RINGKASAN STATISTIKA SMA

A. DATA TUNGGAL UKURAN PEMUSATAN KUMPULAN DATA

1. MEAN (RATAAN)

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

$$\overline{x}$$
gabungan = $\frac{\overline{x_1}.f_1 \pm \overline{x_2}.f_2 \pm \dots}{f_1 \pm f_2 \pm \dots}$

2. MODUS

Modus dari data $x_1, x_2, x_3, ..., x_n$ didefinisikan sbg nilai datum yang paling sering muncul (nilai datum yang memiliki frekuensi terbesar

3. MEDIAN (NILAI TENGAH)

Syarat Data harus diurutkan dari terkecil hingga terbesar

$$Me = X_{\frac{1}{2}(n+1)}$$

 $Me = \frac{1}{2} \left(X_{\underline{n}} + X_{(\underline{n} + 1)} \right)$

a. Jika n ∈ GANJIL

UKURAN LETAK KUMPULAN DATA

- **Kuartil Data Tunggal**
 - a. Untuk Q₁:

$$\frac{1}{4}(n+1)$$

- - Untuk Q₂: Menggunakan rumus yang sama dengan Mencari Median (baik untuk data berjumlah GANJIL ataupun GENAP):
- Untuk Q3:

$$\begin{array}{c} X \\ \frac{3}{4}(n+1) \end{array}$$

 X_{max}

- a. Jika $n \in GANJIL$, gunakan : 2. Statistik Lima Serangkai
- Desil

$$Irutan / letak Desil ke- i = \frac{i}{10}(n+1)$$

Urutan / letak Desil ke- i =
$$\frac{1}{10}$$
 (n +

1. Rataan Kuartil (RK) =
$$R_k = \frac{1}{2}(Q_1 + Q_3)$$

5. **Rataan Tiga Kuartil** =
$$R_t = \frac{1}{4}(Q_1 + 2Q_2 + Q_3)$$

UKURAN PENYEBARAN KUMPULAN DATA (berlaku pula untuk Data Kelompok)

1. Jangkauan (J) atau Rentang / Range (R)

$$R = X_{max} - X_{min}$$

2. Jangkauan Antar Kuartil (JAK)

$$H = Q_3 - Q_1$$

$$Q_d = \frac{1}{2}(Q_3 - Q_1)$$

5. Pagar Dalam dan Pagar Luar

a. Pagar Dalam =
$$P_d = Q_1 - L$$

. Pagar Luar =
$$P_I = Q_3 + L$$

a. Jika
$$P_d \le x_i \le P_l$$
 maka datanya dinamakan data normal

b. Jika $x_i \cdot P_d$ atau $x_i \cdot P_l$, maka datanya data tidak normal atau disebut **pencilan**.

RAGAM

Ada 3 rumus: (no a biasa kita pakai)

a.
$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$
b.
$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i})^{2} - n(\bar{x})^{2}}{n}$$

$$S^{2} = \sum_{i=1}^{n} (x_{i})^{2} - \sum_{i=1}^{n} (x_{i})^{2}$$

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i})^{2}}{n} - \left\{ \frac{\sum_{i=1}^{n} (x_{i})^{2}}{n} \right\}^{2}$$

7. SIMPANGAN BAKU (S)

Adalah Akar kuadrat dari Ragam ! Jadi SImpangan Baku : $S = \sqrt{S^2}$

Mengubah data berkelompok menjadi distribusi frekuensi :

- a. Cari Range (R = data max data min)
- b. Hitung banyak kelas (K) dengan rumus $K = 1 + 3,3 \log N$ (N banyak data, log N dilihat di tabel)
- c. Cari Interval Kelas dengan rumus $\mathbf{I} = {}^{\mathbf{R}}/{}_{\mathbf{K}^{*}}$ (biasanya i = bilangan ganjil)
- Pilih batas bawah kelas pertama (biasanya data min)
- e. Cari frekuensi dengan menggunakan turus.

ISTILAH:

- 1. Kelas
- 2. Batas Kelas

Yaitu nilai-nilai ujung yang terdapat pada suatu kelas (ada Batas bawah, ada Batas atas)

3. Tepi Kelas

- 4. Panjang Kelas / Interval Kelas = tepi atas tepi bawah
- 5. Titik Tengah Kelas / Nilai Tengah Kelas atau Rataan Kelas.

Titik Tengah =
$$\frac{1}{2}$$
 (batas bawah + batas + batas atas)

B. DATA KELOMPOK UKURAN PEMUSATAN KUMPULAN DATA

1. MEAN (RATAAN)

Ada 3 cara:

$$\bar{x} = \frac{\sum_{i=1}^{n} f_{i}.x_{i}}{\sum_{i=1}^{n} f_{i}}$$

a. Nilai Tengah:

b. Metoda Rataan Sementara :
$$\overline{x} = \overline{x_S} + \frac{\sum fi.di}{\sum fi}$$

dengan $d_i = x_i - \overline{x_s}$ di mana $\overline{x_s}$ diambil dari nilai tengah kelas yang frekuensinya terbesar

$$\overline{x} = \overline{x_S} + \left(\!\frac{\sum f_i.c_i}{\sum f_i}\!\right)\!p$$
 c. Metoda Coding :

$$c_i = \frac{x_i - \overline{x_s}}{p}$$

2. MODUS DATA KELOMPOK

$$Mo = L + \left(\frac{d_1}{d_1 + d_2}\right) p$$

L = tepi bawah kelas modus (memeiliki frekuensi tertinggi)

P = interval kelas

D, = selisih frekuensi kelas modus dengan kelas sebelumnya

D₂ = selisih frekuensi kelas modus dengan kelas sesudahnya

3. KUARTIL DATA KELOMPOK

A. Kuartil Pertama / Kuartil Bawah :

$$Q_1 = L_1 + \left(\frac{\frac{1}{4}n - fk_1}{f_1}\right) p \qquad \qquad \begin{array}{c} Q_1 = \text{Kuartil Bawah} \\ L_1 = \text{tepi bawah kelas yang memuat kuartil bawah} \\ Q_1 \\ P = \text{interval kelas} \end{array}$$

fk, = jumlah frekuensi sebelum kelas Q,

f₁ = frekuensi kelas Q₁ n = ukuran data (f)

$$X_{Q_1} = X_{\underline{n}}$$

Mencari kelas Q₁ dengan

B. Kuartil Kedua / Kuartil Tengah / MEDIAN

Q₂ = Kuartil Tengah

L, = tepi bawah kelas yang memuat kuartil bawah

P = interval kelas

fk2 = jumlah frekuensi sebelum kelas Q2

f₂ = frekuensi kelas Q₂

n = ukuran data (f)

$$Q_2 = L_2 + \left(\frac{\frac{1}{2}n - fk}{f_2}\right)p$$

$$X_{\displaystyle Q_{2}} = X_{\displaystyle \underline{n}}$$
 Mencari kelas $\displaystyle Q_{1}$ dengan

C. Kuartil Letiga / Kuartil Atas

$$\begin{array}{c} Q_3 = L_3 + \left(\frac{3}{4}n - fk_3 \atop f_3 \right) p \\ & & \\ Q_3 = \text{Kuartil Bawah} \\ & & \\ & & \\ Q_3 = \text{tepi bawah kelas yang memuat kuartil bawah} \\ & & \\ & & \\ Q_3 = \text{tepi bawah kelas yang memuat kuartil bawah} \\ & & \\ & & \\ Q_3 = \text{tepi bawah kelas yang memuat kuartil bawah} \\ & & \\ & & \\ & & \\ P = \text{interval kelas} \\ & & \\ fk_3 = \text{jumlah frekuensi sebelum kelas } Q_3 \\ & & \\ f_3 = \text{frekuensi kelas } Q_3 \\ & & \\ & & \\ \text{n = ukuran data (f)} \end{array}$$

Ukuran Penyebaran Kumpulan Data Berkelompok

1. Jangkauan (J) atau Rentang / Range (R)
$$R = X_{max} - X_{min}$$

2. Jangkauan Antar Kuartil (JAK)
$$H = Q_3 - Q_1$$

3. Simpangan Kuartil / Jangkauan Semi Antar Kuartil (JSAK)
$$Q_d = \frac{1}{2}H = \frac{1}{2}(Q_3 - Q_1)$$

$$L = \frac{3}{2}H = \frac{3}{2}(Q_3 - Q_1)$$

4. Langkah

5. Pagar Dalam dan Pagar Luar

a. Pagar Dalam =
$$P_d = Q_1 - L$$

b. Pagar Luar =
$$P_l = Q_3 + L$$

6. Ragam(S2) dan Simnpangan Baku (S)

$$s^2 = \frac{\sum f.(x - \overline{x})^2}{n} \quad \text{ dan } s = \sqrt{s^2}$$

B. Dengan Rataan Sementara :
$$S^2 = \frac{\sum f d^2}{n} - \left(\frac{\sum f d}{n}\right)^2 \quad \text{dan } S = \sqrt{S^2}$$

C. Dengan Metoda Coding :
$$S^2 = \left\{ \frac{\sum fc^2}{n} - \left(\frac{\sum fc}{n}\right)^2 \right\}^2 \quad \text{dan } S = \sqrt{S^2}$$

1. Frekuensi relatif :
$$f(\%) = \frac{fi}{\sum f} \times 100\%$$
 dengan

- 2. **Frekuensi kumulatif Kurang Dari** ($fk \le 1$) menyatakan jumlah frekuensi semua data yang kurang dari atau sama dengan nilai TEPI ATAS tiap kelas
- 3. Frekuensi kumulatif Lebih Dari (fk ≥) menyatakan jumlah frekuensi semua nilai data yang lebih dari atau sama dengan nilai tepi bawah pada setiap kelas .
- 4. Frekuensi Kumulatif relative (f_{rk} atau fk(%) menyatakan jumlah frekuensi semua data yang kurang dari atau sama dengan yang dinyatakn dalam persen.

$$f_k$$
 (%) = $\frac{fk}{\sum f}$ x 100% dengan

fk(%) = frekuensi relatif kumulatif fk = frekuensi kumulatif suatu kelas f = jumlah data