
Forecasting TAI with biological anchors 
Part 3: Hypotheses and 2020 training computation requirements 

Author: Ajeya Cotra 
Date: July 2020 
 
This report emerged from discussions with our technical advisors Dario Amodei and Paul Christiano. 
However, it should not be treated as representative of either of their views; the project eventually 
broadened considerably, and my conclusions are my own.  
 
This is a work in progress and does not represent Open Philanthropy’s institutional view. We are making it 
public to make it easier to gather feedback, to help inform others’ thinking in the effective altruism 
community, and to allow for follow-on work outside of Open Phil. However, we may edit it substantially in 
the future as we gather feedback from a broader audience and investigate open questions. Accordingly 
we have not done an official publication or blog post, and would prefer for now that people not share it 
widely in a low-bandwidth way (e.g., just posting key graphics on Facebook or Twitter). 
 
The report has been divided into four Google docs to load faster. This is Part 3; the first part is here, 
the second part is here, and the fourth part is here. Additional materials (collected in this folder):  

●​ Quantitative model: the Python notebook Biological anchor hypotheses for 2020 training 
computation requirements; a template spreadsheet When required computation may be 
affordable; and my best guess, conservative, and aggressive forecasts. 

●​ Supplemental materials: a document containing various appendices; a folder of figures for the 
report; the spreadsheet Extrapolations of data and compute to train models; and the Python 
notebook Compute price trends, which draws on data in this folder. 

 
In Part 1, I provided an overview of the framework and estimates, provided definitions for key 
abstractions used in the model, and generated an estimate for the number of FLOP / subj sec of 
a transformative model. In Part 2, I reviewed theoretical and empirical evidence about training 
data requirements for a transformative model, introduced the concept of horizon length, and 
estimated how training data requirements may scale with parameter count for a transformative 
ML problem.  
 
In this part, I will discuss each of the six biological anchors hypotheses in more detail, and 
combine them to generate my 2020 training FLOP requirements distribution: 

●​ I will start with the Neural Network hypotheses which I place the most weight on (more). 
●​ I will then cover the Evolution Anchor, Genome Anchor, and Lifetime Anchor hypotheses 

in less detail (more). 
●​ Finally, I will describe in more detail how I update against low-end FLOP levels and 

assign probabilities to each hypothesis to generate my 2020 training FLOP requirements 
distribution (more). 
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Then in Part 4, I will explain how I generate my estimate for when the amount of computation 
required to train a transformative model may become available, and answer several questions 
and objections about the framework. 

Neural network hypotheses 
This family of hypotheses states that we should assume on priors that a transformative model 
would perform roughly as many FLOP / subj sec as the human brain and have about as many 
parameters as we would expect if we simply scaled up the architectures of the largest current 
neural networks (e.g. transformer architectures) to run on that many FLOP / subj sec.  
 
In Part 1 I generated a probability distribution centered around ~1e16 FLOP / subj sec for the 
amount of computation that a transformative model is likely to run on; this is 1 OOM larger than 
my central estimate for brain FLOP/s. This estimate will be used for the Neural Network 
hypotheses and the Genome Anchor hypothesis below. 
 
It adjusts from the anchor point of human brain FLOP/s by a relatively modest constant factor to 
account for qualitative considerations about how sophisticated our architectures seem to be as 
of 2020, and estimate parameter count by assuming that a transformative model would have a 
similar ratio of computation to parameters as the most expensive neural networks we have 
trained so far. With this it extrapolates the amount of FLOP required to train such a model using 
an empirically-derived scaling law that expresses training data as a function of parameter count. 
 
This results in a median estimate somewhere between ~1e31 FLOP and ~1e38 FLOP 
depending on the effective horizon length of the learning problem. In this section, I will: 

●​ Generate an estimate for the number of parameters this model may require if its 
architecture is similar to existing neural networks (more). 

●​ Discuss what a reasonable range of effective horizon lengths could be for a 
transformative ML problem (more). 

●​ Generate subjective probability distributions for training FLOP requirements conditional 
on this family of hypotheses, broken into “short”, “medium”, and “long” effective horizon 
lengths (more). 

Parameter count of a transformative neural network 
I have focused first on inference FLOP / subj sec because computation feels somewhat more 
“fundamental” and universal than parameter count (it is more comparable across different model 
architectures and across the whole spectrum from “mostly classical programming” to “mostly 
pure ML”).  
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The more computationally powerful a neural network is, the more parameters it is likely to use, 
so we can try to derive an estimate of parameter count given our estimate for inference 
computation.  
 
For example, in a simple feedforward neural network architecture, a model which performs twice 
as many FLOP per forward pass will straightforwardly have twice as many parameters, because 
each parameter performs roughly one multiplication and one addition in a feedforward 
architecture. Convolutional neural networks (CNNs) perform substantially more FLOP per 
parameter per forward pass than a generic feedforward neural network with the same number of 
parameters can, but also generally maintain a consistent ratio as they are scaled up. Other 
common architectures such as recurrent neural networks, transformers, etc also exhibit a 
broadly similar scaling behavior within their respective architecture class -- there is generally a 
fixed number of FLOP performed per parameter per forward pass.  
 
For typical neural network architectures, this ratio is somewhere between ~1 and ~100 FLOP 
per parameter per forward pass.  How many forward passes would a transformative model need 1

to perform per second?  I would expect that ~0.1-10 forward passes per second is sufficient:  2

●​ According to Joe’s report, each of the ~1e14-1e15 synapses in the human brain 
experiences a firing event roughly ~0.1-2 times per second. If we treat the parameters of 
a transformative model as broadly analogous to the synapses in the brain, that would 
suggest that each parameter should be used ~0.1-2 times per second. 

●​ Average English speaking speed in conversation works out to about 2.5 words per 
second, while average reading speed works out to about 4 words per second and a 
good typing speed is slightly more than one word per second. If we imagine that a 
transformative model is primarily language-based, processing or generating one token of 
text with each forward pass, then matching human speaking, reading, and writing 
speeds would suggest performing a few forward passes per second. 

●​ Average human reaction time is about 250 milliseconds, while especially skilled humans 
such as fighter pilots or competitive video game players reach reaction times closer to 
100 milliseconds; if each forward pass of a transformative model constitutes an “action” 
and the model would need to match human reaction times in order to have a 
transformative impact, that would imply that it would need to perform 4-10 forward 
passes per second.  

 
These assumptions imply that a transformative neural network should perform (1 to 100) * (0.1 
to 10) = 0.1 to 1,000 FLOP per parameter per second, meaning that a model running on ~1e16 

2  Note that researchers are often able to control how many forward passes they run per second -- 
“forward passes per second” is not an inherent feature of a neural network, unlike “parameter count” or 
“FLOP per forward pass.” For example, I expect that it would be necessary to perform thousands of 
forward passes per second to make the Long Horizon Neural Network hypothesis work, because 
otherwise training would take too much wall-clock time. In this section, though, I am assuming that the 
model is running at “human speed.” 

1 Models which reach ratios higher than this are usually pure image processing models, which I think are 
likely less representative of a transformative model than language models or RL models.  
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FLOP / subj sec would require ~1e13 to ~1e17 parameters. I expect that researchers would 
attempt to increase this ratio if possible, since reducing parameter count reduces data 
requirements, so I expect higher values to be somewhat more likely than lower values. For 
simplicity, I have assumed that the parameter count distribution for a transformative neural 
network is identical to the FLOP / subj sec distribution, but shifted to the left by 1.5 OOM (i.e. a 
factor of ~30), resulting in a distribution centered around ~3e14 parameters, a value slightly 
smaller than the number of synapses in the human brain: 
 

 
 
Note that this ratio is simply based on a rough empirical relationship between model FLOP per 
forward pass and model parameters. it is certainly possible in theory to design a very 
computationally intensive architecture with a very small number of parameters. For example, 
according to Wikipedia, Deep Blue (generally considered a “classical computer program” rather 
than a “machine learning model”) employed some number of learned parameters representing 
the relative value of particular positions in its evaluation function.  Conversely, it is also possible 3

to design models which only use a small fraction of their parameters in each forward pass, such 
as the mixture-of-experts model GShard. 
 
The chart above marks a point for the estimated number of bytes in the human genome; the 
Genome Anchor hypothesis (discussed below) assumes that the number of parameters 

3 “Deep Blue's evaluation function was initially written in a generalized form, with many to-be-determined 
parameters (e.g. how important is a safe king position compared to a space advantage in the center, etc.). 
The optimal values for these parameters were then determined by the system itself, by analyzing 
thousands of master games.” 
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required to characterize a transformative model is in this range, and therefore that the ratio of 
FLOP per parameter per forward pass is much more extreme.  

Effective horizon length of a transformative ML problem 
Recall that I am assuming we can estimate training data requirements with the following 
functional form: 

 

Train FLOP = (  FLOP / subj sec) x (  subj sec / effective horizon) x (  effective horizons) 𝐹 𝐻 𝐾𝑃α

 
In the previous two sections, I generated probability distributions for  and  for the Neural 𝐹 𝑃
Network family of hypotheses; in Part 2 I generated probability distributions for the scaling 
parameters  and .  α 𝐾
 
The effective horizon length  of the Neural Network hypothesis is currently my biggest 𝐻
source of uncertainty. I currently think all values in the range from 1 subjective second to 
multiple subjective years are plausible. In this section, I will: 

●​ Discuss why neural networks trained on ML problems with short effective horizon lengths 
(e.g. a few subjective minutes) could likely do useful work of various kinds (more). 

●​ Explain why a transformative ML problem may nonetheless require a long effective 
horizon length (e.g. a few subjective years), because having a transformative impact 
may require replicating cognitive abilities that natural selection may have optimized with 
multi-year generation times (more). 

●​ Sketch out one form that a long horizon transformative model training run could take 
(more). 

●​ Briefly describe several strategies that researchers may be able to use to reduce the 
effective horizon length of an ML problem which may naively seem to be long horizon 
(more). 

●​ Discuss how we might estimate the effective horizon length of an ML problem which 
consists of many sub-skills learned over varying time horizons (more). 

Short horizon models can probably do a lot of economically valuable work 
It seems likely to me that a non-trivial fraction  (>5%) of economically valuable labor currently  4 5

done by humans could be made a lot more efficient or automated entirely by neural networks 
trained on short horizon ML problems using techniques very similar to current ML techniques. 

5 Note that automating X% of the labor humans do as of 2020 will likely result in substantially less than 
X% reduction in labor force participation because of complementarity: technological innovations can 
create new work. My understanding is that historical waves of automation have tended to have little to no 
long-term effect on the fraction of humans who are employable -- e.g., technology has already automated 
away an outright majority of the human labor done in 1500 (mostly farming). 

4 My guess is that this is probably true for most possible ways of defining “fraction of human labor”, e.g. 
weighting by hours, wages, value-added measures, etc. 
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For example, here’s a potential hypothesis to automating the handling of customer service calls 
(which have already been automated to a large degree using simpler computer programs over 
the last decade or two): 

1.​ Train a generative language model on a large, generic corpus of text scraped from the 
internet, such that it is able to write basically grammatical, superficially sensible English 
in response to a broad range of different contexts. 

2.​ Fine-tune the model to predict customer service representatives’ responses in transcripts 
of recorded customer service calls. 

3.​ Feed the model real-time transcripts of customers’ speech as new calls come in, and 
have it predict responses. Convert the model’s text to speech in real time to carry on a 
conversation with the customer, potentially allowing a human to jump in when necessary.  

4.​ Continually improve the model using RL from human preferences: elicit quantitative 
ratings of the model’s quality of service from call transcripts from human overseers or 
customers themselves, train a reward model to predict humans’ quality ratings from call 
transcripts, and train the model to optimize predicted human score with reinforcement 
learning. 

 
This is likely to be a relatively short horizon learning problem. Conservatively, the horizon length 
might be the length of an average customer service phone call, which are often quite short (e.g. 
a few minutes long). However, my best guess is that it would be substantially shorter than the 
average call length. Simply learning to generate idiomatic English that makes even vague sense 
in context is likely to be a significant fraction of the work of training the whole model, and the 
horizon length for “grammatical and vaguely sensical English” is probably closer to 1 token than 
multiple minutes. Additionally, it seems likely that in a lot of cases, the appropriate response to a 
statement by the customer can more-or-less be determined locally, without explicitly looking 
ahead to the end of the entire interaction (for example, a single interaction may involve dealing 
with multiple separate issues). 
 
A similar process could be done for generating code. As of the time of writing in July 2020, 
language models are already being trained to predict what code humans will type next:  

●​ TabNine, trained in 2019, is a code autocompletion service based on the open-source 
version of GPT-2 (~1.5B parameters) and fine-tuned on ~2 million GitHub files.  6

●​ Microsoft’s IntelliCode Compose (paper released in May 2020) is a code completion 
service based on a generative model GPT-C (~0.37B parameters) trained on ~1.2 billion 
lines of code. 

●​ Very soon after, OpenAI (in a partnership with Microsoft) revealed an improved 
code-prediction model in a demo at the May 2020 Microsoft Build conference.  

6 “Deep TabNine is trained on around 2 million files from GitHub. During training, its goal is to predict each 
token given the tokens that come before it….Deep TabNine is based on GPT-2, which uses the 
Transformer network architecture. This architecture was first developed to solve problems in natural 
language processing. Although modeling code and modeling natural language might appear to be 
unrelated tasks, modeling code requires understanding English in some unexpected ways.” July 2019 
blog post Autocompletion with deep learning. 
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Such models seem to already be a little bit useful for speeding up routine coding, and potentially 
helping to catch some mistakes. They could likely be further improved with short horizon 
reinforcement learning, using a reward model trained on signals constructed from a variety of 
cues such as whether the code compiles/runs without errors, whether it passes unit tests (which 
may sometimes be partially written by a version of the model itself), human reviewer ratings, 
what edits are suggested by a human collaborator, etc.  
 
Other categories of work that seem as if they could likely be done substantially or entirely by 
short horizon neural networks include: 

●​ Customer service and telemarketing. Each interaction with a customer is brief, but ML 
is often required to handle the diversity of accents, filter out noise, understand how 
different words can refer to the same concept, deal with customization requests, etc. 
This is currently being automated for drive-thru order taking by the startup Apprente 
(acquired by McDonald’s). 

●​ Personal assistant work: This could include scheduling, suggesting and booking good 
venues for meetings such as restaurants, sending routine emails, handling routine 
shopping or booking medical and dental appointments based on an understanding of 
user needs, and so on. 

●​ Research assistant work: This could involve things like copy-editing for grammar and 
style (e.g. Grammarly), hunting down citations on the web and including them in the right 
format, more flexible and high-level versions of “search and replace”, assisting with 
writing routine code or finding errors in code, looking up relevant papers online, 
summarizing papers or conversations, etc. 

●​ Repetitive but dextrous manual labor done by humans in factories, such as tying 
knots, painting, glueing, folding, etc. My understanding is that these types of work have 
been difficult to automate using classical robotics because there are tiny variations 
across different instances of the task that make it difficult to program a simple trajectory 
for robotic actuators. Such models could potentially be trained partially in simulation, as 
as the OpenAI Rubik’s cube robot was, to cut down on physical capital costs.  

 
The general theme is that work that is naturally broken up into short, fairly repetitive chunks for 
which we can clearly define either a training data distribution (as in medical diagnostics or 
customer service) or a training environment (as in factory work) can likely be cast as a short 
horizon ML problem. Note that it might not currently be economically or logistically feasible to 
train some of these models -- the only claim I am making is that it’s likely we could design a 
short horizon ML problem such that a sufficiently large model trained on that problem using an 
amount of data/experience in line with what we would expect from existing training runs would 
successfully automate the relevant type of work.  
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We may need long horizons for meta-learning or other abilities that 
evolution selected for 
Training a model with SGD to solve a task generally requires vastly more data and experience 
than a human would require to learn to do the same thing. For example, esports players 
generally train for a few years to reach professional level play at games like StarCraft and 
DOTA; on the other hand, AlphaStar was trained on 400,000 subjective years of StarCraft play, 
and the OpenAI Five DOTA model was trained on 7000 subjective years of DOTA. GPT-3 was 
trained on 300 billion tokens,  which amounts to about 3000 subjective years of reading given 7

typical human reading speeds; despite having seen many times more information than a human 
about almost any given topic, it is much less useful than a human for virtually all 
language-based jobs (programming, policymaking, research, etc).   
 
I think that for a single model to have a transformative impact on its own, it would likely need 
to be able to learn new skills and concepts about as efficiently as a human, and much 
more efficiently than hand-written ML algorithms like SGD. For a model trained in 2020 to 
accelerate the prevailing rate of growth by 10x (causing the economy to double by ~2024), it 
seems like it would have to have capabilities broadly along the lines of one of the following: 

●​ Automate a wide swathe of jobs such that large parts of the economy can ~immediately 
transition to a rate of growth closer to the faster serial thinking speeds of AI workers, or  

●​ Speed up R&D progress for other potentially transformative technologies (e.g. atomically 
precise manufacturing, whole brain emulation, highly efficient space colonization, or the 
strong version of AGI itself) by much more than ten-fold, such that once the 
transformative model is trained, the relevant downstream technology can be developed 
and deployed in only a couple of additional years in expectation, and then that 
technology could raise the growth rate by ten-fold. For AI capable of speeding up R&D 
like this, I picture something like an “automated scientist/engineer” that can do the 
hardest parts of science and engineering work, including quickly learning about and 
incorporating novel ideas. 
 

Both of these seem to require efficient learning in novel domains which would not have been  
represented fully in the training dataset. In the first case, the model would need to be a relatively 
close substitute for an arbitrary human and would therefore probably need to learn new skills on 
the job as efficiently as a human could. In the second case, the model would likely need to 
efficiently learn about how a complex research domain works with very little human assistance 
(as human researchers would not be able to keep up with the necessary pace).  
 
Humans may learn more efficiently than SGD because we are able to use sophisticated 
heuristics and/or logical reasoning to determine how to update from a particular piece of 
information in a fine-grained way, whereas SGD simply executes a “one-size-fits-all” gradient 

7 “All models were trained for a total of 300 billion tokens.” Brown et al 2020, pg 8. 
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update step for each data point. Given that SGD has been used for decades without improving 
dramatically in sample-efficiency, I think it is relatively unlikely that researchers will be able to 
hand-design a learning algorithm which is in the range of human-level sample efficiency.  
 
Instead, I would guess that a transformative ML problem would involve meta-learning (that 
is, using a hand-written optimization algorithm such as SGD to find a model which itself uses its 
own internal process for learning new skills, a process which may be much more complex and 
sophisticated than the original hand-written algorithm).  
 
My best guess is that human ability to learn new skills quickly was optimized by natural selection 
over many generations. Many smaller animals seem capable of learning new skills that were not 
directly found in their ancestral environment, e.g. bees, mice, octopi, squirrels, crows, dogs, 
chimps, etc.  
 
The larger animals in particular seem to be able to learn complex new tasks over long periods of 
subjective time: for example, dogs are trained over a period of months to perform many 
relatively complex functions such as guiding the blind, herding sheep, assisting with a hunt, 
unearthing drugs or bombs, and so on. My understanding is that animals trained to perform in a 
circus also learn complex behaviors over a period of weeks or months. Larger animals seem to 
exhibit a degree of logical reasoning as well (e.g. the crow in the linked video above), which 
seems to help speed up their learning, although I’m less confident in this.  
 
This makes me believe it’s likely that our brain’s architecture, our motivation and attention 
mechanisms, the course of brain development over infancy and childhood, synaptic plasticity 
mechanisms, and so on were optimized over hundreds of millions of generations for the ability 
to learn and perhaps reason effectively.  
 
The average generation length was likely several months or years over the period of 
evolutionary history that seems like it could have been devoted to optimizing for animals which 
learn efficiently. I consider this a prima facie reason to believe that the effective horizon length 
for meta-learning -- and possibly for training other cognitive abilities which were also selected 
over evolutionary time -- may be in the range of multiple subjective months or years. It could be 
much lower in reality for various reasons (see below), but anchoring to generation times seems 
like a “naive” default.    
 
Here I am not saying we should expect that training a transformative model would take as 
much computation as natural selection (that view is represented by the Evolution Anchor 
hypothesis which I place substantially less weight on than the Neural Network hypotheses). I am 
instead saying:  

1.​ A transformative model would likely need to be able to learn new skills and concepts as 
efficiently as a human could. 

2.​ Hand-written optimization algorithms such as SGD are currently much less efficient than 
human learning is, and don’t seem to be on track to improve dramatically over a short 
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period of time, so training a model that can learn new things as efficiently as a human is 
likely to require meta-learning. 

3.​ It seems likely that evolution selected humans over many generations to have good 
heuristics for learning efficiently. So naively, we should expect that it could take an 
amount of subjective time comparable to the average generation length in our 
evolutionary history to be able to tell which of two similar models is more efficient at 
learning new skills (or better at some other cognitive trait that evolution selected for over 
generations). 

 
My understanding is that meta-learning has had only limited success so far, and there have not 
yet been strong demonstrations of meta-learning behaviors which would take a human multiple 
subjective minutes to learn how to do, such as playing a new video game.  Under this 8

hypothesis -- assuming that training data is not a bottleneck --  the implicit explanation for the 
limited success of meta-learning would be some combination of a) our models have not been 
large enough, and b) our horizons have not been long enough.  
 
This seems like a plausible explanation to me. Let’s estimate the cost of training a model to 
learn how to play a new video game as quickly as a human can: 

●​ Effective horizon length: Learning to play an unfamiliar video game well takes a typical 
human multiple hours of play; I will assume the effective horizon length for the 
meta-learning problem is one subjective hour.  

●​ Model FLOP / subj sec and parameter count: Even if our ML architectures are just as 
good as nature’s brain architectures, it seems plausible that models much smaller than 
the size of a mouse brain aren’t capable of learning to learn complex new behaviors at 
all -- my understanding is that we have some solid evidence of mice learning complex 
behaviors,  and more ambiguous evidence about smaller animals. According to 9

Wikipedia, a mouse has about ~1e12 synapses in its brain, implying that its brain runs 
on ~1e12 FLOP/s.   I will assume we need a model larger than the equivalent of a bee 10

but smaller than the equivalent of a mouse (say at least ~3e9 parameters and 1e11 
FLOP / subj sec) to perform well on the “learning to learn new video games” ML 
problem. 

10 That is, assuming that mice neurons fire about the same number of times per second on average as 
human neurons, and that the conversion from “synaptic firing events” to “FLOP” is the same for both 
species. 

9 The behaviors I have seen mice learn seem substantially shorter horizon and less complex than learning 
new video games, but the mice are managing to do this despite having been optimized for survival and 
reproduction in the mouse ancestral environment rather than directly for “learning new tricks”, so I would 
expect a mouse-sized meta-learned model to be substantially better than mice at learning, while being 
worse at various other mouse-survival-and-reproduction-relevant behaviors. 

8 While GPT-3 displays impressive within-context few shot learning at a wide variety of natural language 
processing tasks, my impression is that so far it has not performed tasks which would require the typical 
human to learn something new, or would otherwise require humans to think over a period of multiple 
subjective minutes. For the most part, these seem to be tasks that a human would know how to do very 
well from the description alone, and which would take a human <1 minute to execute, consistent with the 
effective horizon length of GPT-3 being relatively short on downstream tasks.  
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If the scaling behavior follows the estimate generated in Part 2, the amount of computation 
required to train a model that could quickly master a new video game should be (3600 subj sec) 
* (1e11 FLOP / subj sec) * (1700 * 1e11^0.8) = 2e25 FLOP. At ~1e17 FLOP per dollar,  that 11

would cost $200 million, which makes it unsurprising this hasn’t been successfully demonstrated 
yet, given that it is not particularly valuable. 
 
Note that while meta-learning seems to me like the single most likely way that a transformative 
ML problem could turn out to have a long horizon, there may be other critical cognitive traits or 
abilities that were optimized by natural selection which may have an effective horizon length of 
several subjective months or longer.   

What might a long horizon transformative ML problem look like? 
A particularly salient vision for training a long horizon transformative model involves multiplayer 
self-play: the idea is to create a population of several instances of the agent who must compete 
and cooperate with one another to accumulate reward on a wide variety of rich and complex 
simulated environments over the course of episodes lasting multiple subjective years.  The 12

agent is trained over many episodes with traditional reinforcement learning and/or evolutionary 
methods to maximize the total reward it gets in an average long horizon self-play episode.  
 
This is intended to create a selection pressure toward “general intelligence” similar to the 
selection pressure over evolutionary history. The idea is that the need to compete with and 
cooperate with other humans to successfully navigate a complicated physical environment 
resulted in substantial fitness benefits accruing to humans who were slightly more intelligent 
than their peers (e.g. they could acquire more allies by being more persuasive and more useful, 
they could more easily deceive and defeat enemies, etc), resulting in a “general intelligence 
arms race” and an explosion of increasingly sophisticated strategies and counter-strategies.  
 
Most zero-sum games are trained with self-play. OpenAI’s “Emergent Tool Use from Multi-Agent 
Autocurricula” is a very small-scale application of this idea to more than two players -- two 
teams with at least two agents per team play hide-and-seek in a simple simulated environment, 
and spontaneously generate strategies and counter-strategies that they weren’t explicitly taught 
over the course of many games.  
 
Note that we don’t strictly need to have a competitive, interactive environment for this 
hypothesis to work; we could instead train a model on much the same types of problems as in 
the short horizon hypothesis (e.g. writing code, generating text, manipulating robots) while 
receiving feedback at much longer intervals. For example, the model might spend a few 

12 Note that because each effective horizon must be multiple subjective years long, it would likely take too 
much wall-clock time to run the model in real time and train it using a lot of interaction with humans; it 
would be necessary to speed up the model relative to real time and rely on human interaction for only a 
tiny proportion of its data. 

11 This is optimistic for a well-optimized training run in 2020, and definitely too optimistic for earlier time 
periods. 
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subjective years (perhaps corresponding to a few hours in wall-clock time) attempting to prove a 
certain theorem or write a novel, and a human overseer could provide feedback on the result of 
this attempt. This approach could also be combined with self-play. 

Reasons to think effective horizon length may be shorter 
Despite the a priori argument given above that solving a transformative task with ML is likely to 
involve long horizon training, there are reasons to think researchers could devise transformative 
ML problems with shorter effective horizon lengths:  

●​ Human feedback or demonstrations could provide short horizon proxies for 
long-term value: Even if the policy’s actions have to be optimized to maximize expected 
reward over the next several minutes, we may be able to design the reward signals 
themselves to reflect much longer-term consequences.  

○​ One option is imitation learning. A short horizon model might be trained to 
generate behaviors that are hard to distinguish from behavior transcripts 
generated by human experts.  

○​ Another option is RL from human feedback. If human overseers have a good 
understanding of what immediate behaviors are likely to result in good long-term 
outcomes, they can directly reward those behaviors. As an analogy, small 
children are generally myopically optimizing for adults’ short-term approval, but 
the adults in their lives can provide approval for behaviors (e.g. homework or 
tooth-brushing) which will pay off over much longer timescales.  

Imitation and human feedback can be particularly powerful if learning a reward model 
(learning to accurately predict how much humans would approve of an action) or a 
discriminator (learning to accurately predict how much an action deviates from what a 
human would do in the same context) requires many fewer parameters than learning a 
policy (learning how to actually perform actions that humans would approve of and/or 
that are hard to distinguish from humans’ actions). In that case, a relatively small amount 
of human feedback or small number of behavior transcripts can be used to train a small 
reward model or discriminator, which can then be called a much larger number of times 
to train a large policy. 

●​ We might be able to train composable short horizon reasoning operations: When 
humans make decisions optimizing for our long-run goals (e.g. pursuing a line of 
research or deciding whether to sell a company), we generally use some amount of 
explicit verbal planning and reasoning -- in other words, our decisions are governed by 
an internal structure, and we could explain how they were built up from shorter steps of 
reasoning if we needed to.  We may be able to train models to execute the kinds of 13

short reasoning steps we use in our explicit verbal thinking, and compose those steps 
over and over again (e.g. in a long chain of deductive logic or a large tree search) to 

13 e.g., “I decided to sell my company because they made a good offer. I think their offer is good because I 
don’t expect my company is actually worth that much. I don’t think it’s worth that much because I would 
need to expand my user base a lot to justify that valuation, and I don’t have any good ideas for expanding 
my user base….” 
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make a complex decision. We could then update the model to directly imitate the 
ultimate output of this large, slow process. In this way, what seems like a long horizon 
problem (making a decision based on long complex reasons) can be learned as a short 
horizon problem. This is essentially the same idea as Christiano’s Iterated Distillation 
and Amplification, Anthony et al’s Expert Iteration algorithm, and the algorithm used to 
train DeepMind’s MuZero agent and earlier AlphaZero and AlphaGoZero agents. 

●​ Some short horizon behaviors might naturally generalize to longer horizons: For 
some types of problems, it might be the case that the most “natural” way  to perform 14

well on shorter instances of the problem is to discover a strategy that generalizes 
robustly to larger instances. For example, it seems likely to me that a sufficiently large 
model trained on a distribution of arithmetic problems of increasing size (one-digit, 
two-digit, … N-digit addition, subtraction, multiplication, and division) would eventually 
start to perform perfectly on arbitrarily large (>> N-digit) arithmetic problems, because it 
seems likely that implementing the underlying rules of arithmetic is the most natural way 
to perform well on arithmetic problems of a wide variety of sizes. We may be able to 
design a transformative ML problem which has this property -- or has certain important 
subproblems with this property which reduce the effective horizon length of the whole 
problem. On priors, we should expect this to be the case to some extent, since humans 
are capable of acting to optimize outcomes over periods of time substantially longer than 
one generation.  

●​ Longer-horizon behaviors may require a much smaller number of examples to 
learn: For some ML problems, achieving strong performance might requiring learning 
some very long horizon behaviors, but those behaviors might be very simple -- 
representable by a small number of parameters and therefore requiring a very small 
number of long horizon data points to learn. As an artificial example, consider a problem 
in which the RL agent must learn to control many complicated actuators in its body in 
order to move (e.g. a much larger version of QWOP). When the agent can get moving at 
all, it has the option of moving left or right. Let’s say that moving left for 10,000 timesteps 
will result in a reward of +1, and all other behavior sequences result in a reward of 0. 
The subproblem of “Figure out which direction to move” has a horizon length of 10,000 
but the optimal policy (“Keep going left”) is very simple to represent; on the other hand, 
the subproblem of “Figure out how to move” is extremely complex, but has a much 
shorter horizon length. The effective horizon length of the entire problem might be 

something like , where  is much larger than ; this (𝑁 × 1 +  𝑀 × 104) / (𝑁 +  𝑀) 𝑁 𝑀
could end up being much closer to 1 than 10,000. It is unclear how much this toy 
example is representative of real-world RL training runs because it is very difficult to 
understand what “fraction” of an RL agent’s “capacity” is being directed to certain 
sub-skills (or whether that’s a reasonable ontology in the first place). It is plausible to me 
that it is somewhat representative -- for example, while a typical game of DOTA takes 
~20 minutes to play, the OpenAI DOTA bot achieved strong play with a horizon length of 
only ~2 minutes, largely because its very strong “micro” play (i.e. skill at fast-paced 

14 That is, the way that is most likely to be discovered by the optimization algorithm (e.g. SGD). 
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combat tactics) made up for its mediocre “macro” play (i.e. whole-game strategy). It 
achieved decent “macro”, but did not end up having to learn its intricacies really well in 
order to defeat humans at DOTA; it is plausible that a smaller fraction of its parameters 
were devoted to macro and it therefore needed a smaller number of long horizon 
examples than short horizon examples. The relatively small information content of the 
human genome may be a hint that there is relatively little to learn over horizons of 
multiple subjective years; see the discussion of multiple horizon lengths below and the 
Genome Anchor hypothesis further down for more detail. 

●​ Some key skills may naturally have a somewhat shorter effective horizon length: 
Some economically valuable behaviors may have a “natural” horizon length closer to the 
range of “several hours or days” rather than “several years” because ground-level 
feedback may be easier to collect. For example, a significant fraction of the role of a 
venture capitalist might be well-described as a series of roughly independent “episodes” 
in which the VC learns about a new company before deciding whether to invest in it and 
if so how much; a model that was superhuman at this aspect of venture capital might 
add a lot of value and complement the skills of human VCs, even if it is not able to e.g. 
carry on long-running professional relationships. Similarly, law, consulting, IT, security, 
and medicine have some “episodic” elements of quickly orienting to a fresh problem and 
providing advice or making decisions about it on a limited timeframe. Particularly if we 
are looking for ways that models can complement humans rather than replace them 
one-for-one, many important aspects of many valuable roles could potentially be 
automated without necessarily requiring the model to have abilities that might have 
required long horizon meta-learning to acquire. 

●​ We may not need to run the agent the entire length of the task horizon: For some 
tasks, we may need to see the consequences of an agent’s actions play out in the world 
over a long period of time to estimate the reward, but the agent itself may only need to 
take actions for a relatively small portion at the beginning of each episode, after which 
the consequences take their own course until the agent’s reward can be determined. 
Because I expect running the environment to be substantially cheaper computationally 
than running the agent, this could substantially reduce the effective horizon length. 

 
These possibilities are not mutually exclusive. We may first select types of work that seem to 
have “natural horizon lengths” of several hours or days rather than months or years. It might 
then turn out to be the case that most of the behaviors learned over a horizon of 5 minutes 
generalize naturally to the timescale of days, and many of the remaining longer-horizon 
behaviors are simple enough that they can be learned with a very small number of day-long 
data points, not much impacting the average horizon length. We might then tackle the remaining 
difficult long horizon behaviors through a combination of human feedback, demonstrations, 
decomposition / Expert Iteration, and other techniques. If there are some important long horizon 
behaviors that we are still not able to train with an affordable amount of data and computation, 
we might figure out ways for humans to make up for the weaknesses of the model while still 
extracting a huge amount of economic value from the model that might count as 
“transformative” impact. 
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I expect that exploiting these possibilities fully will require building up a lot of infrastructure and 
know-how, such that it is more plausible that tactics like these could be used to bring effective 
horizon lengths down to a few subjective minutes in 2030 or 2040 than it is in 2020. A more 
accurate version of this model would incorporate this by increasing the probability of shorter 
effective horizon lengths over time. 

What might effective horizon length be if a mixture of horizons is required? 
Reinforcement learning problems and generative modeling problems tend to involve 
simultaneously learning a number of sub-skills that play out over varying timescales. For 
example,  

●​ A real-time strategy game like StarCraft will involve exercising strategic skills (which play 
out over the course of a whole game), tactical skills (which come up several times per 
game), and reflex-based skills (exercised continuously throughout a game). 

●​ Language modeling involves modeling very local correlations between words (e.g. 
various grammatical rules or common phrases and idioms) as well as regularities that 
hold across much longer chunks of text (e.g. the fact that character names and 
descriptions must remain consistent over a novel). 

 
In general, I expect that a model would have stronger performance on skills that it has had more 
opportunity to exercise in the training distribution -- e.g., I expect that language models will be 
more likely to make errors in logical consistency across a long narrative than grammatical 
errors, and I expect models trained to play real-time strategy games to be much more 
impressive at aspects of the game that require fast and precise reflexes than aspects which 
require good strategy.   
 
If excellent performance at short horizon skills combined with lower performance at longer 
horizon skills is sufficient for overall success at the relevant task -- or if short horizon skills 
transfer very well to longer horizon skills -- then the total cost of training will be dominated by the 
cost of learning the skills which play out over short timescales, and the effective horizon length 
of the overall problem will be short; if not, the effective horizon length may be several orders of 
magnitude higher, dominated by the longest-horizon skills in the distribution. 
 
It is likely that a transformative ML problem would also involve learning different behaviors over 
different timescales. How can we model the way these different timescales would average out 
into an overall effective horizon length? I have heard of three high-level perspectives, although 
many more are possible: 

●​ Short horizon training (especially generative modeling) will dominate: Under this 
perspective, almost all of the difficulty and expense of training most practically valuable 
behavior with ML will come from generative modeling (i.e. training the model to predict 
what it will see next), which has a very dense reward signal. According to this 
perspective, generative training will cause the model to build up useful concepts and 
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representations that can then be transferred to a wide variety of downstream skills, such 
that the model can achieve human-level performance on those skills with very little 
additional fine-tuning. 

●​ Long horizon training (especially meta-learning) will dominate: Under this 
perspective, a non-trivial fraction  (e.g. 1% or 10%) of the training data must be focused 𝑝
on key long horizon behaviors -- particularly the behavior of efficiently learning complex 
new skills over subjective months of years -- for the model to learn those behaviors 
adequately enough to have a transformative impact. The overall effective horizon length 
is therefore at least equal to  times the horizon length of the long horizon behaviors, a 𝑝
term which will likely dominate over the short horizon portion of training. Note that a 
perspective which expects training data to be distributed log-uniformly across several 
orders of magnitude of effective horizon length would be equivalent to this perspective, 

because roughly  of the data would have a horizon length of . The Genome 1/𝑛𝑡ℎ 10𝑛

Anchor hypothesis, explored below, could be framed as a variant of this hypothesis 
which uses the information content of the human genome as an estimate of how large 
the “hard core” of long horizon behavior may be. 

●​ The number of data points at each timescale will decay exponentially: Under this 
perspective, some fraction  of the training data can be focused on the shortest-horizon 𝑞
behaviors, and  of the remaining data can be focused on the second-shortest-horizon 𝑞
behaviors, and  of the remaining data can be focused on the third-shortest-horizon 𝑞
behaviors, and so on. This is one very simple way to model the idea that 
shorter-timescale skills may transfer to longer-timescale skills, but only partially or 
imperfectly; this could be how curriculum learning might turn out to work. The overall 
effective horizon length on this perspective is highly sensitive to the value of . If we 𝑞
assume a range from 1 subjective second to 1 billion subjective seconds (~32 subjective 
years), setting  will result in an effective horizon length of ~4.4 subjective years, 𝑞 =  0. 2
whereas setting  will result in an effective horizon length of 15 subjective 𝑞 =  0. 8
minutes. This spreadsheet implements the exponential decay model of horizon lengths, 
allowing the user to choose different values of . 𝑞

 
I was personally most intuitively sympathetic to the second perspective when I began this 
investigation, but after reflecting and discussing more I am ultimately very uncertain which of 
these high-level stories will turn out to be most correct. Differing intuitions about this question 
seems to be an important driver of disagreement about TAI timelines for the set of people I have 
talked with. 

Training FLOP distributions for neural network hypotheses 
I divide the spectrum of possible horizon lengths somewhat arbitrarily into three categories:  

1.​ Short Horizon: a log-uniform distribution between 1 subjective second and 1000 
subjective seconds (~17 subjective minutes), with a median of ~32 subjective seconds. 
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2.​ Medium Horizon: a log-uniform distribution between 17 subjective minutes and 
1,000,000 subjective seconds (~1.7 subjective weeks), with a median of ~8.8 subjective 
hours. 

3.​ Long Horizon: a log-uniform distribution between ~8.8 subjective hours and 
1,000,000,000 subjective seconds (~32 subjective years), with a median of ~1 
subjective year. 

 
The categories were chosen to span an equal range in log-space (3 OOMs). The low end of the 
short horizon category was chosen because it is close to the effective horizon lengths of the 
shortest-horizon problems we solve today. The high end of the long horizon category was 
chosen because it is more than the amount of time that it would have taken for someone to 
grow up and successfully reproduce in the human ancestral environment (i.e., it is longer than 
the typical “horizon length” used in human evolution). 
 
Here are my subjective distributions over the amount of computation it would take to train a 
transformative model according to each of these three hypotheses: 
 

 
The median 2020 training FLOP requirements predicted by the Short Horizon hypothesis is 
~1e31 FLOP; the Medium Horizon hypothesis predicts a median of ~3e34 FLOP; and the Long 
Horizon hypothesis predicts a median of ~1e38 FLOP.  
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Other biological anchor hypotheses 
I have thought most deeply about the three Neural Network hypotheses, and they collectively 
drive my views the most. In this section I describe my briefer investigations into three alternative 
biological anchor hypotheses: 

●​ The Genome Anchor hypothesis, which anchors to the amount of information in the 
human genome and arrives at a median estimate of ~3e33 FLOP for 2020 training 
computation requirements (more). 

●​ The Lifetime Anchor hypothesis, which anchors to the amount of computation done over 
the course of a human lifetime, and arrives at a median estimate of ~1e27 FLOP before 
updating against low-end FLOP levels, which pushes the median to ~1e28 FLOP (more). 

●​ The Evolution Anchor hypothesis, which anchors to the amount of computation done 
over the course of evolution from early neurons, and arrives at a median estimate of 
~1e41 FLOP (more). 

Genome Anchor hypothesis 
This hypothesis states that we should assume on priors that a transformative model would run 
on roughly as many FLOP / subj sec as the human brain and have about as many parameters 
as there are bytes in the human genome (~7.5e8 bytes), and that we can extrapolate the 
amount of FLOP required to train such a model using an empirically-derived scaling law that 
expresses training data as a function of parameter count. It adjusts from the anchor points of 
human brain FLOP/s and human genome parameters by a relatively modest constant factor to 
account for qualitative considerations about how sophisticated our architectures seem to be as 
of 2020.  
 
Like the Neural Network hypotheses, this hypothesis anchors on human brain FLOP/s to 
estimate model FLOP / subj sec. I will be using the same probability distribution over FLOP / 
subj sec derived in Part 1, centered around ~1e16 FLOP / subj sec, which is ~1 OOM higher 
than my estimate for human brain FLOP/s. Like the Long Horizon Neural Network hypothesis, 
this hypothesis assumes that we need to train a transformative model to have some critical 
cognitive ability (such as sample-efficient learning) that evolution optimized for, and that 
the ML problem of finding a model with this ability would have a long effective horizon length, 
comparable to the generation length over evolutionary history.  
 
The key difference is that this hypothesis assumes that researchers could execute a long 
horizon training run like the one described above using many orders of magnitude fewer 
parameters than the Long Horizon Neural Network hypothesis assumes, anchoring parameter 
count to the amount of information we believe can be stored in the human genome.  The 
motivating intuition is that evolution performed a search over a space of small, compact 
genomes which coded for large brains rather than directly searching over the much larger space 
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of all possible large brains, and human researchers may be able to compete with evolution on 
this axis. 
 
According to Wikipedia, the human genome contains 750 megabytes (7.5e8 bytes) of 
information; my impression is that this figure is not very uncertain, and the conception of 
“information in the genome” is much less conceptually fraught than the concept of “brain 
FLOP/s”, but I have not dug into this question. For simplicity, I centered the distribution of 
parameter count for this hypothesis around 7.5e8 rather than attempting to think about how I 
would shift it,  and assumed ~3 OOM uncertainty on either side to match the amount of 15

uncertainty I assumed when estimating how much larger or smaller a transformative model 
would be compared to the brain.  
 
I assumed that the effective horizon length was log-uniform between ~3e7 subjective seconds 
(~1 subjective year) and 1e9 subjective seconds (~32 subjective years), for an average of ~5 
subjective years. I also assumed that the scaling behavior is the same as the one derived in 
Part 2 and used in the Neural Network hypotheses.  
 
The yellow distribution in the image below is the subjective distribution over the amount of FLOP 
it would take to train a transformative model that runs on ~1e16 FLOP / subj sec under these 
assumptions: 
 

 

15 A more careful accounting of this hypothesis would likely need to consider both how human-designed 
architectures would compare to the genome and what “fraction” of the genome is likely devoted to 
relevant features of brain development. 
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This distribution is narrower than the corresponding distributions for the Neural Network 
hypotheses primarily because the parameter count distribution is narrower since I took a simple 
point estimate for the number of bytes in the human genome rather than the wide distribution I 
used for the human brain FLOP/s anchor. Secondarily, uncertainty over the sample complexity 
scaling exponent doesn’t translate into quite as much uncertainty over the number of total data 
points required because the parameter counts in question are similar to the number of 
parameters in existing models.   
 
How plausible is this hypothesis? There are at least two distinct ways to interpret this 
hypothesis: 

●​ One possibility is that the hypothesis is claiming that researchers in 2020 would be able 
to design an architecture for a transformative model which only contains ~7.5e8 
parameters given ~2-5 years of trying (per the definition of technical difficulty in Part 1). 

●​ Another possibility is that the Genome Anchor hypothesis is not directly making a claim 
that researchers will quickly create a genome-like architecture, but simply using the 
genome as a way to bound what fraction of data points would need to be long horizon 
when training an ordinary neural network. This would make it a more specific version of 
the “Long horizon training will dominate” view described above, which takes a view on 
the exact number of long horizon data points. 

 
I am quite skeptical of the first interpretation, that researchers could quickly design a 
genome-like architecture given the current state of ML algorithms: 

●​ Such an architecture is very different from typical architectures we use today, which 
perform a much smaller number of FLOP per parameter per timestep (e.g., ~1-100 
rather than millions). A normal neural network in which each parameter performs a small 
number of operations per timestep is a very agnostic architecture that doesn’t require 
researchers to understand how the brain works much; reducing parameter count by a 
factor of over 1 million from that agnostic starting point is a substantial step toward 
ordinary programming on the spectrum from “pure ML” to “pure programming”, and 
seems like it would require much more specific knowledge on the part of researchers.  

●​ If it were easy to achieve impressive results in language modeling, games, image 
classification, and so on using such a small ratio of parameters to computation per 
timestep -- while still training on a small number of data points per parameter -- 
researchers likely would have been doing this already because it would have saved a lot 
on training computation. The fact that they haven’t suggests that this version of the 
hypothesis would require that researchers either come to understand how the human 
genome codes for the development of the human brain and design an architecture that 
imitates this mapping, or else develop a new architecture at least as effective as that 
genotype-to-phenotype mapping despite not understanding the biological mechanisms in 
detail and not having found a similarly efficient architecture so far. 
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●​ Even if researchers could discover a mapping from ~7.5e8 parameters to a space of 
models running on ~1e16 FLOP / subj sec which contains a transformative program, we 
have very little evidence about whether current local optimization techniques like SGD 
could effectively search through that space. The optimization hypothesis may need to be 
more winding, or we may need to train much closer to convergence to achieve the 
desired level of performance, or we may not be able to use gradients, all of which would 
likely make sample complexity scale more poorly with parameter count than it does for 
today’s architectures.  

 
I find the second possibility more compelling, but am still somewhat skeptical on net. It seems 
like if either version of this hypothesis is correct, we should have seen more impressive results 
in meta-learning so far. Above, I argued that if a model needs to be at least 10% the size of a 
mouse brain to be able to learn new video games as well as a human, then training a typical 
neural network of that size on that problem would cost ~$200M in 2020. However, if the cost of 
meta-learning would be dominated by the cost to train as many parameters as there are in the 
mouse genome, this cost would be much lower.  
 
Mice and humans have essentially the same number of base pairs in their genome,  implying 16

7.5e8 parameters would be required to represent a mouse. Assuming as above that the model 
could run on ~1e11 FLOP / subj sec and we need about one 1-subjective-hour-long data point 
per parameter, this would cost (1e11 FLOP / subj) * (3600 seconds / data point) * (7.5e8 data 
points) = $2.25 million; the fact that we do not yet have models that are capable of learning 
complex new skills such as games over the course of several subjective minutes despite various 
attempts feels like substantial evidence against this hypothesis.  

Lifetime Anchor hypothesis 
This hypothesis states that we should assume on priors that training computation requirements 
will resemble the amount of computation done by a child’s brain over the course of growing to 
be an adult, because we should expect our architectures and optimization algorithms to be 
about as efficient as human learning. It anchors to this estimate and adjusts from this anchor by 
a relatively modest constant factor to account for qualitative considerations about how 
sophisticated our architectures and algorithms seem to be as of 2020. 
 

16 “All eutherian mammals have genomes of essentially the same size. It is instructive to consider the size 
of the mammalian genome in terms of the amount of computer-based memory that it would occupy. Each 
base pair can have one of only four values (G, C, A, or T) and is thus equivalent to two bits of binary code 
information (with potential values of 00, 01, 10, 11). Computer information is usually measured in terms of 
bytes that typically contain 8 bits. Thus, each byte can record the information present in 4 bp. A simple 
calculation indicates that a complete haploid genome could be encoded within 750 megabytes of 
computer storage space.” Mouse Genome Informatics, Chapter 5 section 1. 
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Suppose it takes on average about 1 billion seconds (~32 years) for an intelligent human to go 
from an infant  to their peak level of productivity. If a human brain performs ~1e15 FLOP/s, that 17

would be (1e15 FLOP/s) * (1e9 seconds) = 1e24 FLOP, only about 1 OOM larger than the 
amount of computation used to train AlphaStar. I am quite skeptical that this is the most 
appropriate anchor (see below), but here I will do my best to condition on the assumption that 
this is the best biological anchor to work with and training FLOP will be somewhere in this 
region, and generate the most plausible version of the hypothesis given that assumption. 
 
If ~1e24 FLOP is the most relevant biological anchor, where should we expect our training 
computation requirements would fall relative to that anchor? For the Neural Network and 
Genome Anchor hypotheses, I assumed that a transformative model would need to run on 
about ~1 OOM more FLOP / subj sec than the brain; I expect that if we are anchoring training 
FLOP on the human lifetime, we would need to shift the distribution by more than 1 OOM to the 
right. This is because:  

●​ Many models we are training currently already require orders of magnitude more data 
than a human sees in one lifetime. For example, GPT-3 was trained on 300 billion 
tokens,  which amounts to about 100 billion subjective seconds or ~100 subjective 18

lifetimes of experience given human reading speeds. AlphaStar was trained on 10,000 
subjective lifetimes of experience, and the OpenAI Five DOTA model was trained on 200 
subjective lifetimes. These models are sub-transformative, and scaling to TAI would 
likely not involve a major reduction in training data requirements, even if trends 
suggesting steep increases in data requirements are too pessimistic. 

●​ In the neural network hypotheses, model FLOP / subj sec is correlated with model 
parameters, and model parameters determine how much data the model needs to train 
on. This means that the model FLOP / subj sec distribution essentially impacts the 
training FLOP distribution twice, because it also partially determines how many seconds 
of training the model requires. A shift of 1 OOM in model FLOP / subj sec translates into 
a shift of about ~2 OOM in training FLOP. 

●​ Brain FLOP/s seems to me to be somewhat more analogous to “ongoing energy 
consumption of a biological artifact” while lifetime FLOP seems to be more analogous to 
“energy required to manufacture a biological artifact”; Paul’s brief investigation 
comparing human technologies to natural counterparts, which I discussed in Part 1, 
found that the manufacturing cost of human-created artifacts tend to be more like ~3-5 
OOM worse than their natural counterparts, whereas energy consumption tends to be 
more like ~1-3 OOM worse. 

●​ Human babies may be born with various “baked-in priors” from evolution that make 
learning faster -- for example, they may have an intuitive understanding of what faces 
look like, or an intuitive grasp of the structure of human languages, intuitive priors about 
the visual world (for example that objects will be separated from other objects with 

18 “All models were trained for a total of 300 billion tokens.” Brown et al 2020, pg 8. 

17 The appropriate starting point for the purposes of this exercise may be conception, given that the work 
of translating from the genetic code into a brain development plan begins there, but it wouldn’t make a 
material difference to the estimate. 
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“edges”) or an intuitive understanding of physics. Even if it is relatively trivial to somehow 
imbue ML models with these same priors (such that the human lifetime is still the most 
appropriate biological anchor to use), it may require somewhat more computation -- 
either because researchers may need to do some trial-and-error to determine how to 
“hard-code” these priors into a learning setup or because the model may need to do a 
constant amount of extra learning at the beginning to “catch up.” 

 
Somewhat arbitrarily, I settled on a median of ~3 OOM larger than the anchor. Here, I have 
generated a subjective probability distribution over the amount of computation that would be 
required to train a transformative model conditional on the Lifetime Anchor hypothesis:  

 
 
To generate the compute requirements distribution, I multiplied the distribution over brain 
FLOP/s by 1e9 seconds, and multiplied the result by a skew-log-normal distribution with a 
median of ~3 OOM, a standard deviation of ~5 OOM, and a right skew (recall that I chose ~5 
OOM as the spread based on my beliefs about algorithmic progress; see this section from Part 
1). This expresses the view that there is a ~50% chance researchers can train a transformative 
model using at most ~1000 times the amount of computation done by the human brain from 
birth to age 32 -- and if that doesn’t work, there is a long tail of larger levels of computation that 
might turn out to be necessary. 
 
Note that this hypothesis does not make any direct assumption about the model size, 
instead directly anchoring on a certain value for total training FLOP. We can see that if a 
transformative model would require ~1e15 parameters and run on ~1e16 FLOP / subj sec, the 
Lifetime Anchor hypothesis predicts that the amount of computation required to train it is orders 
of magnitude smaller than the amount of data we would expect to need based on the 
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extrapolation from current models, even if we allow for an extremely short (<1 second) horizon 
length. 
 
I think the most plausible way for this hypothesis to be true would be if a) it turns out we need a 
smaller model than I previously assumed, e.g. ~1e11 or ~1e12 FLOP / subj sec with a similar 
number of parameters, and b) that model could be trained on a very short horizon ML problem, 
e.g. 1 to 10 seconds per data point. Condition a) seems quite unlikely to me because it implies 
our architectures are much more efficient than brain architectures discovered by natural 
selection; I don’t think we have strong reason to expect this on priors and it doesn’t seem 
consistent with evidence from other technological domains. Condition b) seems somewhat 
unlikely to me because it seems likely by default that transformative ML problems have naturally 
long horizon lengths because we may need to select for abilities that evolution optimized for, 
and possible measures to get around that may or may not work.   
 
The second way this hypothesis could turn out to be true would be if we need to use a large 
model (e.g. ~1e15 parameters) but manage to vastly outperform ML sample complexity trends 
on at least one transformative ML problem within ~2-5 years of effort. This also seems unlikely 
to me -- I don’t think there are compelling reasons to believe that transformative ML problems 
would naturally have more favorable sample complexity scaling than current problems, and I am 
not aware of any plausible paths to dramatically improving sample complexity quickly. 
 
Another major reason for skepticism is that (even with a median ~3 OOM larger than the human 
lifetime) this hypothesis implies a substantial probability that we could have trained a 
transformative model using less computation than the amount used in the most compute 
intensive training run of 2019 (AlphaStar at ~1e23 FLOP), and a large probability that we could 
have done so by spending only a few OOMs more money (e.g. $30M to $1B). I consider this to 
be a major point of evidence against it, because there are many well-resourced companies who 
could have afforded this kind of investment already if it would produce a transformative model, 
and they have not done so. See below for the update I execute against it. 
 
More broadly, the Lifetime Anchor hypothesis contradicts the efficient-market hypothesis, 
implying that AI companies and the inputs to AI research are radically mispriced. It is also in 
tension with the general pattern observed across domains that technological progress tends to 
be broadly continuous -- it implies that a transformative model could be trained in the very near 
term, increasing the annual economic value-added of ML models from hundreds of billions of 
dollars to hundreds of trillions of dollars in a very short period, and taking the world from a ~3% 
growth rate to a ~30% growth rate all at once without first passing through intermediate levels of 
growth. While I don’t believe that markets are always fully efficient or that technological progress 
is always continuous, I would still expect AI to be adding a lot more economic value than it is 
today, and to be priced much higher on the market, if this hypothesis were actually feasible.  

23 

https://docs.google.com/document/d/1PaYOh_9BAYEm3RfpeX0G-cvs5JxGns98IsVK061jqRQ/edit#heading=h.dcz9n3id83av
https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#heading=h.hxc5y3gfmjv4
https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#heading=h.xkxuso6p1x40
https://en.wikipedia.org/wiki/Efficient-market_hypothesis
https://aiimpacts.org/likelihood-of-discontinuous-progress-around-the-development-of-agi/
https://aiimpacts.org/likelihood-of-discontinuous-progress-around-the-development-of-agi/


Evolution Anchor hypothesis 
This hypothesis states that we should assume on priors that training computation requirements 
will resemble the amount of computation performed in all animal brains over the course of 
evolution from the earliest animals with neurons to modern humans, because we should expect 
our architectures and optimization algorithms to be about as efficient as natural selection. It 
anchors to this estimate and adjusts by a relatively modest factor to account for qualitative 
considerations about how sophisticated our architectures and algorithms seem to be as of 2020. 
 
Like the Long Horizon Neural Network hypothesis and the Genome Anchor hypothesis, this 
hypothesis assumes that we need to train a transformative model to have some critical cognitive 
ability (such as sample-efficient learning) that evolution optimized for.  Unlike those hypotheses, 
it assumes that human-designed architectures and optimization algorithms have done very little 
to reduce the amount of computation that meta-learning would take compared to a baseline of 
simulating natural selection from a very primitive starting point such as a randomly-connected 
nerve net with dozens of cells.  
 
As with the Lifetime Anchor hypothesis, I am skeptical that this is the most appropriate biological 
anchor to lean on in generating our 2020 compute requirements distribution, but in this section I 
will try to condition on the assumption that it is the most informative anchor. 
 
The amount of computation done over evolutionary history can roughly be approximated by the 
following formula: (Length of time since earliest neurons emerged) * (Total amount of 
computation occurring at a given point in time). My rough best guess for each of these factors is 
as follows:  

●​ Length of evolutionary time: Virtually all animals have neurons of some form, which 
means that the earliest nervous systems in human evolutionary history likely emerged 
around the time that the Kingdom Animalia diverged from the rest of the Eukaryotes. 
According to timetree.org, an online resource for estimating when different taxa diverged 
from one another, this occurred around ~6e8 years ago. In seconds, this is ~1e16 
seconds. 

●​ Total amount of computation occurring at a given point in time: This blog post 
attempts to estimate how many individual creatures in various taxa are alive at any given 
point in time in the modern period. It implies that the total amount of brain computation 
occurring inside animals with very few neurons is roughly comparable to the amount of 
brain computation occurring inside the animals with the largest brains. For example, the 
population of nematodes (a phylum of small worms including C. Elegans) is estimated to 
be ~1e20 to ~1e22 individuals. Assuming that each nematode performs ~10,000 
FLOP/s,  the number of FLOP contributed by the nematodes every second is ~1e21 * 19

1e4 = ~1e25; this doesn’t count non-nematode animals with similar or fewer numbers of 

19 C. Elegans is estimated to have ~7,500 synapses. 
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neurons. On the other hand, the number of FLOP/s contributed by humans is (~7e9 
humans) * (~1e15 FLOP/s / person) = ~7e24. The human population is vastly larger now 
than it was during most of our evolutionary history, whereas it is likely that the population 
of animals with tiny nervous systems has stayed similar. This suggests to me that the 
average ancestor across our entire evolutionary history was likely tiny and performed 
very few FLOP/s. I will assume that the “average ancestor” performed about as many 
FLOP/s as a nematode and the “average population size” was ~1e21 individuals alive at 
a given point in time. This implies that our ancestors were collectively performing ~1e25 
FLOP every second on average over the ~1 billion years of evolutionary history. 

 
This implies that the total amount of computation done over the course of evolution from the first 
animals with neurons to humans was (~1e16 seconds) * (~1e25 FLOP/s) = ~1e41 FLOP. Here, 
I generated a distribution over training computation requirements for the Evolution Anchor 
hypothesis in purple: 
 

 
 
To generate this distribution,  

●​ I first generated a distribution for the amount of computation done in evolutionary history, 
incorporating my uncertainty about the length of the evolutionary period, the amount of 
computation that might be occurring in a nematode’s nervous system, the average 
ancestor population size, and how much more or less computation we might need 
compared to the evolution anchor (using the same distribution generated in Part 1 for 
how much better or worse ML architectures might be compared to brain architectures) -- 
I have not investigated these estimates very thoroughly and I expect they could easily be 
improved with more research.  
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●​ I then multiplied that distribution by a skew-log-normal distribution with a median of ~0 
OOM, a standard deviation of ~5 OOM, and a left skew. This expresses the view that 
that researchers could train a transformative model using as much computation as the 
amount of computation done in evolutionary history, and there is a substantial chance 
that smaller amounts would be sufficient as well, with the probability decaying slowly at 
smaller and smaller levels of computation.  

 
Note that depending on the particular spirit of the hypothesis we are conditioning on (that the 
anchor of “FLOP done over the course of evolution” is the most appropriate biological anchor to 
use), I think we could argue for shifting the distribution further to the left rather than centering it 
exactly where the evolution anchor is centered -- just as I argued above that the Lifetime Anchor 
hypothesis distribution should be centered ~3 OOM to the right of its biological anchor. Below, I 
discuss some reasons to expect that we should be able to train a transformative model with 
substantially less computation than evolution.  However, I have chosen to leave it alone in this 
context because: 

●​ I wanted to simplify the report somewhat, and this hypothesis is the one I have spent the 
least time thinking about. 

●​ There are plausible arguments that I have underestimated true evolutionary computation 
here in ways that would be somewhat time-consuming to correct: for example, it may be 
that we should somehow attempt to incorporate the evolution of precursors to true 
neurons, or that for early ancestors with very few neurons the amount of computation it 
would take to appropriately simulate their DNA would dominate the amount of 
computation to simulate their nervous systems. Not shifting the Evolution Anchor 
hypothesis distribution further to the left -- despite believing that there are relatively 
straightforward ways we could improve upon evolution, such as reducing population 
sizes or crafting less noisy fitness signals -- feels like an easy fudge to attempt to make 
up for this. 

●​ The Long Horizon Neural Network hypothesis (in blue above) makes a number of 
reasonable assumptions, and I consider to be an attractive “naive default” view -- and it 
is actually relatively close to the Evolution Anchor hypothesis already. Shifting the 
Evolution Anchor hypothesis multiple OOMs to the left based on inside-view 
considerations of how we might improve on natural selection would cause it to be 
centered to the left of the Long Horizon Neural Network hypothesis. This feels somewhat 
strange because the spirit of this hypothesis involves believing that our optimization 
algorithms will be less efficient than SGD. 

●​ I expect that some ML researchers would want to argue that we would need substantially 
more computation than was performed in the brains of all animals over evolutionary 
history; while I disagree with this, it seems that the Evolution Anchor hypothesis should 
place substantial weight on this possibility. 

 
Like the Human Lifetime Anchor hypothesis, this hypothesis makes no assumptions about the 
size of the model, estimating training FLOP directly from a biological anchor. This could be 
achieved by training a very large model (e.g. one with ~1e18 FLOP / subj and a similar number 
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of parameters) using an amount of data that is in-line with extrapolations from existing models, 
or by training a smaller model using a lot more data than would be predicted from these 
extrapolations, or by training a model that grows in size over the course of the training run as 
animals’ brains did over the course of evolutionary history, etc.  
 
I think it is very likely that this hypothesis or some cheaper hypothesis would work out given 
2020 architectures and algorithms; I discuss this more below. 

2020 training computation requirements distribution 
In this section, I will attempt to use the hypothesis distributions generated in the previous 
sections to construct an overall 2020 compute requirements distribution. I will: 

●​ Adjust the hypothesis distributions so that they assign a lower probability to the 
possibility that very low levels of computation (e.g. as much computation as models 
today are trained with) would be sufficient (more). 

●​ Attempt to estimate the probability the amount of computation that would be required to 
train a transformative model in 2020 is much larger than any hypothesis would predict 
(more). 

●​ Assign weights to each of the hypothesis distributions based on the qualitative 
discussions of the plausibility of each hypothesis given in the previous sections (more). 

●​ Generate a probability distribution by creating a weighted mixture of the different 
biological anchor hypothesis distributions and the hypothesis representing “none of the 
above” (more).  

Updating against levels of computation that are already affordable 
As I mentioned above, some hypotheses -- most notably the Lifetime Anchor hypothesis -- 
assign non-trivial probability to levels of computation small enough that we can already afford to 
do training runs of that size. To see this more clearly, we can display the hypotheses within the 
context of a landscape of FLOP levels that would have been attainable for various prices in the 
present or past: 
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The dotted lines in this landscape mark levels of computation that could theoretically have been 
purchased at various points in the past with various levels of investment (as well as markers for 
the median estimate of lifetime computation and evolution computation); see this appendix for 
details on that landscape. The black dotted line is the amount of computation that the AlphaStar 
training run used (~1e23 FLOP); the grey dotted line further to the right is the amount of 
computation that I estimate could be purchased for ~$30B in 2020. 
 
I think it is unlikely that the amount of computation that would be required to train a 
transformative model is in the range of AlphaStar or a few orders of magnitude more -- if that 
were feasible, I would expect some company to have already trained a transformative model, or 
at least to have trained models that have already had massive economic impact. To loosely 
approximate a Bayesian update based on the evidence from this “efficient markets” argument, I 
truncate and renormalize all the hypothesis probability distributions: 
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Here, I have assumed that the probability that the required amount of compute is smaller than 
the amount of compute used to train AlphaStar (~1e23) should be set to ~0. Additionally, I 
assume that we have some amount of evidence that it’s unlikely to be between 1e23 and 1e27, 
with the strength of that evidence getting weaker for higher values.  AlphaStar cost around 20

~$1M to train, and it seems likely that AI companies would have been willing and able to spend 
much more than that if they had reason to expect substantial profit. I assume that there is no 
particularly strong evidence against values larger than ~1e27 purely from an “efficient markets” 
standpoint. 
 
To the extent that the prior (untruncated) distribution of a hypothesis assigned probability to 
levels of computation that we have updated against, we should consider that hypothesis less 
credible overall. The truncation removed ~30% of the probability mass in the Lifetime Anchor 
distribution and ~10% of the mass from the Short Horizon Neural Network distribution; the 
others were virtually unaffected, losing <5% probability mass.  
 
Note that this loss of probability mass is not shown visually in the plots above, because 
the plotting software I use automatically renormalizes the histograms so that the total area 
under their curve adds up to 1; this means that when a distribution gets narrower -- as the 
Lifetime Anchor hypothesis did when low end values were cut off -- it also gets taller. Instead, I 

20 Specifically, I assumed that there was no evidence against values greater than 1e27 FLOP, that there 
was perfect evidence against values less than 1e23 FLOP, and interpolated log-linearly between those 
two values. 
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take this into account below when I assign weights to different hypotheses and combine them 
into a mixture distribution.  

Probability that the required FLOP is larger than all hypotheses 
predict 
What is the probability that 2020 training computation requirements for a transformative model 
are larger than the amount predicted by the Evolution Anchor hypothesis -- that is, that none of 
the biological anchor hypotheses would work out in any form  (even given access to the 21

requisite data and environments)?  
 
I would estimate a ~10% probability that 2020 compute requirements are larger than the 
Evolution Anchor hypothesis. From my current perspective, I think it could be defensible to 
assign a probability closer to 25% instead, but I don’t currently see how someone would defend 
a probability of 50% or more (although I may be missing some relevant arguments). My 
reasoning is as follows: 

●​ ML models have already made substantial progress on several tasks analogous to the 
types of behaviors animals were under strong natural selection pressure to perform well 
(e.g. object recognition and motor control) using vastly less training computation than it 
took to evolve those abilities. For example, if our ancestors collectively performed ~3e24 
FLOP per second, then the amount of computation performed in the entire AlphaStar 
training run (~1e23) is the equivalent of less than one second of evolutionary history, 
implying that AlphaStar should only be as capable as the earliest animals with neurons 
(believed to be tiny jellyfish-like creatures).  

●​ There are also some specific ways it seems that we could improve upon the “simulate 
natural selection” baseline, prima facie. For example, population sizes are a 
consequence of the carrying capacity of an ecological niche rather than being tuned to 
minimize the amount of computation used to evolve intelligent animals; it seems likely 
that they were far too large from a computational-efficiency standpoint. Additionally, the 
genetic fitness signal in the natural environment was often highly noisy, whereas we 
could plausibly design artificial environments which provide much cleaner tests of 
precisely the behaviors we are looking to select for. 

●​ The Evolution Anchor hypothesis posits that training a transformative model would 
require computation levels almost twenty orders of magnitude larger than anything we 
could reasonably afford today; as mentioned above, this allows for room to train a model 
more than eight orders of magnitude larger than models we are training today, and to 
train it using much more data than extrapolations from current models would predict. I 
think there is little reason to expect that even domain experts would be justified in 

21 I intend to construe the hypotheses broadly here, meaning that if researchers come up with any training 
run which ends up using an amount of computation that is squarely in-distribution for hypothesis X, that 
would count as “hypothesis X worked out.” It does not necessarily have to look like the sketches I 
presented in this section. 
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making a confident judgment that such an unprecedentedly huge training run couldn’t 
accomplish a transformative task; most experts most of the time are not entertaining this 
possibility. If the Evolution Anchor hypothesis would work out, this is easily compatible 
with the views of experts who are highly pessimistic about machine learning-based 
transformative AI. 

Assigning probabilities to each of the biological anchor 
hypotheses 
If there is a ~90% probability that the Evolution Anchor hypothesis or something cheaper would 
work out given 2020 architectures and algorithms, how should we distribute that credence 
across hypotheses? Which hypothesis distribution is most likely to represent the minimum 
required amount of computation given 2020 architectures and algorithms?  
 
This is more debatable and dependent on intuitive priors that may differ from person to person 
than the question of whether the Evolution Anchor hypothesis would work out. I have given 
some qualitative commentary in the sections above on how plausible each of the different 
hypotheses seems to me; here I will attempt to translate that into rough quantitative weights. 

Long Horizon Neural Network as a “naive” default view 
I consider the Long-Horizon Neural Network hypothesis to be a “naive default” view that 
errs conservative. This hypothesis assumes that we would need a model roughly ~1 OOM 
larger than the human brain to solve a transformative task, and then makes fairly standard or 
somewhat conservative assumptions about every other parameter:  

●​ It assumes that a transformative model would look similar to contemporary architectures, 
and so would perform about ~1-100 FLOP per parameter per subjective second. 

●​ It assumes that a transformative ML problem would likely involve meta-learning of some 
kind, and that meta-learning would have an effective horizon length of multiple subjective 
months or years. 

●​ It assumes that the amount of data required to train this model will scale in a similar way 
to existing models -- that the number of instances of “trying to learn a new skill over the 
course of multiple subjective months” that the model will need to observe will scale close 
to linearly with its parameter count (an exponent of ~0.8).  

●​ It assumes that there is no “shortcut” to training the relevant long horizon cognitive skills 
using decomposition, human feedback, and so on. 

 
If it is the case that the computation that would be required to train a transformative model in 
2020 is larger than the amount estimated by this hypothesis, then the reason is likely some 
combination of:  

●​ Our optimization techniques are fundamentally limited: It won’t be possible to use 
SGD (or other optimization techniques researchers could design in a few years of effort) 
to find a transformative model from a search space that contains one -- perhaps because 
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there would be astronomically many bad local minima in the loss landscape for every 
transformative model, and any optimization technique researchers try would likely get 
stuck in one of those local minima. 

●​ The quantitative estimates are too small: Contemporary optimization techniques 
would work for finding a transformative model at some scale, but the amount of 
computation required would be larger than the amount estimated by any hypothesis 
distribution -- perhaps because we would actually need a model many orders of 
magnitude larger than the human brain (or the human brain is much more powerful than 
we think), or because the amount of training experience needed would be orders of 
magnitude larger than ten data points per parameter.  

 
Both of these are possible, but I don’t see a strong affirmative reason to be confident in either of 
these possibilities: 

●​ Simple variants of SGD have been able to produce models capable of a wide variety of 
useful behaviors -- and some of these behaviors, most notably language modeling, seem 
like important sub-skills for many possible transformative tasks.  

●​ There are some skills that seem important to many transformative tasks that our models 
have not yet displayed clearly, notably quickly learning new skills. However, as I argued 
above, it is plausible (and consistent with the biological anchors framework) that this is 
because models are not large enough for meta-learning to work well rather than 
because of a fundamental limitation. 

●​ More generally, this framework predicts that machine learning models today should be 
substantially less “capable” than mice and only somewhat more capable than bees; this 
does not seem obviously inconsistent with what we in fact observe. 

 
I would estimate an ~80% probability that the Long-Horizon Neural Network hypothesis 
or a cheaper hypothesis would work out given 2020 algorithms and architectures. I can 
see how someone would assign a probability closer to ⅓, but I don’t currently see how someone 
could arrive at a probability much lower than that. 

How likely is it that more aggressive hypotheses are right? 
Hypotheses which predict that smaller amounts of computation will be sufficient are committed 
to denying one of the “naive” assumptions laid out above: 

●​ The other Neural Network hypotheses assume that models can have a transformative 
impact without being able to plan over long horizons, or else that we can train models to 
plan adequately over long horizons without actually giving them direct experience with 
many long horizon episodes. 

●​ The Genome Anchor hypothesis assumes that the amount of training data required to 
learn long horizon behaviors can best be estimated by anchoring to the amount of 
parameters in the human genome, rather than the amount of parameters in a typical 
neural network running on ~1e16 FLOP / subj sec. 
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●​ The Lifetime Anchor hypothesis does not make specific statements about training 
methods, but the most likely ways it could turn out to be true is if a) the model size 
required to solve a transformative task will be substantially smaller than the human brain 
and very short horizons will be sufficient, or b) researchers can relatively easily design a 
large model which learns some transformative task as efficiently as a human baby could 
(which may involve “hard-coding” a number of the priors such as intuitive physics, 
intuitive psychology, or proclivity for learning languages that human babies may have 
acquired over the course of natural selection). 

 
On the other hand, the Evolution Anchor hypothesis relaxes the “default assumptions” further, 
allowing for the model size to be much larger than the human brain, and/or for sample 
complexity to scale much more poorly than for existing ML problems, and/or for horizons to be 
much longer than one subjective year. 
 
For each of these six hypotheses, I’ll assign a probability estimate to the event that the minimum 
amount of computation required to train a transformative model is distributed roughly as that 
hypothesis would predict: 

●​ Lifetime Anchor hypothesis: I consider the Lifetime Anchor hypothesis to be unlikely. 
As we saw above, there is almost a factor of ~2 update against this hypothesis from the 
efficient markets argument; it also seems to be out of line with other evidence we have 
about ML systems -- for example, we have substantial evidence that training a model to 
solve a task consistently requires many more examples than teaching a human an 
analogous skill. I’ll assign a ~5% probability to this hypothesis. 

●​ Short Horizon Neural Network hypothesis: I think that there is a substantial possibility 
that effective horizon length may be much shorter than the conservative assumption 
made by the Long Horizon Neural Network hypothesis from some combination of proxy 
reward signals, decomposition, and short horizon sub-skills transferring to longer 
horizons (see above). In particular, several researchers I have spoken to consider it 
plausible that learning the skill of “predict what will happen next” will dominate the cost of 
training. I’ll assign a ~20% probability to this hypothesis. 

●​ Genome Anchor hypothesis: While I think it is unlikely that researchers could quickly 
discover an architecture which structurally behaves like the genome while having a 
similar scaling behavior to neural networks, I do find the genome anchor to be somewhat 
plausible as a way to think about what fraction of the training data for a neural network 
may need to be long horizon if a mixture of horizon lengths is required (although I don’t 
currently think of it as strongly privileged over other ways of thinking about that 
question). I’ll assign a ~10% probability to this hypothesis. This makes the total 
probability assigned to the three lowest-computation hypotheses ~35%. 

●​ Medium-Horizon Neural Network hypothesis: I currently consider this hypothesis to 
be the most likely. It feels as if we should be able to solve substantially more impactful 
tasks with an effective horizon length in the range of subjective hours or days compared 
to subjective seconds or minutes. If the “naive” effective horizon length of meta-learning 
is multiple subjective months, it seems highly plausible that some combination of the 
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reasons described above may bring that down by ~2-3 OOM into the Medium Horizon 
range (as opposed to ~5-6 OOM into the Short Horizon range). I’ll assign a ~30% 
probability to this hypothesis. 

●​ Long Horizon Neural Network hypothesis: The above implies that the probability 
assigned to this hypothesis is ~15%, for a total of ~80% probability assigned to all the 
hypotheses which estimate lower training computation requirements than Evolution 
Anchor. 

●​ Evolution Anchor hypothesis: The above implies that the probability assigned to this 
hypothesis is ~10%, for a total of ~90% probability assigned to all of the biological 
anchor hypotheses combined. 

The weighted mixture of biological anchor hypotheses 
To generate a combined 2020 compute requirements distribution from the hypotheses, I need to 
first somehow represent the possibility that the minimum amount of computation required to 
train a transformative model given current architectures and algorithms is larger than the 
Evolution Anchor hypothesis.  
 
Because that possibility is outside the biological anchors framework, I don’t have a way to 
estimate exactly how much larger the required amount of computation would be in that world. 
As a stand in, I simply generate an arbitrary “dummy distribution” to represent this possibility, 
and create a weighted sum of the seven different distributions using the weights described 
above:
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This dummy distribution plays no role in the calculation of timelines and its location is 
completely irrelevant; it is purely a visual aid which allows the total size of the combined 
distribution containing the six hypotheses to grow or shrink based on the total probability 
assigned to “at least one hypothesis is correct” (otherwise the plotting software would 
automatically enforce that the total density is 1).  
 
In the Part 4, I describe how I generate a probability distribution over when the amount of 
compute required to train a transformative model may become affordable; in that calculation, I 
make the somewhat conservative assumption that if 2020 compute requirements are larger 
than the Evolution Anchor, we will not develop TAI anytime in the rest of this century.   
 
Again, it is important to emphasize that the distribution above is conditioned on 2020 
architectures and algorithms; compute requirements distributions for future years will put more 
probability mass on low levels of computation due to algorithmic improvement, and may have 
probability mass on amounts of computation even smaller than ~1e23.   
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