CSE 160 Section 7 Problems

1. Write a function called all_unique_words(file_name) that takes in a string
file_name and returns the number of unique words in the file. You may use the
split() function for this problem, which takes in a string and returns a list of the
words in the string separated by empty spaces.

Example:
If colors.txt has the content "red green blue green’
Your output should be: 3

def all_unique_words(file_name):
file = open(file_name):
words = file.read()
unique = set(words.split())
file.close()
return len(unique)

2. What output is produced after running the following piece of code?
from operator import itemgetter
data = [("Fred", 3, 5),
("zZeke", 5, 3),
("Sam", 5, 6),
("Mary", 3, 5),
("Ann", 7, 8) 1]
def some key (x):
01)
data, key=some key))

return len (x[
print (sorted(
print (sorted(data, key=itemgetter (2), reverse=True))

[('Sam', 5, 6), (‘'Ann', 7, 8), (‘Fred’, 3, 5), ('Zeke', 5, 3), (‘Mary', 3, 5)]
[(Ann', 7, 8), ('Sam’, 5, 6), (‘Fred’, 3, 5), ('Mary', 3, 5), ('Zeke', 5, 3)]

a. Given a list of tuples in the form (name, age), using itemgetter,
return a list of names and ages sorted alphabetically in one line of code

alphabetical_Ist = sorted(Ist, key = itemgetter(0))

b. Given a list of tuples in the form (name, age), using itemgetter,
return a list of names and ages sorted by increasing age in one line of
code

youngest_to_oldest = sorted(lIst, key = itemgetter(1))

c. Using itemgetter, define a function called £ind oldest that takes
in a list of tuples in the form (name, age) and returns a list of tuples
belonging to the oldest people. If there is a tie, return a list of the names
and ages of the people sharing the same (oldest) age in a new list in
alphabetical order. For example, given age list = [("Tom", 19),
("Max", 26), ("James", 12), ("Alice", 26), ("Carol", 10)
], find oldest(age list) wouldreturn [("Alice", 26), ("Max",
26) 1
def find oldest(age list):

def find_oldest(age_list):
sort_name = sorted(age_list, key=itemgetter(0))
sort_age = sorted(sort_name, key=itemgetter(1), reverse=True)
oldest_age = sort_age[0][1]
ret_list =[]
for pair in sort_age:
if (pair[1] == oldest_age):
ret_list.append(pair)
else:
return ret_list # return early since it is sorted
return ret_list

4. You are given a list of dictionaries representing the scientific and common
names of various plants. An example is shown below:

cactus = [{“scientific name”: “Kroenleinia grusonii”, “common
name”: “golden barrel cactus”},
{“scientific name”: “Kroenleinia grusonii”, ”“common
name”: “golden ball”},

{“scientific name”: “Carnegiea gigantea”, "“common
name”: “saguaro”}]

Write a function called unique species (plants) that takes in a list of dictionaries and
returns a list of all of the unique species by their scientific name sorted alphabetically (hint:
use sets!). In the above the example this function should return:

[“Carnegiea gigantea”, “Kroenleinia grusonii”]

def unique species (plants)

def unique_species(plants):
species = set()
for name in cactus:
species.add(name["scientific name"])
return sorted(list(species))

