Attestations: The roots of trust

Authors: Christophe de Dinechin, with contributions from James Bottomley, Dr David Gilbert, Uri
Lublin, Leonardo Milleri, Tyler Fanelli.

Part 1 - Confidential Computing Background

Part 2 - Attestation in Confidential Computing

Part 3 - Confidential Computing Use Cases

Part 4- From root of trust to actual trust

Part 5 - Confidential Computing Platform-Specific Details

Part 6 - Support technologies related to Confidential Computing

Part 1 - Confidential Computing Background

This article is the first in a 6-part series, where we present various usage models for Confidential
Computing, a set of technologies designed to protect data in use, for example using memory
encryption, and the requirements to get the expected security and trust benefits from the
technology.

In the whole series, we will focus on four primary use cases: confidential virfual machines,
confidential workloads, confidential containers and finally confidential clusters. In all use cases,
we will see that establishing a solid chain of trust uses similar, if subtly different, attestation
methods, which make it possible for a confidential platform to attest to some of its properties.
We will discuss various implementations of this idea, as well as alternatives that were
considered.

In this first article, we will provide some background about Confidential Computing and its
history, and establish some terminology that we will need to cover the topic.

A Brief History of Trusted Computing and Attestation

More than two decades ago, the computing industry saw a need to have trust in the
components running on a remote computer (PC, laptop or even server) without necessarily
having control of it. The solution was to build a chain of trust beginning with a small physical
“root of trust” using a one way hash function. The way this works is as follows :

1. The root of trust first measures itself, meaning that it computes a cryptographic hash,
either over its own code for software, or of a well known version identifier for hardware.

2. Then it measures the next stage of code to boot, for example the boot ROM for x86
platforms.

3. Once this is done, control is transferred to the boot ROM, which finds and measures the
next stage of code to run and so on.

The principle is that before execution, each next stage is measured by the prior stage, meaning
that if all hashes are of trusted components then the entire boot sequence must be trustworthy
because the chain of hashes is grounded in the root of trust. An attacker could inject bogus
code, or substitute their own code to the expected original code at any stage (except in the root
of trust). However, should this happen, the measurement by the prior stage would indicate a
wrong hash.

[SVG diagram showing measurement and recording. Unfortunately google docs are too
primitive to insert svg’s so this is a png rendering]

b":)
@0& { Linux Kerne
Q-.

{Bnot Manager

{BIOS Phase 2

[BIOS phase 1

%
&
Rom based Boot 2

Root of Trust M

The mechanism we just described is a form of attestation: it proves to a third party some
important properties about the system being used, in that case that the boot sequence only
contains known components. There are many other properties that can be attested, many
attestation mechanisms, and the root of trust itself can take many forms.

In the Beginning was the Physical Root of Trust

A long time ago, security researchers realized that the component that formed the root of trust
would have to be a separate (and tamper proof) piece from the system being measured. This
led to the development in 2000 of the Trusted Platform Modules (TPM): A fairly inexpensive and
tiny chip that could be inserted into any complex system to provide a tamper resistant root of

trust which could then reliably form the base of the measurement chain. Over the years, the
functionality of the TPM has grown, so that it is now more like a cryptographic coprocessor, but
its fundamental job of being the root of trust remains the same, and so does the construction of
the chain of trust.

All Confidential Computing platforms presented here inherit this core idea of an isolated,
independent physical root of trust using cryptographic methods to confirm the validity of an
entire chain of trust.

Confidential Computing

Confidential Computing provides a set of technologies designed to protect data in use (i.e. in
memory), such as the data currently being processed by the machine, or stored in memory. This
complements existing technologies that protect data at rest (e.g. disk encryption) and data in
transit (e.g. network encryption).

Confidential Computing is a core technology, now built in many mainstream processors or
systems:

e AMD delivered the Secure Encrypted Virtualization (SEV) in 2017. The technology
originally featured memory encryption only. A later iteration, SEV-ES (Encrypted State)

added protection for the CPU state. Finally, the current version of the technology,
SEV-SNP (Secure Nested Pages) ensures memory integrity.
e Intel proposes a similar technology called Trust Domain Extensions (TDX), which just

started shipping with the Sapphire Rapids processor family. An older related technology

called Software Guard Extensions (SGX), introduced in 2015, allowed memory
encryption for operating system processes. However, it is now deprecated except on
Xeon.

e IBM Z mainframes feature Secure Execution (SE), which takes a slightly different, more
firmware-centric approach, owing to the architecture being virtualization-centric for so
long.

https://trustedcomputinggroup.org/resource/tcpa-main-specification-version-1-1b/
https://en.wikipedia.org/wiki/Trusted_Platform_Module
https://en.wikipedia.org/wiki/Zen_(first_generation)#Enhanced_security_and_virtualization_support
https://www.amd.com/en/developer/sev.html
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://developer.ibm.com/blogs/technical-overview-of-secure-execution-for-linux-on-ibm-z/

e Power has a Protected Execution Facility (PEF), introducing what they call an ultravisor,

that offers higher privilege than the hypervisor (for virtual machines) and the supervisor
(for the operating system), and grants access to secure memory.

e ARM is developing the Confidential Compute Architecture (CCA), which introduces the
Realm Management Extensions (RME) in the hardware, and allows firmware to separate
the resources between realms that cannot access one another.

While all these technologies share the same goal, they differ widely in architecture, design and
implementation details. Even the two major x86 vendors take very different approaches to the
same problem. Among the primary differences are the roles and weights of firmware, hardware
or adjunct security processors in the security picture. This horridly complex landscape makes it
difficult for the software vendors to present a uniform user experience across the board.

Host, guest, tenant and owner

In Confidential Computing, the host platform is no longer trusted. It belongs to a different trust
domain than the guest operating system. This forces us to introduce a new terminology. When
talking about virtualization, we usually make a distinction between host and guest, and this
implies — correctly — that the guest has no special confidentiality rights or guarantees for
anything inside the host.

By contrast, in a way reminiscent of lodging, we will talk about a tenant for a confidential virtual
machine. The tenant does have additional rights to confidentiality, similar to the restrictions
preventing a building manager from accessing a tenant’s private apartment.

We can also talk about the owner of the virtual machine, notably when we refer to components
outside of the virtual machine, but that belong to the same trust domain, such as a server
providing secrets to the virtual machine. In other words, the tenant’s trust domain may extend
beyond the virtual machine itself, and in that case, we prefer to talk about ownership. Notably,
we will see that the integrity of Confidential Computing, and the security benefits it can provide,
often relies on controlled access to external resources, collectively known as the relying party.
This includes in particular services providing support for various forms of attestation to ensure
that the execution environment is indeed trusted, as well as other services delivering secrets or
keys.

The diagram below, corresponding to a confidential containers scenario, illustrate these three
trust domains of interest using different color:

https://research.ibm.com/publications/confidential-computing-for-openpower
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture

e Inred, the trusted platform offers services that must be relied on not just to execute the
software components, but also to provide cryptographic-level guarantees.

e In blue, the host manages the physical resources, but it is not trusted with any data that
resides on it. Data sent to disk or network devices must be encrypted, for example.

e In green, the owner, which on the diagram includes a role as a tenant on the host, within
the virtual machine, as well as another role with external resources collectively forming
the relying party.

& |
Marketplace

Container <

¥ Relyingparty

Attestation service

Il Trusted platform:
Offers confidential guarantees using
hardware-level cryptographic
‘ Hypervisor (gemu) ‘ enforcement.
I Host:
Manages and offers resources used to
S

‘ Runtime (runc) ‘ ‘Runtime(shim-vZ) ‘ ;
V \ | run containers (CPU, memory, /0,

X t
‘ CRI (cri-o or containerd) [e ‘ ’7 cs| T 279,,3,,‘:

Encrypted
Kata Agent Images &
Volumes

VM (Linux)

Container

Confidential area, inaccessible to the
‘ Linux kernel host even when running on it

‘ Firmware /Hardware

Example f@8, green that [tbuskey] can tell differences. [green too

What does Confidential Computing guarantee

In the marketing literature, you will often see vague attributes such as “security” touted as
expected benefits of Confidential Computing. However, in reality, the additional security is
limited to one particular aspect, namely confidentiality of data in use. And even that limited
benefit requires some care.

The only thing that a Confidential Computing guarantees is... confidentiality, most notably the
confidentiality of data in use, including data stored in random-access memory, in the processors’
internal registers, and in the hypervisor’s data structures used to manage the virtual machine. In
other words, what the technology ensures is that data being processed by the virtual machine
will not be accessible outside of the trust domain. Most notably, the host, the hypervisor, other
processes on the same host, other virtual machines and physical devices with DMA capabilities
should all remain unable to access cleartext data. Note that some platforms like
current-generation IBM-Z may offer some level of Confidential Computing without necessarily
implementing it through physical memory encryption.

Confidentiality can be understood as protecting the data from being read from outside of the
trusted domain. However, it was quickly understood that this also requires integrity protection, to
make sure that a malicious actor cannot tamper with the trusted domain. Such tampering would
make it all too easy not just to corrupt trusted data, but possibly even to take over the execution
flow sufficiently to cause a data leak.

In practical terms, this means that a malicious system administrator on a public cloud can no
longer dump the memory of a virtual machine to try and steal passwords as they are being
processed. What they would get from such a dump would, at best, be encrypted versions of the
password. This is illustrated in this demo of confidential workloads, where a password in

memory is shown to be accessible to a host administrator if not using Confidential Computing
(at time marker 01:23), and no longer when Confidential Computing encrypts the memory (at
time marker 03:50).

Note that on many platforms, the memory encryption key resides in hardware (which may be a
dedicated security processor running its own firmware like on AMD-SEV, or a separate
hardware-protected area of memory like for ARM-CCA), and barring hardware-level exploits
finding a way to extract it, there is no practical way to decrypt encrypted memory. Most
importantly, the keys cannot be accessed through human errors, for example through social
engineering, and that matters since human error is one of the most common methods to
compromise a system.

The only failure mode of concern for Confidential Computing is a data leak. Denial of service
(DoS) is specifically out of scope, and for a good reason: the host manages physical resources,
and can legitimately deny their access at any time, and for any purpose, ranging from the
mundane (throttling for cost reasons) to the catastrophic (device failure, power outage or
datacenter flooding). Similarly, from a confidentiality point of view, a crash is an acceptable
result, as long as that crash cannot be exploited to leak confidential data.

Note: This uproots the usual security model for the guest operating system. In a traditional model, the execution
environment is globally trusted: it makes no sense to think about the security damage that could result if program
instructions start misbehaving, if register data is altered or if memory content changes at random. However, in a
Confidential Computing scenario, some of these questions become relevant.

Intel started menting vari new potential threats, and it’s fair to say that there was some sharp criticism from
the kernel community, even after significant rework. One of the most obvious attack vectors is the hypervisor. A

malicious hypervisor can relatively easily inject random data or otherwise disturb the execution of the guest,
facilitating timing attacks or lying about the state and capabilities of the supporting platform to suppress necessary
mitigations. Emulation of I/O devices, notably access to device registers in the PCI space, may require additional
scrutiny if bad data can lead to controlled guest crashes that would expose confidential data. This is still an active
area of research.

https://asciinema.org/a/569023
https://intel.github.io/ccc-linux-guest-hardening-docs/security-spec.html
https://lkml.org/lkml/2023/1/25/474
https://lkml.org/lkml/2023/1/25/474
https://lore.kernel.org/lkml/ebae6595-1904-a12e-d964-ec3da7217b49@amd.com/T/

Various kinds of proof

Like all security technologies, Confidential Computing relies on a chain of trust which maintains
the security of the whole system. That chain of trust starts with a root of trust, i.e. an
authoritative source that can vouch for the encryption keys being used. It is built on various
cryptographic proofs that provide some strong guarantees.

The most common forms of proof include:

e Certificates, which prove someone’s identity. If you use Secure Boot to start your
computer, Microsoft-issued certificates confirm Microsoft’s identity as the publisher of the
software being booted.

e Encryption, guaranteeing that the data is only readable by its intended recipient. When
you connect to any e-commerce site today, HTTPS encrypts the data between your
computer and the web server.

e Integrity to ensure that data has not been tampered with. When you use the Git source
code management, the “hash” that identifies each commit also guarantees its integrity,
something that developers with a disk going bad sometimes discover the hard way.
Integrity is often proven by means of cryptographic measurements, such as a
cryptographic hash computed based on the contents of an area of memory.

Conclusion

As any emerging technology, Confidential Computing introduced a large number of concepts,

and in doing so, is creating its own acronym-filled jargon. In the next section, we will focus on

one particular concept, namely attestation.

Part 2 - Attestation in Confidential Computing

This article is the second in a 6-part series, where we present various usage models for
Confidential Computing, a set of technologies designed to protect data in use, for example using
memory encryption, and the requirements to get the expected security and trust benefits from
the technology.

In the whole series, we will focus on four primary use cases: confidential virtual machines,
confidential workloads, confidential containers and finally confidential clusters. In all use cases,
we will see that establishing a solid chain of trust uses similar, if subtly different, attestation

https://support.microsoft.com/en-us/windows/enable-tpm-2-0-on-your-pc-1fd5a332-360d-4f46-a1e7-ae6b0c90645c
https://github.com/confidential-containers/documentation/wiki/Glossary
https://github.com/confidential-containers/documentation/wiki/Acronyms

methods, which make it possible for a confidential platform to attest to some of its properties.
We will discuss various implementations of this idea, as well as alternatives that were
considered.

In this second article, we will focus on attestation, as a method to prove specific properties of
the system and components being used.

The need for attestation

In a Confidential Computing environment, another form of proof called attestation becomes
increasingly important. Generally speaking, attestation is designed to prove a property of a
system to a third party.

In the case of Confidential Computing, it generally means a proof that the execution
environment can be trusted before starting to execute code or before delivering any secret
information.

At the highest level, one very general definition of attestation is described by the Internet
Engineering Task Force (IETF) Remote Attestation Procedures (RATS) architecture using the

diagram below:

https://www.ietf.org/archive/id/draft-ietf-rats-architecture-22.html

RATS architecture

Reference Value - .
[Endorser l Provider Verifier Owner Relying Party Owner
Appraisal
Appraisal Policy for
Reference Policy Attestation
Endorsements Values for Evidence Results
Evid | | Attestation
vidence T Results
g > Verifier | —— .
. : Y_ v
‘ Attester ‘ Relying Party

We will use the terminology from this diagram. The benefit of this model for the attestation
process is that it clearly delineates the responsibilities of each component.

Remote attestation

Remote attestation decouples the generation of evidence from its verification, allowing for
example an attestation server (AS) to dynamically respond to situations such as the discovery of
new vulnerabilities and start rejecting a previously accepted configuration. A physical chip like a
TPM can only do very limited policy enforcement. Using a remote server allows for a much
richer policy verification, as well as near real-time updates for new vulnerabilities.

You may have heard about remote attestation outside of Confidential Computing through
projects such as Keylime, which provides remote boot attestation for TPM-based systems. An
important difference is that in its current typical usage model, Keylime focuses on proving
compliance after the fact (non-blocking attestation), whereas in the case of Confidential
Computing, attestation will typically have to pass before anything confidential is entrusted to the
platform.

https://keylime.dev/

Two distinct attestation models can be used, known as the passport model and the background
check model.

e The passport model is where the attester pre-validates an identification token with the
verifier, that it can then present to the relying party. The real-life equivalent is presenting
your passport.

e The background check model is where the relying party will ask for a verification when
the attester presents its evidence. A real-life equivalent would be the verification of
biometric measurements.

“Passport” model: “Background check” model:

Compare evidence
Verifier against policy Verifier
(reference values)

I Attestation

Evidence I
| Result

Attestation Evidence

! Result |
tester MERAY Fcling ——_____ he reling
ester Party Party
Compare attestation Compare attestation
result against policy result against policy

The cryptographic verification provided by Confidential Computing technologies generally lends
itself more to a background check model than to a passport model. This is generally more
useful, notably because it makes it possible to revoke access at any time. Unless stated
otherwise, we will generally mean a background check when we talk about remote attestation in
this post.

Components for remote attestation

Typically, remote attestation in Confidential Computing will involve a variety of recurring
components:

e An attestation server (AS) that will submit the virtual machine to a cryptographic
challenge to validate the measurement presented as evidence. It will act as a verifier on
behalf of the relying party.

e An attestation client (AC) that lets the attester send evidence to an attestation server.

A key broker service (KBS) will store secrets such as disk encryption keys, and release
them only when verification is successful. This KBS can be part of a larger key
management system (KMS).

A key broker client (KBC) will receive the keys from the KBS on behalf of the attester.

Note that the key brokering part is, conceptually, distinct from attestation itself, as evidenced by

products that focus primarily on attestation like Keylime, without necessarily providing key

brokering services. However, in the case of Confidential Computing, the attestation service is

typically not intended for humans to check compliance of their inventory, but becomes an

integral part of the confidentiality guarantee, typically through the delivery of secrets.

Attestation flow

The diagram below shows an example of attestation flow for Confidential Computing:

A request is sent to the attestation server by the attester.

The server responds with a challenge, which typically includes a nonce to avoid replay
attacks.

The attester submits its evidence, which combines elements of the challenge with
attester-provided data, in such a way that the result cannot be reproduced by a third
party, nor be of use by anyone but the originator of the challenge, to block
man-in-the-middle attacks.

The attestation server includes a verifier that applies various policies. This could include
constraints about what kind of evidence is accepted, expiration dates or revocation lists.
If attestation is successful, the key broker service is instructed to release the keys for
that specific attester.

The keys are packaged in a response that the KBC in the attester can consume.

Verifier
(Attestation Service)

Policy Engine

Verification Drivers

5. Attestation Results 4. Relay Evidence

1. Request

2. Challenge
Relying Party . > Attester
(KBS) (Attestation-agent)
3. Evidence
7. Response
>
___&__ 6. Get KeyT g
KMS

Recipients of the proof

There is another useful way to categorize various forms of attestation, based on who is the
intended recipient of the proof:

e User-facing: an individual using the system wants proof that the system is trustworthy.

e Workload-facing: a workload running on the system wants to ensure that it runs on a
trusted execution environment (TEE).

e Peer-facing: a workload wants to ensure that a peer workload is itself trustworthy and
running on a trustworthy platform.

e System-facing: system software (including firmware, bootloader or operating system)
wants to guarantee its own integrity and the integrity of its execution environment.

e Cluster-facing: nodes in a cluster want to ensure that the integrity of the whole cluster is
not compromised, notably to preclude non-confidential nodes from joining.

Not all of these categories of attestation are useful in all use cases, and this list is by no means
exhaustive. One could attest software, hardware, configurations, and more.

Securely Recording the Measurements: The need for hashing

The physical Root of Trust doesn’t usually contain enough storage for all the measurements.
This is certainly true for today’s TPMs. So we have to resort to a hashing trick: the device
usually only stores cryptographic hashes that can be used to verify the actual record in ordinary
memory.

Each measurement is an ordered set of log entries consisting of a hash (the machine
measurement) and a human readable description. In the case of TPMs, the log hashes are
recorded in a Platform Configuration Reqgister (PCR) whose value begins at zero and is

“‘extended” by each measurement. Extended means that the new value is the hash of the old
value and the new measurement.

Since hash functions are not reversible, it is impossible’ to construct a different sequence of
measurement extensions that will result in the same PCR value at the top. This property means
that the single PCR hash value can be used to verify the entire sequence of measurements is
correct and has not been tampered with. Given a correct log, anyone can verify the PCR value
by replaying all the recorded measurements through the hash extension function and verifying
they come up with the same value. Note that this means the log must be replayed in exactly the
same order.

In order to attest to the entire log, the root of trust usually signs the single PCR hash value.
Since the only thing that can be done to a PCR is extend it, there’s no real need for security
around who can do the extension: the object for most attackers is to penetrate the system
undetected and a bogus extension would lead to a log verification failure and immediate
detection. This can actually be used as a feature, where a later stage can extend an earlier
measurement, deliberately altering it, for example to grant access to different secrets as
execution progresses.

When verifying the state of the system, it is tempting to see the single PCR value as the correct
indicator of state (which it is). However, all system components (and configurations) change
quite often over time which can cause a combinatorial explosion in the number of possible PCR

' While finding a hash collision is theoretically possible, it would take longer than the lifetime of the
universe to achieve. Once a hash function becomes vulnerable to a collision in less time than this (e.g.
md>5, sha1) it is discarded as insecure and a new hash function is invented (e.g. sha2, sha3).

https://wiki.archlinux.org/title/Trusted_Platform_Module#Accessing_PCR_registers

values representing acceptable system state, so sensible verifier solutions usually insist on
consuming the log so they can see the state of each individual component rather than relying on
the single PCR value to represent it. In other words, the PCR only attests the validity of a
configuration, but may not be the best way to access it.

|ldentity and privacy concerns

In order to sign the measurements, each TPM has to be provisioned with a unique private key,
which must be trusted by the party relying on the signature. Unfortunately, this unique key also
serves to uniquely identify the system being measured and has led to accusations of the TPM

and Trusted Computing generally being more about social control than security.

To allay these fears, the Trusted Computing Group (guardians of the TPM specification) went to

considerable lengths to build privacy safeguards into the TPM attestation mechanisms.
Nowadays, of course, most attestations are done by people who know where the system being
measured is and what it's supposed to be running. Under these circumstances, all of the privacy
protections now serve only to complicate the attestation mechanism. If you’ve ever wondered
why it’s so complicated to get the TPM to give you a quote, this is the reason. However, while

it's a practical concern if you actually write libraries talking to a TPM, we will not concern
ourselves with identity and privacy in this blog article.

Conclusion

In this second article, we covered the basic ideas about attestation, and how it can be useful for
Confidential Computing in general. In the next article, we will enumerate the most important use
cases for Confidential Computing, and see how they differ in their use of the same underlying
technology, as well as how this impacts the implementation of attestation.

Part 3 - Confidential Computing Use Cases

This article is the third in a 6-part series, where we present various usage models for
Confidential Computing, a set of technologies designed to protect data in use, for example using
memory encryption, and the requirements to get the expected security and trust benefits from
the technology.

In the whole series, we will focus on four primary use cases: confidential virfual machines,
confidential workloads, confidential containers and finally confidential clusters. In all use cases,

https://www.gnu.org/philosophy/can-you-trust.en.html
https://trustedcomputinggroup.org/
https://tpm2-tools.readthedocs.io/en/latest/man/tpm2_quote.1/

we will see that establishing a solid chain of trust uses similar, if subtly different, attestation
methods, which make it possible for a confidential platform to attest to some of its properties.
We will discuss various implementations of this idea, as well as alternatives that were
considered.

In this third article, we consider the four most important use cases for Confidential Computing:
confidential virtual machines, confidential workloads, confidential containers and confidential
clusters. This will allow us to better understand the trade-offs between the various approaches,
and how this impacts the implementation of attestation.

Usage models of Confidential Computing

In the existing implementations (with the notable exception of Intel SGX), Confidential
Computing is fundamentally tied to virtualization. A trust domain corresponds to a virtual
machine, each domain having its own encryption keys and being isolated from all other
domains, including the host the virtual machine is running on.

There are several usage models to consume these basic building bricks:

e A confidential virtual machine (CVM) is a virtual machine running with the additional
protections provided by Confidential Computing technologies, and obeying security
requirements to ensure that these protections are useful. Running SEV-SNP instances

on Azure is an example of this use case.

e A confidential workload (CW) is a very lightweight virtual machine using virtualization
only to provide some level of isolation, but otherwise using host resources mostly in the
same way as a process or container would. This use case is exemplified by libkrun, and
can now be used with podman using the “krun” runtime.

e Confidential containers (CCn) will use lightweight virtual machines as Kubernetes pods
to run containers. The primary representative in that category is the Confidential
Containers project, derived from Kata Containers, which recently joined the Cloud Native
Computing Foundation (CNCF).

e A confidential cluster (CCl) is a cluster of confidential virtual machines, which are

considered as being part of a single trust domain. The Constellation project is one of the

early offerings in that space, and provides a consistent analysis of the security

implications in that problem space.

There may be more than the ones we list here, but at the time of writing, these four use cases
are the current development focus of the free software community.

https://techcommunity.microsoft.com/t5/azure-confidential-computing/azure-confidential-vms-using-sev-snp-dcasv5-ecasv5-are-now/ba-p/3573747
https://techcommunity.microsoft.com/t5/azure-confidential-computing/azure-confidential-vms-using-sev-snp-dcasv5-ecasv5-are-now/ba-p/3573747
https://github.com/containers/libkrun
https://copr.fedorainfracloud.org/coprs/slp/crun-krun/
https://github.com/confidential-containers/
https://github.com/confidential-containers/
https://github.com/kata-containers/kata-containers
https://www.cncf.io/
https://www.cncf.io/
https://github.com/edgelesssys/constellation
https://docs.edgeless.systems/constellation/architecture/attestation

Confidential Virtual Machines

The most direct application of the Confidential Computing technology is confidential virtual
machines. This use case takes advantage of the technology without wrapping it into additional
logic or semantics.

However, as we pointed out, in order to get the full benefits of the additional confidentiality, we
must secure the rest of the system, so that the data that we protect through memory encryption
cannot be recovered from a non-encrypted disk image, for example. Consequently, a CVM must
use encrypted disks and networking. It also needs to use a secure boot path, in order to
guarantee that the system software running in the virtual machine is the correct one, and that it
was not tampered with.

This model is useful to run standard applications (as opposed to containerized ones),
independent operating systems, or when the owner of the virtual machine can define ahead of
time a complete execution environment. In such scenarios, the owner needs to build and
encrypt individual disk images for the virtual machines that will generally contain anything that is
necessary to run the application. Notably, various application secrets may reside on the disk
image itself.

As a result, in that configuration, the primary security concern is to prevent the confidential
software from running in a possibly compromised environment. We want to preclude the host
from tampering with boot options, or from starting the virtual machine with a random, and
possibly malicious, firmware or kernel, which could possibly be used to leak data.

In the cloud, one way to achieve this objective is to tie the encryption keys for the disk to a
specific system software configuration. This can be done by sealing the required encryption
keys in a virtual Trusted Platform Module (vTPM), so that they can only be used with a virtual

machine associated with that specific TPM, and only when the TPM-measured boot
configuration matches the desired policy. Note that for this to be robust, the vTPM itself needs to
be protected by the underlying Confidential Computing technology, the attestation of the vTPM
being linked to the attestation of the Confidential Computing system.

In this post, we will illustrate this approach by explaining how Red Hat Enterprise Linux 9.2 can
take advantage of Azure SEV-SNP instances, using an Azure-provided virtual TPM. In that
scenario, Microsoft provides system-facing attestation, validating the initial system
measurements through the Microsoft Azure Attestation service. This unlocks keys used to
decrypt the vTPM state.

https://en.wikipedia.org/wiki/Trusted_Platform_Module
https://azure.microsoft.com/en-us/products/azure-attestation/
https://learn.microsoft.com/en-us/azure/attestation/overview
https://learn.microsoft.com/en-us/azure/attestation/overview

On premise, or if you control the hardware directly, you may want to deploy your own attestation
services. As we will see below, the way to do that largely depends on the target platform.

Confidential Workloads

Confidential workloads is an innovative way to run containers using a very lightweight
virtualization technique, where the guest kernel is packaged as a shared library in the host. The

open source project that introduced this lightweight virtualization model is called libkrun, and the
tool to run containers from standard container images is called krunvm.

This model is useful to quickly run and deploy small container-based applications, typically with
a single container. The driving factor for confidential workloads is quick startup time and
reduced resource usage for higher density. The current implementation also features a good
integration with podman (which the Kata Containers dropped, and therefore Confidential
Containers lack). The ecosystem includes tooling to create workload images from OCI container
images, and a simple attestation server. This is well described in a nice blog post containing an
illustrative demonstration.

The primary concern in this scenario is to ensure that the workload is running in a TEE with a
valid system software stack, and that only the workload is running there. This concern is
expressed as follows by the above blog:

When intending to run a confidential workload on another system (e.g. on a machine
from a cloud provider), it is reasonable for a client to inquire “How do | know this
workload is actually running on a TEE, and how do | know that my workload (and ONLY
my workload) are what is running inside this TEE?”. For sensitive workloads, a client
would like to ensure that there is no nefarious code/data being run, as this code/data can
be violating the integrity of the TEE.

In this scenario, the entire workload, including both the kernel and user space, is therefore
registered for attestation, as well as a valid configuration to run it. A successful attestation will
deliver the disk encryption key, unlocking the disk that the workload needs. In that respect,
confidential workloads, while working a bit like containers, are actually closer to confidential
virtual machines. A consequence of this is that you need to build each individual workload and
register it with the attestation server.

Confidential Containers

https://github.com/containers/libkrun
https://github.com/containers/krunvm
https://virtee.io/attestable-confidential-workloads-libkrun/
https://asciinema.org/a/569023
https://asciinema.org/a/569023

Confidential Containers is a sandbox project in the Cloud Native Computing Foundation

(CNCF). It derives from Kata Containers, a project using virtualization to run containers, using a
virtual machine for each pod (a pod is a Kubernetes unit that can contain one or more related
containers). The two projects share most of the developer community, and the “confidential”
aspect is merged back into Kata Containers on a regular basis. So Confidential Containers is a
kind of “advanced development branch” of Kata Containers, more than a fork.

As a result, the Confidential Containers project inherits a solid foundation for a project that is still
so early in its development, including a vibrant community, a number of industrial potential
users, know-how and resources on best practices, continuous integration (Cl), and the
collaboration of heavyweights such as Alibaba, Ant Group, IBM, Intel, Microsoft, Red Hat and
many others. However, the project is still in its infancy, with version 0.5 to be released in April

2023 and a release schedule of about 6 weeks.

One of the primary concerns for this project is to make Confidential Computing easy to consume
at scale. This implies being able to ignore, to the largest possible extent, details of the hosts
being used to provide the resources, including their CPU architecture, and integrating well with
existing orchestration tools such as OpenShift or Kubernetes. The project is currently
developing and testing with AMD SEV, SEV-ES and SEV-SNP, Intel SGX and TDX, and IBM
s390x SE. The installation of all the required artifacts for this project is also made relatively
simple thanks to a kubernetes operator that deploys the necessary software on a cluster, and

makes them easy to consume using the widely used Kubernetes concept of runtime class.

Note that Kata Containers lost the compatibility with podman in version 2.0, which makes it less convenient to use
from the command-line than confidential workloads.

The attestation procedure is similarly flexible, with a generic architecture that can deal with local

and remote attestation, including pre-attestation as required for early versions of AMD SEV, or
firmware-based attestation as is required for the IBM s390x SE platform. There is even support
for disk-based “attestation” to make it possible to develop and test on platforms that do not
support Confidential Computing.

At least in the current implementation, the attestation process only covers the execution
environment, but not the workload being downloaded. This could change over time, as the
project is discussing the structure of the reference provider service, appraisal policies or

container metadata validation. But the current approach means that there is a bit more flexibility
in the deployment of workloads, since you do not necessarily have to register each individual
workload, but only each individual class of execution environment.

https://www.cncf.io/sandbox-projects/
https://www.cncf.io/
https://katacontainers.io/
https://github.com/confidential-containers/documentation/blob/main/releases/v0.5.0.md
https://github.com/confidential-containers/documentation/blob/main/releases/v0.5.0.md
https://github.com/confidential-containers/documentation/blob/main/quickstart.md
https://kubernetes.io/docs/concepts/containers/runtime-class/
https://pradiptabanerjee.medium.com/understanding-attestation-process-in-a-confidential-computing-solution-ef8f876f34eb
https://github.com/confidential-containers/documentation/issues/37
https://github.com/confidential-containers/documentation/issues/30
https://github.com/confidential-containers/documentation/issues/81
https://github.com/confidential-containers/documentation/issues/81

A distantly related project is Inclavare Containers, which is based on the Intel SGX enclave

model.

Confidential Clusters

Confidential clusters are the last use case we are going to discuss here. Edgeless Constellation

is an open-source implementation of this approach.

In that approach, entire Kubernetes clusters are built out of confidential virtual machines. This
makes it somewhat easier to deploy an infrastructure where everything, from individual
containers to the cluster’s control plane, runs inside a set of confidential virtual machines: when
all the nodes in the cluster are confidential virtual machines, all the containers running within the
cluster (on a confidential VM) are confidential as well. This makes it relatively easy to deploy
even the most complicated combinations of containers, including operators or deployments.

In addition to the per-CVM (single node) attestations that make sense for the earlier scenarios,
new concerns emerge, like making sure that a non-confidential node does not join a confidential
cluster, which would facilitate leaks of confidential data. For that reason, Constellation provides
additional attestation services, a JoinService to verify that a new node can safely join a cluster,
and a user-facing VerificationService to check if a cluster is legit.

Conclusion

The four major usage models for Confidential Computing use the same underlying technology in
different ways. This leads to important differences in how trust is established, what kind of proof
is expected, and who expects these proofs. In the next article, we will discuss the general
principles of moving from a root of trust to actual trust in a system.

Part 4- From root of trust to actual trust

This article is the fourth in a 6-part series, where we present various usage models for
Confidential Computing, a set of technologies designed to protect data in use, for example using
memory encryption, and the requirements to get the expected security and trust benefits from
the technology.

In the whole series, we will focus on four primary use cases: confidential virfual machines,
confidential workloads, confidential containers and finally confidential clusters. In all use cases,

https://github.com/inclavare-containers
https://github.com/edgelesssys/constellation
https://github.com/edgelesssys/constellation/blob/main/docs/docs/architecture/microservices.md#joinservice
https://github.com/edgelesssys/constellation/blob/main/docs/docs/architecture/microservices.md#verificationservice

we will see that establishing a solid chain of trust uses similar, if subtly different, attestation
methods, which make it possible for a confidential platform to attest to some of its properties.
We will discuss various implementations of this idea, as well as alternatives that were
considered.

In this article, we will focus on establishing a chain of trust, and introduce a very simple REMITS
pipeline that we can use to compare and contrast the various forms of attestation using a single
referential.

Simplified REMITS model

Some principles and techniques used to implement a chain of trust in Confidential Computing
are general enough that they apply to all Confidential Computing platforms. Most of them can be
traced back to the initial efforts in Trusted Computing, which we mentioned in our Brief History of
Trusted Computing in the first article in the series.

Attestation is useful to build a chain of trust incrementally, in a continuous way from a root of
trust all the way to actual trust about a system, generally expressed in the form of secrets being
delivered. We will now see the fundamental principles of this process, and propose a
super-simplified model of this chain of trust construction that will allow us to compare and
contrast different implementations more easily.

To be able to compare wildly differing implementation, we propose a very simple chain of trust
REMITS pipeline, which identifies six components:

Root of trust 2~ Endorsement » Measurement =~ Identity Trust Secrets

Certificates Signing keys Hashes Databases Policies Secrets

e Root of Trust: This is a shared, immutable piece of information such as a private key
from a chip manufacturer where the public key is known, which is used to validate the
whole chain of trust. It should be noted that this is also a single point of failure for the
whole scheme: if the private key is leaked, the trust in the entire chain is lost.

e Endorsement: An endorsement makes it possible to create per-device information that
can reliably be traced back to the root of trust. For example, a per-chip endorsement key
that is signed by the manufacturer’s key can confirm that the manufacturer gives its seal
of approval to that chip.

e Measurement: A measurement generates data that reliably identifies a particular
configuration of the attester. In the case of Confidential Computing, this will typically
include a cryptographic hash of the software stack including configuration parameters
such as command line or security options. The measurement must also be reliably
traced back to an endorsed device, and from there to the root of trust. This forms the
evidence provided by the attester in the RATS model.

e Identity: The verification process in the RATS model is intended to prove the identity of
the attester based on the evidence being submitted, and comparing it with known
reference values. In the case of remote attestation, this identity is typically represented
as some internal token in the attestation service.

e Trust: The actual trust is not built from the identity alone, but as the RATS model shows,
by also applying policies to appraise the evidence. For example, in the case of
Confidential Containers, we may want to have more lax policies during development that
will grant additional rights to developers. In other words, developers will receive a higher
level of trust than a regular deployment because of different policies.

e Secrets: The manifestation of trust is sharing various secrets that will be handed to the
attester and allow it to access confidential data. For example, the secrets typically
include disk encryption keys without which the workloads will not be able to execute.
Proceeding that way ensures that without trust, there will be no harm done.

This pipeline model is extremely simplified, but it has the benefit of being widely applicable,
which allows us to compare various implementations.

Attestation on physical hosts with a Trusted Platform Module (TPM)

The attestation of a physical host typically uses a trusted platform module. Microsoft has
extensive documentation on this process, shown below:

https://learn.microsoft.com/en-us/azure/attestation/tpm-attestation-concepts

Attestation Flow:

- During boot and early boot cryptographically, bound events are measured

into the TPM.

- The attestor then picks the platform evidence bound to the TPM and send:
it to the attestation service for validation.
- The Attestation service validates the evidence based on the attestation
--------------------------------- policy and returns an attestation report.
- The attestor passes the report to the relying party to take appropriate

- The relying party validates the contents of the report and then grants

1 1
1 1
| Protected Resource ! actions.
1 1
1 1
1 1

access to protect resource.

Azure Attestation Service

Default verification
» Evidence Integrity

Policy based Verification
= TPM Identification

* Security Features

* Boot Integrity

/'y
| Access|decision
i
! P Verify Certificate
Resource access E Re |yl ng Pa rty
E Attestation Policy .
i
| Signed Attestation Report
I
A Attestation Evidence
Attestor/Verifier
K Signed Attestation Report
I
: (O
I
1
I
i
Evidence from TPM E i
i
i
i TPM Communication
I
| Bootloaders &
E Firmware
VY
_I_P M Cryptographic Measurements

In this process, the REMITS pipeline looks like this:

Root of trust Endorsement Measurement Identity

Trusted PC Firmware and Signed

Attestation

attestation o
policies

report

Platform

Module manufacturer bootloader

Virtual TPMs to run Confidential VMs on cloud services

Generally speaking, cloud providers seem to be taking a direction where t

Protected Resource
Attestation Components
0S Components

OEM Components

0000

Optional Interaction

Required Interaction

Secrets

Azure
Attestation
Certificate

hey expose the trust

in the system using a virtual Trusted Platform Module (vTPM). There is a good reason for that,

since this is a known interface that was, among other things, made mandatory for secure boot

on Windows 11. We can illustrate this with the Microsoft Azure support for

SEV-SNP instances.

https://www.pcmag.com/news/what-is-a-tpm-and-why-do-i-need-one-for-windows-11
https://www.pcmag.com/news/what-is-a-tpm-and-why-do-i-need-one-for-windows-11

In this scenario, the REMITS pipeline actually runs twice, the first time in the new CC
environment, in a platform specific way, the second time exposing more standard interfaces to
the workload:

e In the first run, we use hardware-provided evidence against the cloud provider’s own
attestation architecture such as Microsoft Azure Attestation. If successful, this first run
unlocks the secrets necessary to build a virtual TPM e.g. from persistent storage. How
this is done precisely is part of Microsoft’'s secret sauce, and the corresponding software
is not open source as far as we know. The root of trust in that first run is in hardware, for
example an AMD root key (ARK).

Endorsement Measurement Identity Trust Secrets

Attestation

Initial VM pages Aspecific VM on policy in LUKS disk

and VM state a specific host attestation encryption key
server

Versioned chip

AMD Root Key endorsement
key (VCEK)

e A second run will then start with the vTPM as a root of trust, and the secrets become
accessible through the standard mechanisms specified for all TPMs, which were
described in the previous section. So except for the root of trust being a virtual TPM, it is
otherwise equivalent.

Root of trust Endorsement Measurement Identity Secrets

Virtual

Trusted PC Firmware and
Platform manufacturer bootloader
Module§

Signed . Azure
attestation LB Attestation

report il Certificate

The Microsoft Azure infrastructure provides guidance on how to integrate with their attestation
service, illustrated below, and they provide multiple choices of implementation based on who
you decide to trust initially (i.e. what root of trust you are willing to use as the starting point for
your chains of trust).

https://learn.microsoft.com/en-us/azure/attestation/overview
https://www.amd.com/system/files/TechDocs/57230.pdf
https://github.com/Azure/confidential-computing-cvm-guest-attestation/blob/main/cvm-guest-attestation.md
https://github.com/Azure/confidential-computing-cvm-guest-attestation/blob/main/cvm-guest-attestation.md

IN-GUEST TCB SERVICE TCB

Guest Virtual Machine Disks Azure Services

Guest Applications DATA = TEMP

CPS

. a 0s DISK isioni i
G uest operatlng System ENCRYETED) Cloud Provisioning Service

Azure Managed Firmware ﬁ CONFIG &
FIRMWARE

”””- (ENCRYPTED) Key Vault & M d HSM
UEFI ey Vaul anage:
MAA

Microsoft Azure Attestation

Host Environment

Azure Host OS & Hypervisor
AMD SEV-SNP

Platform Security Processor (PSP)

Attestation in Confidential Workloads

Confidential workloads implement remote attestation based on registration of the workload
launch measurement as well as a secret passphrase to unlock the LUKS-encrypted disk:

"my workload",

Confidential Workloads uses the same Key Broker Service protocol as Confidential Containers
(see below). As a matter of fact, the Confidential Workload project delivered the first
implementation of that protocol, called reference-kbs. The blog article documenting workload
attestation shows what the protocol looks like internally (this is essentially the same for all
variants):

https://github.com/confidential-containers/kbs/blob/main/docs/kbs_attestation_protocol.md
https://github.com/virtee/reference-kbs
https://github.com/virtee/reference-kbs
https://virtee.io/attestable-confidential-workloads-libkrun/
https://virtee.io/attestable-confidential-workloads-libkrun/

1. The KBC initiates the exchange with a request that provides protocol version number,
the type of TEE (SEV SNP in the example), and additional parameters, which are
unused for SNP.

"0.0.0", // Ignored.
"snp", // AMD SEV-SNP.
", "v, // No extra parameters.

"mancea - "
nonce " :

"vo4jefw854jh5x8f£39£8fh47hf4908fc

=
38u
"extra-params": "", // Also unused in SE

4
V-SNP.

3. The KBC responds to the challenge with a structure that includes the TEE public key,
which the attestation server can use to encrypt secrets it sends back, as well as the
attestation report and a “freshness hash” built from the nonce.

>
"RSA",
["": "base64-encoded-rsa-public-modulus",

4. The KBS will validate this response, checking the freshness hash built from the nonce,
checking that the AMD-provided keys match what can be found on AMD servers (there
are separate certificates for Naples, Rome, Milan and Genoa generations), extract the
versioned chip endorsement key (VCEK) and validate the entire certificate chain, then

compare the measurements with what was registered with the server.

The REMITS pipeline for confidential workloads therefore looks like this:

Root of trust Measurement Identity

Manufacturer Initial workload VM Signed Compare
root key (e.g. address space atfestaﬁon kmeayl;u::qctl:.il::r S::rl;l;asm ey
freshness hash

AMD ARK) (including workload) report

https://www.amd.com/en/developer/sev.html
https://www.amd.com/system/files/TechDocs/57230.pdf

Confidential Containers Attestation architecture

The remote attestation architecture for the Confidential Containers project is described
extensively in another blog article. It evolved significantly over time, with the objective to

become more and more generic and to improve performance and reliability. There is good
documentation for the attestation service as well as for the key broker service and the

underlying hardware-independent protocol.

The overall diagram for Confidential Containers can be found below:

Confidential VM

- £ Decrypt and expand

Relying Party

3
Approve

Attestation .
Kata agent Agent s Present evidence

Guest kernel

Gather measurements

Guest firmware

° Request Image Pull

° Connect to agent / Create Container

o Boot virtual machine
ﬂﬂ—»{ VMM (e.g. qemu) |

As in an earlier diagram, the components in blue are owned by the host, the components in red

are part of the confidential platform, and the components in green form the trusted domain. Data
that is on the host in encrypted form uses a blue/green shade.

The part that is relevant for attestation starts with the attestation agent, which will collect a
measurement from the hardware through a kernel / firmware interface. Like for a traditional
CVM, the root of trust and endorsement are backed by CC hardware, for example an AMD root
key and chip endorsement key. From the measurement, the attestation agent builds a quote,
presented as evidence and proof of identity to the attestation service. The attestation service will

then validate that quote according to its own policies, affirming or denying trust into that quote. If
the attestation is successful, then the attestation service will authorize a key broker service to
release secrets. The attestation agent in the virtual machine can then use it to decrypt the

container image layers (including encrypted layers).

This attestation architecture is currently being revisited so that more code can be shared across
platforms. The diagram below shows what is currently being implemented. On the left, the
attestation agent is the part that runs inside the confidential virtual machine. In this design, it

https://pradiptabanerjee.medium.com/understanding-attestation-process-in-a-confidential-computing-solution-ef8f876f34eb
https://github.com/confidential-containers/attestation-service
https://github.com/confidential-containers/kbs
https://github.com/confidential-containers/kbs/blob/main/docs/kbs_attestation_protocol.md
https://github.com/confidential-containers/attestation-agent%5C
https://github.com/confidential-containers/attestation-service
https://github.com/confidential-containers/kbs
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/image-spec/pull/775

talks to the key broker service, which will relay the evidence to the attestation service. This is
mostly to simplify the network data path. The diagram also shows important additional aspects
from a management point of view, which is the need for the owner to be able to set or update
policy definitions, and for the image building process part of the supply chain to publish
reference values as new container images are being built.

Reference Value

CoCo supply
chain
Policy definition |
Owner e
. Key Broker Service Attestation Service
Attestation Agent (KBS) (AS)

CoCo-KBC Key Manage proxy Policy Engine taal
HTTPS . KBS HTTPS SALU N | Reference Value
KBS API Client QUGN KBS API Server — Provider Service

Verifier Drivers
TDX/SNP/...

Attester Drivers Secret Data Storage
TDX/SNP/...

The earlier design allowed multiple key broker services and key broker clients to coexist.
However, the only part that is really expected to change from platform to platform are drivers
that, on the agent side, collect measurements, and on the verifier side, validate the
measurements embedded in the quote.

The REMITS pipeline for confidential containers therefore looks like this:

Root of trust Endorsement Measurement Identity Secrets

Chip Firmware, Quote Attestation e
endorsment key bootloader, containing policies from tig

(e.g. VCEK for Kernel cmdline, attestation attestation zncryfp onKBS
AMD) possibly kernel report service eys from

Manufacturer

root key (e.g.
ARK for AMD)

Confidential Clusters

Attestation for confidential clusters is well documented for Edgeless Constellation. They
illustrate the chain of trust as follows:

https://github.com/confidential-containers/kbs/blob/main/docs/kbs_attestation_protocol.md
https://docs.edgeless.systems/constellation/architecture/attestation

signs:
Edgeless \
\

signs (cosign)
Runtime measurements —verify—9 Constellation cluster

__» CLI —contains— Public key —verifies"

verifies (cosign)

User

In the Edgeless Constellation case, runtime measurements combine infrastructure
measurements, like those provided by the confidential virtual machines, and measurements
produced by the bootloader and boot chain.

For this particular chain of trust, the REMITS pipeline looks like this:

Root of trust Measurement Identity Secrets
Cluster API
secrets (disk

Edgeless CLI Cosign Runtime msmts Node in cluster Join Service encryption key,
Kubernetes join

token)

The Constellation design also includes a service to provide secrets, notably storage encryption
keys. They can also use an external key management system (KMS).

However, confidential clusters are one of the scenarios where multiple chains of trust need to be
considered, with different personas consuming the resulting trust assessment. Notably, they
need to distinguish between cluster-facing attestation (to guarantee that a non-confidential node
will not join a cluster, allowing user data to leak through that non-confidential node), and
user-facing attestation (to verify the identity and integrity of a cluster before deploying workloads
on it).

User-facing verification lets the user verify a cluster, although the result could also be consumed

by a tool. The user collects the signed measurements from the configured image (Edgeless
offers a public registry for measurements), and can verify the measurements using Edgeless’

public key. This can be done either during configuration of the cluster, or at any later time.

constellation config fetch-measurements

constellation verify [--cluster-id ...]

In that scenario, the result of attestation is in clear, user-visible format, and the user is
responsible for analyzing the data and taking action. This is why there is no secret:

https://docs.edgeless.systems/constellation/architecture/attestation#runtime-measurements
https://docs.edgeless.systems/constellation/architecture/attestation#runtime-measurements
https://docs.edgeless.systems/constellation/architecture/microservices#keyservice
https://docs.edgeless.systems/constellation/architecture/attestation#cluster-facing-attestation
https://docs.edgeless.systems/constellation/architecture/attestation#user-facing-attestation
https://docs.edgeless.systems/constellation/workflows/verify-cluster

Root of trust Measurement Identity

Verification
Service + User analyzing

Edgeless CLI Cosign Runtime msmts Measurement the data

Registry

Conclusion

We proposed a simple REMITS pipeline, which allows us to have a common way to present the
variations in attestation model between the various use cases. Another big source of variation,
however, is the differences between hardware platforms. This will be the topic of the next article
in this series.

Part 5 - Confidential Computing Platform-Specific Details

This article is the fifth in a 6-part series, where we present various usage models for Confidential
Computing, a set of technologies designed to protect data in use, for example using memory
encryption, and the requirements to get the expected security and trust benefits from the
technology.

In the whole series, we will focus on four primary use cases: confidential virfual machines,
confidential workloads, confidential containers and finally confidential clusters. In all use cases,
we will see that establishing a solid chain of trust uses similar, if subtly different, attestation
methods, which make it possible for a confidential platform to attest to some of its properties.
We will discuss various implementations of this idea, as well as alternatives that were
considered.

In this article, we will explore the many available Confidential Computing platforms, and discuss
how they differ in their implementation details, and specifically in how to perform attestation. The
platforms of interest are:

e AMD Secure Encrypted Virtualization (SEV) in its three generations (SEV, SEV-ES and
SEV-SNP)

e Intel Trust Domain Extensions (TDX)

e |BM Z Secure Execution (SE)

e OpenPOWER Protected Execution Facility (PEF)
e ARM Confidential Compute Architecture (CCA)

At the moment, gemu officially supports AMD, Power and IBM Z, and Intel maintains branches
for TDX. Confidential Containers has some support for SEV and SEV-ES (SEV-SNP being

under development), IBM Z on SE, and Intel TDX. Cloud providers are in the process of
deploying SEV-SNP support.

AMD Secure Encrypted Virtualization (SEV)

AMD provides Confidential Computing through a technology called secure encrypted
virtualization (SEV). This technology builds on top of virtualization. It relies on a separate
security processor running an independent firmware from the primary x86 cores.

AMD Secure
Processor

X86 CPU Memory
Controller

Initial iterations of the AMD SEV technology only allowed pre-attestation (see chapter 6 in SEV
encrypted virtualization API), in which a measurement of the memory content is done before a

virtual machine is even started, the attestation process delivering a launch secret. In a first
phase, the hypervisor loads the initial boot state in memory, then asks the firmware to encrypt
and measure it. The measurement is sent to the attestation service, which responds with a
launch secret. Only then will the hypervisor start running the guest. The guest can then use that
launch secret in a guest-specific way, for example to access an encrypted root disk.

This only allowed a crude form of system-facing attestation, where the attestation process itself
was not under control of the guest, but was executed by the host. Additionally, several serious

vulnerabilities were found in this scheme (undeSErVed trust, Insecure until Proven Updated).

https://www.qemu.org/docs/master/system/confidential-guest-support.html
https://github.com/intel/qemu-tdx
https://github.com/intel/qemu-tdx
https://github.com/confidential-containers/documentation/blob/main/releases/v0.5.0.md
https://www.amd.com/en/developer/sev.html
https://www.amd.com/en/developer/sev.html
https://www.amd.com/system/files/TechDocs/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/system/files/TechDocs/55766_SEV-KM_API_Specification.pdf
https://uzl-its.github.io/undeserved-trust/
https://berlin-crypto.github.io/assets/Berlin%20Crypto%20InsecureUntilProvenUpdated.pdf

AMD SEV-Encrypted State (SEV-ES)

While the original SEV only encrypts the contents of guest memory, SEV-ES also encrypts the
contents of the guest CPU registers, thus stopping leakage of in-flight values and more
importantly stopping a malicious hypervisor manipulating the registers to read out encrypted
data. It does not however significantly change the attestation model relative to the earlier
generation.

AMD SEV-Secure Nested Pages (SEV-SNP)

The third generation of SEV, SEV-SNP, introduced in 2021 EPYC CPUs, added defenses
against a malicious hosts manipulation of page mapping, but also made two changes that
impact attestation:

1. SNP provides a mechanism to obtain the attestation quote inside the guest, once the

guest is running, whereas earlier forms of SEV had to perform the attestation from the
hypervisor. This makes it much easier for the guest to pass a quote to the attestation
server. Of course, the request is encrypted before being sent to the firmware, so that the
hypervisor has no access to it.

Guest

/dev/sev-guest
SNP_GET_REPORT

Hypervisor

SNP_GUEST_REQUEST

|

SEV-SNP
Firmware

man -k

https://www.amd.com/content/dam/amd/en/documents/developer/lss-snp-attestation.pdf

2. SNP includes an extra set of privilege level separation in the guest, VMPL, that allows
the secure implementation of a virtual TPM, protected by the same SEV machinery
protecting the rest of the guest. A new piece of firmware, the Secure Virtual Machine
Service Module (SVSM) runs at the most privileged VMPL level and is planned to
incorporate the vTPM implementation. Such support firmware and software will be
discussed in more detail in the next article in the series.

The attestation mechanism in the case of SEV-SNP is described by AMD using the following
schema:

© Measurements sent

AMD to guest owner
1 Guest Expected
- T 4’
Security Attestation Report Owner Measurements
Processor Attestation
Policy
Measurements Measurements o Measurements
collected
AMD
. SEV-SNP .
Firmware Guest [€Secretsand Trust © Guest owner decides
and ucode e Guest owner trusts to trust guest or not
guest with secrets
Launches guest € ﬁ
Hypervisor

Intel Software Guard Extensions (SGX)

Intel SGX provided process-level isolation, allowing the creation of secure enclaves. This makes
it unique among the trusted execution environments being discussed here. There is some
support for this technology in the Confidential Containers project, under the name enclave-cc.
This approach supports both local and remote attestation, as illustrated below:

https://www.amd.com/content/dam/amd/en/documents/developer/lss-snp-attestation.pdf
https://github.com/confidential-containers/enclave-cc

-— payload image
- 5. pull App image
1. install enclave-cc runtime encrypted app image oy

pod sandbox

agent enclave container app enclave container

E i boot container :

,’% 2. run workload instance bundle
POD 7. decrypt image and

definition convert image to FUSE

4. pull App image request by ttr, enewpiedocibrpdic

l * 3. create and start agent
> enclave container
9. create and exed App FUSE
—

enclave container] encrypted
file system

6. complete RA, verffy signaturi
retrieve quired respurces and a P boot init

image decryption kpy mount rootfs

10. send info after LA:
environment, entrypoint
fuse key, upper/lower dir

8. sync OCI config

I

Because it is process-based, that technology requires some additional user-space trickery to be
able to run (or emulate) multi-process workloads, i.e. the ability to fork new processes. This is
marked as LibOS on the diagram above. On the other hand, it draws the boundary of the trusted
computing base much closer to the container we want to run, since there is no independent
kernel. This reduces the attack surface and resource requirements significantly.

The SGX technology was deprecated in 2021, except on the Xeon line of processors. However,
it plays a key role in TDX attestation, to provide a so-called quoting enclave, as discussed in the
next section.

Intel Trust Domain Extensions (TDX)

Intel Trust Domain Extensions (TDX) provide features that are roughly similar to AMD SEV. It
offers memory and state encryption and integrity to isolate trust domains (TD, confidential virtual
machines) from one another, as well as from the host operating system and hypervisor. TDX
also addresses state and interrupt integrity much like AMD SEV-SNP, as well as methods
ensuring that vulnerabilities in the TDX firmware itself can be securely fixed, and that insecure
firmware can be remotely detected.

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html

TRUSTED BY TD NOT TRUSTED BY TD

NTEL® TDX MODULE PLATFORM ADMIN

INTEL AUTHENTHICATED
CODE MODULES (ACM)

DISCRETE AND
INTEGRATED DEVICES
TD ATTESTATION SW

ALL OTHER SOFTWARI

OTHER PLATFORM
FIRMWARE

INTEL CPU HARDWARE

HOST-05/VMM

BIOS/SMM

A major design difference compared to AMD’s approach is that this is implemented using a new
processor mode called secure arbitration mode (SEAM), rather than on a separate security
processor. The memory used by SEAM mode is in a reserved protected range, defined by
dedicated registers in the processor. The main x86 processor enters this special SEAM mode
using new dedicated SEAMCALL instructions. In short, the design is based on protected
firmware rather than a dedicated security processor.

TD

The calls are intended to invoke services provided by a special firmware authenticated code
module (ACM) provided by Intel. The owners of a TDX system, for example a cloud provider,
can define which versions of this module are acceptable. The integrity of this digitally signed
module is verified using a TPM by Intel Trusted Execution Technology (TXT).

Since there is no security processor, the TDX architecture relies on a quoting enclave, which is
an SGX enclave running code provided by Intel that takes advantage of a special instruction,

https://en.wikipedia.org/wiki/Trusted_Execution_Technology

SEAMREPORT, to generate a quote for a given trusted domain. Intel illustrates this process as
follows:

VMM TD CHALLENGER
0" TD DATA
TD QUOTING INTEL® TDX ATTESTATION
ENCLAVE MODULE VERIFICATION
ATTESTATION KEY CPU
HARDWARE

For the same reasons, providing a virtual TPM on a TDX platform will presumably use an
enclave or a trusted domain. A design for such a virtual TPM based on a trusted domain storing
the data for the various virtual TPMs has been presented by Intel:

@ Write

CMD
User vTPM
TD Read CRB
—— RSP YeN
TDX-Module
VMCALL(2), |(9) Notify Copy RSP VMCALL(7)| | (4) Notify
VMM > /)
(3) Copy CMD

Like for AMD-SEV, having a virtual TPM simplifies the deployment of existing workloads, in
other words deployments that have not been enlightened specifically for TDX.

IBM Z Secure Execution (SE)

The IBM Secure Execution capabilities is available for the IBM z15 and z16 mainframes. ltis a

somewhat different design compared to what exists on x86, introducing a new level of system
management in the firmware called the ultravisor that sits below the hypervisor.

https://uploads-ssl.webflow.com/63c54a346e01f30e726f97cf/6418f08b8a2d357e9a05c834_OC3%20-%202023%20Virtual%20TPM%20based%20attestation%20for%20Intel%20TDX%20v2.pdf
https://www.ibm.com/downloads/cas/O158MBWG
https://www.ibm.com/docs/en/linuxonibm/pdf/l130se03.pdf
https://www.ibm.com/docs/en/linuxonibm/pdf/l130se03.pdf
https://video.ibm.com/recorded/129510656
https://video.ibm.com/recorded/129510656

~
IBM z15 or LinuxONE IIT

e
- N)
S

p
Hypervisor

SE -

L | Al)

Protected guest states

CPU with CPACF

A
YVY

Physical memory

Hardware encryption of memory and remote attestation were introduced with the z16. On the
215, the ultravisor will block access from the host, but physical memory will not be encrypted.
This design entrusts the firmware with control and execution of the workloads, which are
encrypted and stored with a special SE header. This makes it possible to restrict execution to a
particular host or set of trusted hosts.

The attestation approach is also different. IBM’s point of view is that “IBM Secure Execution
does not require external attestation to prove that a guest is secure. If the image contains a
unique secret, a successful login implicitly attests an SE guest image”. However, they still added
remote attestation in order to provide more flexibility, notably to prove a larger set of properties,
allowing multiple instances of the same image with instance-specific secrets, presenting a proof
to a third party, or proving some property of the execution environment.

Power Protected Execution Facility (PEF)

The Pr Ex ion Facility (PEF) on nPOWER is reminiscent of the Secure Execution
on IBM z, in that it is based on an additional ultravisor protection level, with the difference that
this firmware layer is open source. This platform uses the terminology secure virtual machines
(SVM) rather than “confidential”. In order to run properly on the ultravisor, the hypervisor needs
to be paravirtualized, i.e. use ultravisor services for some operations using a new ESM
instruction.

https://www.redbooks.ibm.com/redbooks/pdfs/sg248951.pdf
https://www.youtube.com/watch?v=34JpctH9h4o
https://www.youtube.com/watch?v=pKh_mPPo9X4
https://github.com/open-power/ultravisor
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/Protected-Execution-Facility-Guerney-D.-H.-Hunt-IBM-Research.pdf

Storage
Secure VMs Normal VMs

Public Key Secure VM w. |
preparation h:’ | i
i o L
Hypervisor Untrusted
Protected Execution Ultravisor Trusted
Secure and
- trusted boot l ' ' l ' l
U -— Protected pr—
U ‘ b/ - Execution et Secure Memory
Private Facility
— —
-_— w =] ey |=
Non-Volatile Trusted - -
Platform —-— —_—

memory

Module Normal Memory

The boot process starts the VM normally, and then performs an ultravisor call to copy the VM
address space into secure memory, then searches for a valid authorization key for a specific
machine. So a bit like on IBM z, the base attestation model is to prove that you are running on
one of the allowed machines. However, the SVM itself can perform a remote attestation, notably
in order to implement revocation. IBM presentations highlight that the user, the owner or the
host of an SVN all may be given the possibility to revoke an SVM.

Symmetric key wrapped for machine A
Symmetric key wrapped for machine B

Symmetric key wrapped for machine C

>ESM Blob
Verification Information

-Integrity information:
Kernel
initramfs
RTAS
-Symmetric key blobs
-Passphrase for encrypted
filesystem

J

ARM Confidential Compute Architecture (CCA)

For the ARM platform, the confidential computing technology is creatively called confidential
compute architecture (CCA). Like on Power, it is based on the introduction of a new exception

level, EL3, sitting below the hypervisor, which enables a monitor mode. This architecture builds
on ARM v8 TrustZone, which was used to split between a “Secure world” (to run trusted
applications and operating systems) and a “Normal” world (for standard applications and
operating systems). CCA introduces a new concept of realm, which is a partitioning of the
address space in order to isolate realms from one another, controlled by a new data structure
called the granule protection table (GPT), and managed by a new firmware component called
the realm management monitor (RMM). The initial root of trust in the system is called the

runtime security subsystem (RSS).

https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://developer.arm.com/documentation/den0125/0100/Arm-CCA-Software-Architecture
https://tf-m-user-guide.trustedfirmware.org/platform/arm/rss/readme.html

Realm Normal

Confidential compute Hypervisor-based security, owns
for 3rd parties resources and scheduling
|

OS Kernel

v

Monitor

Attestation on CCA is managed primarily by new firmware that takes advantage of the new

facilities, and can build the required attestation reports.

Realm World Normal World Secure World

! I
ELO 1 e
Realm : Realm ||
e =N\ —o ™ — -
EL1 l '

———L___

Hosting
Environment

Realm I
EL2 W ELET-LT)1 —in Event Log
Security Domain e !
I
______ S
Measured boot diita RSS
sent to RSS {
EL3 BL1 and BL2 bootloaaders Measured

boot

Firmware

RSS Runtime

Attestation

Hardware

This architecture is still under development.

Conclusion

The available architectures take somewhat different approaches to the same problem, with

different emphasis being placed on hardware, software and firmware responsibilities. All the

solutions provide roughly the same confidentiality guarantees, with most often an ability to
encrypt memory, measure it using cryptographic algorithms for attestation purpose, and offer
some provable integrity guarantees about the initial state of a confidential virtual machine,

https://www.trustedfirmware.org/docs/Attestation_and_Measured_Boot.pdf

including the fact that it's running in a trusted execution environment. In the next article, we will
go a little more in depth to understand some of the interesting support technologies where
active open-source development is happening.

Part 6 - Support technologies related to Confidential Computing

This article is the last in a 6-part series, where we present various usage models for Confidential
Computing, a set of technologies designed to protect data in use, for example using memory
encryption, and the requirements to get the expected security and trust benefits from the
technology.

In the whole series, we will focus on four primary use cases: confidential virtual machines,
confidential workloads, confidential containers and finally confidential clusters. In all use cases,
we will see that establishing a solid chain of trust uses similar, if subtly different, attestation
methods, which make it possible for a confidential platform to attest to some of its properties.
We will discuss various implementations of this idea, as well as alternatives that were
considered.

In this article, we will explore interesting support technologies that are under active development
in the confidential computing community, and may spark your interest.

Kernel, hypervisor and firmware support

Confidential Computing requires support from the host and guest kernel, as well as from
hypervisor and firmware. The state of that support is quite uneven between platforms at the time
of this writing. Hardware vendors tend to develop and submit relatively large patch series, which
can take a number of iterations to get approved.

Among the active areas of development at the time of this writing are:

e Host kernel support for SEV-SNP

e Hypervisor, guest and host support for TDX (as well as a few ancillary firmware
projects).

e Platform support for ARM CCA

The impact this has on the attestation process is primarily the appearance of multiple
not-yet-stabilized interfaces to collect measurements about the guest, typically exposed as a

https://github.com/AMDESE/linux
https://github.com/intel/qemu-tdx
https://github.com/intel/tdx/tree/guest-upstream
https://github.com/intel/tdx/tree/host-upstream
https://github.com/confidential-containers/td-shim
https://github.com/confidential-containers/td-shim
https://lore.kernel.org/lkml/20230127112248.136810-1-suzuki.poulose@arm.com/T/#u

/dev entry with a variety of similar, but not identical ioctls. This is an area where standardization
has not even begun.

Platform provisioning tools

Before running confidential virtual machines, it is necessary to provision the host. This
provisioning corresponds to the “Endorse” step in the REMITS pipeline, and typically will
generate a number of host-specific keys.

The tools to do that are highly platform-specific, and at least in the case of AMD, there are
already two competing toolsets, sev-tool and sevctl. In the present state of things, there isn’t a

single set of tools that can present a relatively uniform user interface for all platforms.

Generic Key Broker and Attestation Services

In part 3 of this series, we introduced a REMITS pipeline model that allowed us to compare and
contrast various forms of attestation. In this model, the S stands for “Secrets”. The reason is that
a good way to ensure that a non-trusted execution environment does not receive sensitive data
is to tie its execution to secrets that can only be unlocked through attestation. This is a good
reason to tie key or secret brokering to attestation, although the two are conceptually (and in
most implementations) separate.

The Confidential Containers project defined a generic key broker service (KBS) which is the

primary access point for the agent running in the guest. The KBS relies on the attestation
service to verify the evidence from the TEE. This is still a very active area of development, with
the objective to make the overall design more modular, and to be able to support more
hardware platforms through platform-specific drivers (both on the attestation server side and on
the client side).

The Inclavare Containers project developed its own attestation infrastructure, called verdictd,

which also integrates with the key broker, incorporates open policy agent support, and is based

on their rats-fls project, an implementation of remote attestation procedures (RATS) framework

using transport layer security (TLS).

https://github.com/AMDESE/sev-tool
https://github.com/virtee/sevctl
https://github.com/confidential-containers/kbs
https://github.com/inclavare-containers
https://github.com/inclavare-containers/verdictd
https://www.openpolicyagent.org
https://github.com/inclavare-containers/rats-tls
https://www.ietf.org/archive/id/draft-ietf-rats-architecture-22.html
https://en.wikipedia.org/wiki/Transport_Layer_Security

RBI, KMS, security/policy/compliance tools, ISVs ...

API Clients

Key Broker OPA

EI

TEE
Attestation

Protocol

Verdictd

v

Platforms

While there are a number of products such as Keylime that are pure attestation players, they
were not deemed suitable precisely because they are not designed to act as a synchronous,
blocking attestation enforcement mechanism, delivering secrets on success. Instead, Keylime
was designed to analyze the compliance of machines in a fleet for manual or semi-automated
operator actions.

There was already some sharing of this key broker service interface between Confidential
Workloads and Confidential Containers. It is desirable, and appears at the moment possible, to
extend this service to suit the needs of confidential virtual machines and confidential clusters as
well.

Secure Virtual Machine Service Module (SVSM)

The Secure Virtual Machine Service Module (SVSM) is a new piece of firmware that runs at the

most privileged virtual machine privilege level (VMPLO) and can procure secure services that
will be used by a secure virtual machine running with reduced privilege.

https://keylime.dev/
https://static.sched.com/hosted_files/kvmforum2022/ca/SEV-SNP-Confidential-Guest-Services-with-SVSM.pdf

VMM KVM : SVSM BIOS /
(Qemu) E 0s

* Load / Measure at VMPLO:
* SVSM, SVSM BSP (VMSA)
* CPUID, Secrets, Zero
Pages

* Load / Measure at VMPL1:
* BIOS, BIOS BSP Contents

* Boot BSP using VMPLOVMSA ——— + Load VMPLO VMSA/GHCB

* RunVMPLO —————— + Accept SVSM memory
: + Create SVSM APs
¢ Locate / Prepare BIOS
* Copy CPUID, Secrets
* Clear VMPKO
¢ Create BSP VMSA

'
+ Load VMPL1 VMSA/GHCB +————— + StartBIOS (switch to VMPL1)
]

* RunVMPL1 T * Accept memory
i * Create APs
° [HEm

The primary reason to implement such privilege services is to implement emulation for older
interfaces, notably the standard TPM, or to run guests that are not aware that they are running
in a confidential virtual machine.

In order to build a virtual TPM that the guest cannot tamper with, it is necessary to protect the
vTPM code and data from a malicious guest or hypervisor. Functionally, this is roughly
equivalent to what would be monitor code in ARM CCA, hypervisor code in SE or PEF, and a
vTPM enclave or TD in TDX.

A draft SVSM specification has been published for review.

Virtual Trusted Platform Modules (VTPM)

While the original TPM was a physical device attached to a physical machine, with the advent of
virtual machines, there was a desire to provide similar facilities to the virtual machine guests.

In the Confidential Computing world, the abstraction of the vTPM provides a convenient unified
measurement mechanism across multiple Confidential Computing implementations while
allowing existing TPM tools to be reused.

Prior to Confidential Computing, a vTPM was often implemented as a separate process or
module on the hypervisor; this ensured that the vTPM state was protected from attack by the
guest. In the Confidential Computing world however, the vTPM state must be protected from
both the host and guest. In the case of SEV-SNP, this can be inside the guest firmware and
protected by the use of VMPLs. Other designs use a vIPM running in a separate confidential

https://www.amd.com/system/files/TechDocs/58019-svsm-draft-specification.pdf

VM, TD or realm depending on the technology. Part of the problem is how to connect this vTPM
securely to the confidential VM that uses it.

Another challenge with vTPM in a Confidential Computing environment is how to store the
vTPM non-volatile state securely without placing trust in the host or surrounding cloud
environment. Some implementations sidestep the problem by providing an ‘ephemeral vTPM’
with new state generated on each boot which may limit the use of some existing TPM tools.

Since both the vTPM and the underlying Confidential Computing technology can produce
attestations there needs to be a way to tie them together to prove to an attestation system that
the system attested by the vTPM is really running on confidential compute hardware. Ways to
do this include:

e Mixing a hash of the vTPMs keys (In particular the endorsement key, EK) into the
confidential compute attestation
e Hashing the confidential compute attestation into a vTPM PCR.

Note that the TPM interface tends to provide more capabilities than the simpler measurement
registers found in some confidential computing platforms. Not all features are necessarily
relevant for confidential computing.

Conclusion

The Confidential Computing ecosystem is an area of intense research and development at the
moment. Many pieces need to cooperate to achieve the objective, and no two platforms do it
exactly the same way. Even the supporting tools differ from platform to platform.

We can hope that the overview presented in this series of articles will help the readers navigate
this very complex landscape.

