of the logic
according to our beginner level design that we have decided as a group. After every
person in my team implemented their basic classes, | have merged them in order to
maintain the different scenarios. After this time | behaved as the software
architecture of my team. For integration of the code, | reworked on almost every
class and made necessary changes. | followed, commented and gave idea about
updates on model usage and operations. | also applied and implemented different
design patterns and ideas to our project, such as mvc, facade, singleton and
strategy design patterns and also | reworked on other parts of the project and
redesigned these parts into more OOP related versions. | also implemented and
debugged some features about Ul and prepared some basic diagrams and wrote
some parts for the reports. At the end, | have tested and debugged several parts of
the project.

	Final Implementation Report
	1.​Introduction
	2.​Design Changes
	3.​Lessons Learnt
	4.​User’s Guide
	4.1 ​MainMenu
	
	4.2​Help
	
	
	
	
	
	4.3​Player Local
	
	
	
	4.4​Single-Player Game
	4.5​Multiplayer Login
	4.6 ​Profile Creation
	4.7​Matchmaking
	4.8 ​Multi-Player Game
	

	5.​Build Instructions (System Requirements & Installation)
	6. ​Work Allocation Through Semester
	❏​Talha Şen
	❏​Hakan Sivuk
	❏​Rafi Çoktalaş
	❏​Cevat Aykan Sevinç
	❏​Yusuf Nevzat Şengün

