
Iceberg Single File Commits

Iceberg Single File Commits
s.apache.org/iceberg-single-file-commit

Authors: Russell Spitzer, Yi Fang, Steven Wu
Authors from Adaptive Metadata Tree Proposal: Amogh Jahagirdar amoghj@apache.org,
Ryan Blue blue@apache.org, Anoop Johnson anoop@apache.org, Daniel Weeks
dweeks@apache.org
With discussion with many members of the community.

Motivation
Currently, an Iceberg commit requires writing at least 3 files: 1 metadata.json, 1 manifest list and
1 manifest file, with metadata.json potentially generated on the Catalog (for Iceberg Rest
Catalogs.) For a small write, the metadata authoring can be the longest step of the commit. The
difference between ManifestLists and Manifests also complicates the code base and makes it
impossible to surface non-partition column metrics to a higher level of scan planning.
​
In addition, the current method for deleting a file requires locating the file in an existing manifest
file from the base snapshot’s metadata, and then rewriting the whole manifest file in a
copy-on-write fashion. In the worst case, an operation will need to rewrite all existing manifest
files for deleted files, making the metadata changes proportional to the size of the table rather
than the set of changes. For the same reason, the current design makes caching of manifests
difficult since files are often being replaced even if their contents are not significantly changed.​
​
To alleviate these issues we propose a new metadata structure for V4 which abandons the
manifest list and replaces it with a special type of manifest, a Root Manifest, and allows for the
application of delete vectors to manifests.

Goals
1.​ Reducing metadata write amplification for smaller writes

a.​ Smaller operations only require writing a single new metadata file on the client
b.​ Reduce metadata write amplification in removals/replacements in manifest

entries
2.​ Generating Manifests Proportional to the Size of the Operation

a.​ When generating a new snapshot, the number of manifests written should ideally
be proportional to the size of the operation (i.e., the number of files added and
deleted).

b.​ When loading metadata for a new snapshot, if the metadata of a previous
snapshot has been read and cached by an engine, the number of manifests read
to build the new snapshot's metadata should also be proportional to the DML
operation's size. This would improve the cachability of manifests.

https://s.apache.org/iceberg-single-file-commit
mailto:amoghj@apache.org
mailto:blue@apache.org
mailto:anoop@apache.org
mailto:dweeks@apache.org

3.​ Aggregate Metrics
a.​ Unlike manifest lists, the new top level manifest should have aggregate metrics

for all child manifests
4.​ The Root Manifest reflects the last change to the Table

a.​ The changes from any operation should be expressed in only the changes made
to the Root manifest

Non-Goals
1.​ Removal of Metadata.json

a.​ While this could help in latency, this document focuses on client behaviors

Proposal
The basic layout for any new snapshot starts from a “Root Manifest” which can have entries
which map to Data Manifests, Delete Manifests, Data Files, Data DVs, and Manifest DVs. New
writers are always required to create a new Root Manifest which replaces the previous Root
Manifest and encodes the changes made by the operation.​
​
Manifest Lists are no longer used or written.

Data manifest and delete manifests are leaf manifest files. They can’t link to other data or delete
manifest files. This enforces a hierarchy with at most two levels.​

​
Root Manifests

1.​ Root Manifest files will have the following entry types:
a.​ Data Manifest

i.​ Reference data files
b.​ Delete Manifest

i.​ Reference Data Deletion Vectors or Equality Deletes
c.​ Data File

i.​ A file containing either new or existing data for the table
d.​ Data Delete Vector

i.​ Removes rows from an existing Data File

ii.​ It points to a data DV blob in a Puffin files (As in V3, no in-lined delete
vectors)

e.​ Manifest Delete Vector
i.​ A vector deleting rows from a leaf Data or Delete Manifest
ii.​ These are only allowed at the Root Manifest level
iii.​ It can be an inline DV blob or a pointer to a DV blob in a Puffin file

f.​ Equality Deletes
2.​ Every snapshot has exactly one Root Manifest in the metadata tree
3.​ All stats are present for both data file entries and manifest file entries. A manifest file

entry gets aggregated stats of its data file contents.
4.​ Any changes to underlying data are marked as ADDED and anything which does not

change the actual data of the table is marked as EXISTING.

Why limit tree depth to 2?

The reason we propose not to have unbounded hierarchies is to prevent writers from doing
things that seem performant for writers in the short term but lead to complicated reads and
maintenance.

●​ The primary issue with not bounding the levels is that writers could keep writing a top
level manifest which references the previous top level to keep having fast writes.
However, this quickly leads to a skewed tree structure, which at scale leads to tables
becoming unreadable without a flattening of manifests.

●​ With a skewed tree, parallelism on reading metadata is essentially eliminated; manifests
would have to be read in a hierarchical order. This would be a step backwards compared
to Iceberg’s planning capabilities today

●​ Lastly, the depth of the tree can be scaled up in the future if it really ends up being
required. With clear recursive implementations, we should be always able to increase
this, but for V4 it seems better to start with the 2-level tree. With larger leaf manifests,
the 2 level tree scales well into the billion file scale.

Commit Procedure

Any new commit starts by using the information in the previous snapshot’s Root manifest file,
this file is then modified based on the changes being applied by the new commit.

Adding data files / delete files

A new Root Manifest is created with either an ADDED Data File entry or a new ADDED Data
Manifest Entry mapping to a new leaf Data Manifest with the ADDED Data File entry. The
engine can determine the optimal layout for the given operation. All previously existing entries

are marked as EXISTING. The same procedure is used for Equality Deletes or Delete Vectors.​
​
Removing a data file / delete file or adding a Delete Vector for a Root Manifest Data File

A new Root Manifest is created with either an ADDED Delete Vector which removes the data or
delete file from a child manifest. We do not allow the copy on write behavior (Merging Snapshot
Producer) of removing and adding a child manifest with a net change to the data (including
completely deleting a leaf manifest.) Whenever a change is made to leaf manifests, it should be
marked by newly added Manifest Delete Vectors. Manifests (or delete vectors) which have not
changed in the commit can be compacted or removed.​

Manifest Compaction

During any commit, existing Data Files, Manifests and Manifest Delete Vectors can be combined
to reduce the total number of children under the root manifest. For example, two existing Data
Manifests can be combined into a single Data Manifest which would also be marked as existing.
Any compactions performed must not create files which cause a net change to table state.
Combining an existing delete vector with its target is allowed, but combining entries for new
deletes produced or new data files created in the snapshot with an existing manifest to create a
new manifest is not allowed.

​
Examples

Append Files

Appends To the Root Manifest
​
Appends can be done by rewriting only the top level manifest without adding any
additional child manifests.​
​
​

​
​
The original state of the table is shown in Snapshot 1, there are 3 data files present. ​
​
In Snapshot 2, data file D4 is added by writing a new Root Manifest which contains an entry for
the existing data manifest and adding a new root level data file.​
​
In Snapshot 3, data file D5 is added to the table by again rewriting the previous Root Manifest.
The new Root Manifest C contains existing entries for the content of Manifest B as well as a
new added manifest entry for data file D5.

Appends to the Root Manifest using new Data Manifests​

Larger appends can still be done by adding new child manifests directly. This is basically
the same as the behavior in previous versions of Iceberg where the Root manifest takes
the place of the Manifest List.​
​

​
​

Snapshot 1 is linked to Root Manifest A which has a single ADDED Data Manifest Entry M1.
Leaf Data Manifest M1 has three rows (D1, D2, D3) each representing a Data File. ​
​
Snapshot 2 is linked to Root Manifest B which has preserved the entry for M1 but also adds a
new top level ADDED Data Manifest Entry M2 which contains three rows (D4, D5, D6)

Remove Files

Removing a File From the Root Manifest
A file in the Root Manifest can be removed by producing a new Root Manifest where the
file is marked as deleted.

Snapshot 1 begins with existing files D1 and D2 at the Root Manifest level. In Snapshot 2, D1 is
removed by replacing it with a DELETED entry. D2 Remains unchanged.

Removing a File From a Leaf Manifest
Removing a file from a leaf manifest requires creating a Manifest Delete Vector which
marks the row in the Data Manifest containing that file as deleted.

Snapshot 1 is linked to Root Manifest A which has a single ADDED Data Manifest Entry M1
which in turn links to Data Manifest M1 which has three rows (D1, D2, D3) each representing a
Data File. ​
​
Snapshot 2 removes a file D2 by preserving the entry for M1 and then adding a new entry for a
Manifest Delete Vector (DV1) which applies to M1. The contents of DV1 mark the row at ordinal
1 (D2) as being removed.

Overwrite Files

Overwrite Files in Root Manifest
An Overwrite (Adding Files and Removing Files) can be done at the Root Manifest level
without any additional metadata files by changing the entries of the Root Manifest.

Snapshot 1 begins with a single file recorded in the root manifest. Snapshot 2 replaces this file
by creating a new root manifest that removes the original data file D1 and adds the rewritten
data file D2​
Snapshot 3 shows another replacement, removing the file added in the second snapshot with
another brand new file.

Overwrite Files in in Leaf Manifest
An overwrite can also use a combination of adding files at the Root Manifest and within
Manifests to represent the replacement of files within the table.

Snapshot 1 shows the root manifest with a data manifest containing 3 data files (D1, D2, D3).
Snapshot 2 replaces the D2 by adding a manifest delete vector (DV1) for the data manifest (M1)
which removes D2. D2’s replacement D4 is added at the Root Manifest level.

Row Delta

Root Manifest Only Row Delta
A Row Delta can be performed at the Root Manifest level by adding a root level file delete
vector and adding a new root level file.
​

​
​

Snapshot 1 shows a Root Manifest with a single data file D1. In Snapshot 2, D1 is modified by
data file delete vector DV1 and new rows are added in D2.

A Complex Row Delta with Modified Delete Vectors
A Row Delta can also be applied to a snapshot with existing delete vectors in delete
manifests as well as data manifests. All delete files are removed with delete vectors
applied to delete manifests, new delete vectors are created in new delete manifests (or at
the Root.) Updated data files can be created in new data manifests (or at the Root.)

Snapshot 1 Shows a Root Manifest with a data manifest DM1 and a delete manifest DVM1.
DM1 contains a data file D1 and D2. D1 has been affected by the delete vector DV1 and D2 by

DV2 in DVM1.​
​
Snapshot 2 updated additional rows in D1 by adding a new manifest delete vector DV3 at the
root level which deletes the delete vector DV1. A new delete manifest DVM2 adds DV4 which
applies to the data file D1. This contains the deletes from DV1 and the new deletes in this
operation. The updated rows are added to a new data files D3 which is added as part of a new
data manifest DM2.

Manifest Compaction

Manifest Compaction During an Append
Delete vectors can be applied and manifests can be compacted as long as their results
are marked as existing. The following example shows this occurring during an append
operation but it can happen for any new snapshot operation.

​

Snapshot 1 represents a table which has accumulated several manifest delete vectors
modifying existing manifest files. Snapshot 1 points to Root Manifest A which contains several
existing data manifests M1 and M2 as well as existing manifest delete vectors DV1 and DV2.
M1 contains data files D1,D2,D3 and M2 contains D4, D5, D6. DV1 applies to M1 and removes
the row at ordinal 0. DV2 applies to M2 and removes the row at ordinal 1.

In Snapshot 2 a new file is added to the Root manifest while simultaneously compacting the
existing manifests. Snapshot 2 points to a new Root Manifest B which contains M3 (Existing),
and added data file D7. M3 contains entries for existing data files D2,D3,D4 and D6.

Optional Affinity between Data and Delete Manifests

Iceberg currently has separate manifests for data and row-level deletes. This is a flexible writing
pattern, but the downside is that readers need to perform a 2-phase planning to match data files
against their DV to apply. To reduce the cost of the two phase planning, we propose an optional
affinity between data and delete manifests: a delete manifest can be affiliated to exactly one
data manifest. A data manifest can have more than one affiliated delete manifest.

Flushing the data files or DVs from the root to leaf manifests will require leaf delete manifests to
be rewritten. To reduce the write amplification, a small number of unaffiliated delete manifests
can be maintained. This means that during planning, given a set of data manifests to read both
the affiliated delete manifests and the unaffiliated delete manifests whose entries may match
based on stats must be read.

Pros:

●​ Single-pass planning: readers can do a parallel colocated planning of data and delete
manifests.

●​ Statistics-based pruning works on delete manifests: we only need to open the delete
manifests of unpruned data manifests.

●​ Preserving separation of data/delete manifests still enables low write amplification when
replacing DVs

Cons:

●​ Large-scale deletions with low data locality (e.g. MERGE using a UUID field) can
produce large unaffiliated delete manifests or rewrite of a large number of affiliated
delete manifests. However, this behavior is no worse than the current state.

A variant of this approach is to do physical colocation of the data files and the DVs as separate
rows in the same leaf manifest file. The advantage is fewer manifest files and simplified
planning, as leaf manifests are self-contained. This approach was discarded because of the
high write amplification to replace DVs, since the data files and the statistics need to be
rewritten as well.

Proposed Manifest Structure
Summary of Changes

1.​ Every entry in a manifest is now referred to as a content entry.
2.​ Added a new type, MANIFEST_DV. MANIFEST_DV can only be defined in the root

manifest.
3.​ Defined a deletion_vector struct nested in the entry which encapsulates both inline and

out-of line content. This struct must be defined for types 1 (position deletes) and 5
(manifest dvs)

4.​ Added a tracking_info struct nested in the entry which encapsulates the snapshot, status
and sequence number information for the entry. This enables being able to access the
fields for the entry (instead of more complicated inheritance strategies that are used

today) AND gives an isolated structure that can be modified (e.g. changing state) as
desired.

5.​ Added manifest_stats struct nested in the entry for encapsulating
added/removed/existing files/row counts AND min_sequence_number for manifest. This
must be defined when the type is a manifest, and null otherwise

V4 content entry structure

Field ID Name Type Required or Optional Description

134 content_type int required int with
meaning:
0: DATA
1: POSITION DELETES
2: EQUALITY DELETES
3: DATA_MANIFEST
4: DELETE_MANIFEST
5: MANIFEST_DV

Type of content stored by
the data file: data, equality
deletes, or position deletes
(all v1 files are data files).
Content types 3, 4 and 5,
can only be defined in the
root manifest.

100 location string Optional if content_type is
5 and
deletion_vector.inline_cont
ent is not null, required
otherwise

Location of the file.

101 file_format string required String file format name,
avro, orc, parquet, or
puffin

TBD tracking_info struct optional See tracking_info struct
below. Groups information
like status, and snapshot,
sequence number

147 deletion_vector struct optional See deletion_vector struct
below. Must be defined if
content type is 1 or 5. Must
be null for all other types.

148 partition_spec_id int required ID of partition spec used to
write manifest or data/delete
files.

140 sort_order_id int optional ID representing sort order
for this file. Can only be set
if content_type is 0.

https://docs.google.com/document/d/1in8mi4xohkvIK7lUZeDen_2boU-3PNHoh8tYhx2bQ8s/edit?tab=t.0#heading=h.r1q4v52q62sv
https://docs.google.com/document/d/1in8mi4xohkvIK7lUZeDen_2boU-3PNHoh8tYhx2bQ8s/edit?tab=t.0#heading=h.jmoazv73fchm

103 record_count long required Number of records in this
file, or the cardinality of a
deletion vector

104 file_size_in_bytes long optional Total file size in bytes.
Must be defined if location
is defined

TBD (individual
fields in
content_stats
struct will have
their own IDs)

content_stats struct optional Stats struct
 Column Stats Improv…

TBD manifest_stats struct optional Manifest stats struct
containing
added_files_count (504),
existing_files_count (505),
deleted_files_count (506),
added_rows_count (512),
existing_rows_count (513),
deleted_rows_count (514),
min_sequence_number(51
6)

Must be set if content_type
is 3 or 4, otherwise must
be null

143 referenced_file string optional Location of data file that a
DV references if
content_type is 1 or 5.

Location of affiliated data
manifest if content_type
is 4 or null if delete manifest
is unaffiliated.

131 key_metadata binary optional Implementation-specific key
metadata for encryption

132 split_offsets list<133:
long>

optional Split offsets for the data file.
For example, all row group
offsets in a Parquet file.
Must be sorted ascending

135 equality_ids list<136:
int>

optional Field ids used to determine
row equality in equality
delete files. Required when
content=2 and must be null
otherwise. Fields with ids

https://docs.google.com/document/d/1uvbrwwAJW2TgsnoaIcwAFpjbhHkBUL5wY_24nKgtt9I/edit?tab=t.0

listed in this column must be
present in the delete file

V4 content entry tracking_info struct

0 status int with
meaning:
0:
EXISTING
1: ADDED
2:
DELETED

required Carried over from current
format: Used to track
additions and deletions of
any entries including leaf
manifests in the root.
Deleted entries are
required when the
snapshot has a non-null
parent-id. Deletes are not
used in scans.

1 snapshot_id long optional Carried over from current
format:
Snapshot ID where the file
was added, or deleted if
status is 2. Inherited when
null.

3 sequence_number long optional Carried over from current
format: Data sequence
number of the file.
Inherited when null and
status is 1 (added). Must
be equal to
file_sequence_number if
content_type is 3 or 4.

4 file_sequence_num
ber

long optional File sequence number
indicating when the file
was added. Inherited
when null and status is
added. Must be equal to
sequence_number if
content_type is 3 or 4.

142 first_row_id long optional The _row_id for the first
row in the data file if
content_type is 0. If
content_type is 3, this is
the starting _row_id to

assign to rows added by
ADDED data files. See First
Row ID Inheritance

V4 content entry deletion_vector struct

144 offset long optional The offset in the file where
the content starts.

145 size_in_bytes long optional The length of a referenced
content stored in the file;
required if content_offset
is present.

TBD inline_content binary optional Serialized bitmap for inline
DVs.

V4 Manifest Key Value Metadata

Name Type Required or Optional Description

format-version string required Iceberg Table format version used
when writing the manifest

content string required Content being tracked by manifest.
Must be data, delete, or root

Note, as seen in the table we are proposing to remove the serialized schema and spec from
key/value metadata in V4 since those fields can add significant overhead without much value
considering we can always determine those from their corresponding IDs.

How existing manifest list fields map to Proposed V4 content entry fields

Manifest list field V4 content entry field Rationale or description

manifest_path location Shared location field for data
files, DVs, equality deletes
and manifests.

manifest_length file_size_in_bytes Shared file size field for data
files, DVs,
Equality deletes, and
manifests

https://iceberg.apache.org/spec/#first-row-id-inheritance
https://iceberg.apache.org/spec/#first-row-id-inheritance

partition_spec_id partition_spec_id Still require partition spec for
equality delete matching

content type Renamed to type since this is
just an enumeration, and the
original name of content was
misleading that it contained
the actual content

sequence_number tracking_info.sequence_number Moved to version_info
structure

added_snapshot_id tracking_info.snapshot_id Shared with snapshot_id

min_sequence_number manifest_stats.min_sequence_num
ber

Moved to manifest_stats
struct in content entry

added_files_count manifest_stats.added_files_count Moved to manifest_stats
struct in content entry

existing_files_count manifest_stats.existing_files_count Moved to manifest_stats
struct in content entry

deleted_files_count manifest_stats.deleted_files_count Moved to manifest_stats
struct in content entry.

added_rows_count manifest_stats.added_rows_count Moved to manifest_stats
struct in content entry.

existing_rows_count manifest_stats.existing_rows_count Moved to manifest_stats
struct in content entry.

deleted_rows_count manifest_stats.deleted_rows_count
s

Moved to manifest_stats
struct in content entry

partitions REMOVED Relocated info to column
stats. General data filtering
will be performed rather than
specific partition filters
lower_bound -> lower_bound
upper_bound -> upper_bound
contains_null -> null_count
contains_nan -> nan_count

key_metadata key_metadata Shared with
content_entry.key_metadata

first_row_id first_row_id First row ID is now set on

manifest entry so it can be
shared across entries for data
files and entries which are
data manifests

How existing manifest fields map to Proposed V4 content entry fields

Manifest Entry field V4 content entry field Rationale or description

data_file No separate struct element, the
entire record for an entry in a
V4 manifest will now be
referred to as a content entry.

Manifest entries now have
more generic content than prior
versions. An entry can either be
a data file, DV, equality delete
or a data/delete manifest. As a
result, the entire structure of a
record in a manifest has been
renamed to content entry.

status tracking_info.status

snapshot_id tracking_info.snapshot_id

sequence_number tracking_info.sequence_numbe
r

(data sequence number)

file_sequence_number tracking_info.file_sequence_nu
mber

data_file.file_path location Renamed, same ID

data_file.file_format file_format (Parquet, Avro, ORC, Puffin)

data_file.record_count record_count

data_file.file_size_in_bytes file_size_in_bytes

data_file.column_sizes REMOVED Replaced by column stats
(avg/max uncompressed size)

data_file.value_counts REMOVED Replaced by column stats
value_count

data_file.null_value_counts REMOVED Replaced by column stats
null_count

data_file.nan_value_counts REMOVED Replaced by column stats
nan_count (optional)

data_file.lower_bounds REMOVED Replaced by column stats
lower_bound

data_file.upper_bounds REMOVED Replaced by column stats
upper_bound

data_file.partition REMOVED Represented in column stats
(need to support translation for
equality deletes)Represented in
column stats (need to support
translation for equality deletes)

data_file.key_metadata key_metadata Carried over, still needed for
encryption

data_file.split_offsets split_offsets Carried over

data_file.sort_order_id sort_order_id Carried over

data_file.referenced_data_file referenced_file Renamed to referenced_file to
be able to support delete
manifests expressing affinity to
a data manifest.

data_file.content_offset deletion_vector.offset Grouping offset and content
size required for DVs into a
deletion_vector struct.
Renaming to just offset
because content is redundant
in the context of being grouped
under deletion_vector.

data_file.content_size_in_bytes deletion_vector.size_in_bytes Grouping offset and content
size required for DVs into a
deletion_vector struct.
Renaming to just size_in_bytes
because content is redundant
in the context of being grouped
under deletion_vector.

data_file.equality_ids equality_ids Carried over since we still need
to be able to express in
metadata which field IDs are
stored in the delete file.

Upgrade

Migrating from a V3 Manifest List to a V4 Root Manifest requires just propagating every Manifest
List Entry into a V4 RootManifest entry. The first commit to a V4 table must perform this
migration. A V4 Root Manifest may have manifest delete vectors which apply to V3 manifests.

Open Questions:
1.​ Are Manifest Delete Vectors always stored inline, Puffin, or possibly both?

a.​ Delete Vectors in the Root manifest could potentially be stored in the Root
Manifest itself either inlined with Manifest Entries or as independent Puffin Delete
Vectors. While inlining would increase the size of the Root Manifest, it would
allow for faster writes when doing small MOR operations. Serialized roaring
bitmaps yield 2 bytes per deleted position in the manifest DV which does give
buffer in the root to allow more writes to target in the root manifest. In a columnar
structure, multiple runs of manifest DVs can compress even better. At a certain
point, arguably it’s better to just rewrite the manifest rather than accumulating
manifest DVs in the root.

2.​ Optional Manifest Affinity?
a.​ In the current proposal, an optional affinity between data and delete manifests

was proposed. In this model, a delete manifest may be associated with a data
manifest. Affinity removes the overhead from a 2-phase planning at the cost of
more flexible writes. An optional affinity allows for writers to write unaffiliated
delete manifests, but at planning those will need to be reconciled.

3.​ Change Detection at the Root
a.​ One desired property in this new metadata tree is the ability to do incremental

change detection in the root manifest for a given snapshot. Given the presence of
manifest DVs, there are multiple potential ways to encode certain delete or
rewrite scenarios. One possible approach is to have a DV which also encodes
the diff in positions from the previous DV. Another open question here is whether
this DV should be a separate entry in the manifest or should it be attached to the
manifest entry itself as a separate column.

4.​ Should we remove the partition tuple from file entries and the partition field summaries
from the root manifest?

a.​ In the current format, the manifest list and data files include partition tuples in
their entries. In the proposed V4 structure, arguably neither the root manifest
does not need an explicitly materialized partition field summary in the entry nor
do data file entries need an explicit materialized partition tuple. The primary
benefit of removing the partition tuple is that with the presence of columnar
statistics is that it is redundant metadata and given an effective way to correctly
rebuild the tuple when needed (e.g. equality delete matching), column stats is
sufficient. Nearly every transform is monotonic, with the exception of bucketing.
What this means is that the stats can be used just as effectively at the root level

for pruning (for the bucketing case the bucket transformed values would be
materialized in the stats struct as stats on a derived column). There are nuances
(exact bounds, truncation, how derived column stats are stored); this is
elaborated in the adaptive metadata tree proposal but before that, it’d be good to
establish if removing the partition tuple is a good idea.

Appendix

Compressed Sizes (bytes) of Bit Vectors by Algorithm, Density,
and Scale for Random Positions

In parens is bytes/delete

Method Density 1,000 10,000 100,000 1,000,000

LZ4 0.01 57 (5.70) 383 (3.83) 3,545 (3.54) 32,713 (3.27)

 0.05 98 (1.96) 920 (1.84) 8,480 (1.70) 75,451 (1.51)

 0.1 130 (1.30) 1,155 (1.16) 10,600 (1.06) 108,987 (1.09)

 0.2 135 (0.68) 1,264 (0.63) 12,541 (0.63) 125,493 (0.63)

Roaring Bitmap 0.01 36 (3.60) 216 (2.16) 2,024 (2.02) 20,136 (2.01)

 0.05 116 (2.32) 1,016 (2.03) 10,024 (2.00) 100,136 (2.00)

 0.1 216 (2.16) 2,016 (2.02) 15,340 (1.53) 126,440 (1.26)

 0.2 416 (2.08) 4,016 (2.01) 16,408 (0.82) 129,918 (0.65)

ZSTD-3 0.01 46 (4.60) 224 (2.24) 1,826 (1.83) 17,690 (1.77)

 0.05 93 (1.86) 533 (1.07) 4,727 (0.95) 46,987 (0.94)

 0.1 97 (0.97) 715 (0.72) 6,599 (0.66) 67,170 (0.67)

 0.2 129 (0.65) 981 (0.49) 9,227 (0.46) 91,923 (0.46)

Raw Bitset (dense encoding) 0.01 123 (12.3) 1,247 (12.47) 12,485 (12.48)
124,980
(12.50)

 0.05 123 (2.46) 1,247 (2.49) 12,494 (2.50) 124,985 (2.50)

 0.1 123 (1.23) 1,247 (1.25) 12,500 (1.25) 125,000 (1.25)

 0.2 125 (0.63) 1,250 (0.63) 12,500 (0.63) 125,000 (0.63)

Discarded Approaches

Using Multiple Delete Vectors to Keep Changes Distinct

To make it easier to track differences between two different snapshots we considered storing
multiple delete vectors, so each snapshot could be mapped to its changes without looking at a
previous snapshot. This was rejected because the added complexity didn’t outweigh the
benefits which only applied to MOR writes.

By allowing for both an ADDED and EXISTING delete vector we can preserve the ability to
map exactly what has occurred in the snapshot to changes in the Root Manifest. In the
following example Snapshot 3 and 4 both contain two delete vectors that apply to M1, the
ADDED DVs show the changes made in the respective snapshots.

​
​
Snapshot 3 removes a file D3 by preserving the entry for M1 and the Delete Vector DV1 which
are both now marked as existing. An additional DeleteVector DV2 is added which also applies to
M1 and removes the row at ordinal 2. ​
​
In Snapshot 4 a new file is added to the table (D4) in the Root manifest and DV1 and DV2 are
removed. They are replaced with DV3 (Existing) which removes both ordinal 1 and 2 from M1.​
​
Modifying an existing Delete Vector in a Delete Manifest

To modify an existing Delete Vector in a Delete Manifest we need to go through an extra
step to preserve the ability to differentiate changes from existing state. We start by
adding a new additional delete vector but subsequent new deletes must remove and
compact previous delete vectors.

In Snapshot 1 we have a Root Manifest A with existing Data Manifest M1 and existing Delete
Manifest M2. M1 contains entries for D1, D2, and D3. M2 contains an entry for a Delete Vector
DV1 removing rows in D2.​
​
In Snapshot 2 we delete more rows from D2 by adding a new Delete Vector in a new Delete
Manifest M3.​
​
In Snapshot 3 we delete even more rows from D2 by adding two Delete Vectors to Delete
Manifest M4. One representing the deletes present in Snapshot 1 and 2 and one representing
the deletes added in snapshot 3. Delete Manifests M2 and M3 are removed.

Diagram Source

graph TD
 S1["Snapshot 1"] --> RMA
 S2["Snapshot 2"] --> RMB
 S3["Snapshot 3"] --> RMC

 RMA["<table><tr><td colspan='2' style='text-align:left'>Root Manifest
A</td></tr><tr><td style='text-align:left'>M1</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 RMB["<table><tr><td colspan='2' style='text-align:left'>Root Manifest
B</td></tr><tr><td style='text-align:left'>M1</td><td
style='text-align:left'>EXISTING</td></tr><tr><td style='text-align:left'>D4</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 RMC["<table><tr><td colspan='2' style='text-align:left'>Root Manifest
C</td></tr><tr><td style='text-align:left'>M1</td><td
style='text-align:left'>EXISTING</td></tr><tr><td style='text-align:left'>D4</td><td
style='text-align:left'>EXISTING</td></tr><tr><td style='text-align:left'>D5</td><td
style='text-align:left'>ADDED</td></tr></table>"]

 RMA --> DM1["<table><tr><td colspan='2' style='text-align:left'>Data Manifest
M1</td></tr><tr><td style='text-align:left'>D1</td><td
style='text-align:left'>ADDED</td></tr><tr><td style='text-align:left'>D2</td><td
style='text-align:left'>ADDED</td></tr><tr><td style='text-align:left'>D3</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 RMB --> DM1
 RMB --> D4["Data File D4"]
 RMC --> DM1
 RMC --> D4
 RMC --> D5["Data File D5"]

 classDef snapshot fill:#e1f5fe,stroke:#01579b,stroke-width:2px
 classDef rootManifest fill:#f3e5f5,stroke:#4a148c,stroke-width:2px
 classDef dataManifest fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px
 classDef dataFile fill:#fff8e1,stroke:#f57f17,stroke-width:2px

 class S1,S2,S3 snapshot
 class RMA,RMB,RMC rootManifest
 class DM1 dataManifest
 class D4,D5 dataFile
graph TD
 S1["Snapshot 1"] --> RMA
 S2["Snapshot 2"] --> RMB

 RMA["<table><tr><td colspan='2' style='text-align:left'>Root Manifest
A</td></tr><tr><td style='text-align:left'>M1</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 RMB["<table><tr><td colspan='2' style='text-align:left'>Root Manifest
B</td></tr><tr><td style='text-align:left'>M1</td><td
style='text-align:left'>EXISTING</td></tr><tr><td style='text-align:left'>M2</td><td
style='text-align:left'>ADDED</td></tr></table>"]

 RMA --> DM1["<table><tr><td colspan='2' style='text-align:left'>Data Manifest
M1</td></tr><tr><td style='text-align:left'>D1</td><td
style='text-align:left'>ADDED</td></tr><tr><td style='text-align:left'>D2</td><td
style='text-align:left'>ADDED</td></tr><tr><td style='text-align:left'>D3</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 RMB --> DM1
 RMB --> DM2["<table><tr><td colspan='2' style='text-align:left'>Data Manifest
M2</td></tr><tr><td style='text-align:left'>D4</td><td
style='text-align:left'>ADDED</td></tr><tr><td style='text-align:left'>D5</td><td
style='text-align:left'>ADDED</td></tr><tr><td style='text-align:left'>D6</td><td
style='text-align:left'>ADDED</td></tr></table>"]

 classDef snapshot fill:#e1f5fe,stroke:#01579b,stroke-width:2px
 classDef rootManifest fill:#f3e5f5,stroke:#4a148c,stroke-width:2px
 classDef dataManifest fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px
 classDef dataFile fill:#fff8e1,stroke:#f57f17,stroke-width:2px

 class S1,S2 snapshot
 class RMA,RMB rootManifest
 class DM1,DM2 dataManifest
%%{init: {"flowchart": {"htmlLabels": true}, "theme": "base", "themeVariables": {"primaryColor":
"#ffffff", "primaryTextColor": "#000000", "primaryBorderColor": "#000000", "lineColor":
"#000000", "sectionBkColor": "transparent", "altSectionBkColor": "transparent", "gridColor":
"#000000", "secondaryColor": "#ffffff", "tertiaryColor": "#ffffff", "clusterBkg": "transparent",
"clusterBorder": "transparent"}}}%%
graph TD
 subgraph " "
 S1["Snapshot 1"]
 S2["Snapshot 2"]
 end

 subgraph " "
 RMA["<table><tr><td colspan='2' style='text-align:left'>Root Manifest
A</td></tr><tr><td style='text-align:left'>DM1</td><td
style='text-align:left'>ADDED</td></tr><tr><td style='text-align:left'>DVM1</td><td
style='text-align:left'>ADDED</td></tr></table>"]

 RMB["<table><tr><td colspan='2' style='text-align:left'>Root Manifest
B</td></tr><tr><td style='text-align:left'>DM1</td><td
style='text-align:left'>EXISTING</td></tr><tr><td style='text-align:left'>DVM1</td><td
style='text-align:left'>EXISTING</td></tr><tr><td style='text-align:left'>DV3</td><td
style='text-align:left'>ADDED</td></tr><tr><td style='text-align:left'>DVM2</td><td
style='text-align:left'>ADDED</td></tr><tr><td style='text-align:left'>DM2</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 end

 subgraph rma_children [" "]
 DM1["<table><tr><td colspan='2' style='text-align:left'>Data Manifest
DM1</td></tr><tr><td style='text-align:left'>D1</td><td
style='text-align:left'>ADDED</td></tr><tr><td style='text-align:left'>D2</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 DVM1["<table><tr><td colspan='2' style='text-align:left'>Delete Manifest
DVM1</td></tr><tr><td style='text-align:left'>DV1</td><td
style='text-align:left'>ADDED</td></tr><tr><td style='text-align:left'>DV2</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 end

 subgraph rmb_children [" "]
 DV3["<table><tr><td colspan='2' style='text-align:left'>Manifest
DV3</td></tr><tr><td style='text-align:left'>0</td><td
style='text-align:left'></td></tr></table>"]
 DVM2["<table><tr><td colspan='2' style='text-align:left'>Delete Manifest
DVM2</td></tr><tr><td style='text-align:left'>DV4</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 DM2["<table><tr><td colspan='2' style='text-align:left'>Data Manifest
DM2</td></tr><tr><td style='text-align:left'>D3</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 end

 S1 --> RMA
 S2 --> RMB
 RMA --> DM1
 RMA --> DVM1
 RMB --> DM1
 RMB --> DVM1
 RMB --> DV3
 RMB --> DVM2
 RMB --> DM2
 DVM1 -.->|DV1 applies to D1| DM1
 DVM1 -.->|DV2 applies to D2| DM1
 DV3 -.->|applies to DVM1| DVM1

 DVM2 -.->|DV4 applies to D1| DM1

 classDef snapshot fill:#e1f5fe,stroke:#01579b,stroke-width:2px
 classDef rootManifest fill:#f3e5f5,stroke:#4a148c,stroke-width:2px
 classDef dataManifest fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px
 classDef deleteManifest fill:#ffebee,stroke:#c62828,stroke-width:2px
 classDef manifestDeleteVector fill:#fed7aa,stroke:#ea580c,stroke-width:2px

 class S1,S2 snapshot
 class RMA,RMB rootManifest
 class DM1,DM2 dataManifest
 class DVM1,DVM2 deleteManifest
 class DV3 manifestDeleteVector# Diagram of snapshot relationships
Exported on 7/3/2025 at 12:23:29 CDT from Cursor (1.1.6)

User

Snapshot 1 is linked to Root Manifest A which has a single ADDED Data Manifest Entry M1
which in turn links to Data Manifest M1 which has three rows (D1, D2, D3) each representing a
Data File.

Snapshot 2 is linked to Root Manifest B which has preserved the entry for M1 now marked as
existing but adds a new top level ADDED Data File Entry referring to D4.

Snapshot 3 is linked to Root Manifest C which has preserved the entry for M1 and D4 and
added a new entry D5.

Generate a diagram showing the above threee snapshots

Cursor

I'll create a diagram showing the three snapshots and their relationships to root manifests, data
manifest entries, and data files.

I've created a diagram that visualizes the three snapshots and their relationships to root
manifests, data manifest entries, and data files. The diagram shows:

Snapshot 1: Links to Root Manifest A with a single ADDED Data Manifest Entry M1, which
points to Data Manifest M1 containing three data files (D1, D2, D3).

Snapshot 2: Links to Root Manifest B, which preserves the M1 entry (now marked as
EXISTING) and adds a new ADDED Data File Entry for D4.

Snapshot 3: Links to Root Manifest C, which preserves both existing entries (M1 and D4)
and adds a new entry for D5.

The diagram uses different colors to distinguish between the various components:
- Light blue for snapshots
- Light purple for root manifests
- Light orange for manifest entries
- Light green for data manifests
- Light yellow for data files

This structure clearly illustrates how Iceberg snapshots evolve, with each new snapshot building
upon previous ones by preserving existing entries and adding new ones as needed.

User

Remove the labels ADDED, EXISTING from the nodes and instead add them to the edges

Cursor

I've updated the diagram to move the ADDED/EXISTING labels from the nodes to the edges.
Now the diagram shows:

- Clean node labels with just the component names
- Edge labels indicating whether each entry is ADDED or EXISTING in that particular root
manifest

This makes it clearer that the status refers to the relationship between the root manifest and its
entries, rather than being an intrinsic property of the components themselves. The diagram now
shows how each snapshot's root manifest references its entries with the appropriate status.

User

There should only be a single Data Manifest Entry M1 Node

Cursor

Perfect! Now the diagram correctly shows a single Data Manifest Entry M1 node that is
referenced by all three root manifests. This better represents how Iceberg actually works:

- **Root Manifest A** references M1 as ADDED (first time it appears)
- **Root Manifest B** references the same M1 as EXISTING (reused from the previous
snapshot)
- **Root Manifest C** references the same M1 as EXISTING (still reused)

This structure demonstrates the efficiency of Iceberg's snapshot system, where manifest entries
are reused across snapshots rather than being duplicated, with only the reference status
changing from ADDED to EXISTING as snapshots evolve.

User

There should only be a single Data File Entry D4

Cursor

Excellent! Now the diagram correctly shows a single Data File Entry D4 node that is referenced
by both Root Manifest B and Root Manifest C. This accurately represents how Iceberg works:

- **Root Manifest B** references D4 Entry as ADDED (first time it appears)
- **Root Manifest C** references the same D4 Entry as EXISTING (reused from the previous
snapshot)

The diagram now properly illustrates the efficiency of Iceberg's snapshot system where both
manifest entries and data file entries are reused across snapshots rather than being duplicated.
Only the reference status changes as snapshots evolve, minimizing storage overhead and
maintaining referential integrity across the snapshot history.

User

Can we instead have all the Manifest Nodes represented as tables, each with a row for each
child element

Cursor

I've created a diagram that represents the manifest nodes as tables. Each root manifest is
shown as a table with:

- **Root Manifest A**: One row showing M1 as ADDED
- **Root Manifest B**: Two rows showing M1 as EXISTING and D4 Entry as ADDED
- **Root Manifest C**: Three rows showing M1 as EXISTING, D4 Entry as EXISTING, and D5
Entry as ADDED

The **Data Manifest M1** is also shown as a table with three rows listing its data files (D1, D2,
D3).

This tabular representation makes it much clearer how each manifest contains multiple entries
and shows their status (ADDED/EXISTING) in a structured format, providing a more detailed
view of the manifest contents at each snapshot level.

User

now remove the entry nodes

Cursor

Perfect! I've removed the intermediate entry nodes and now the root manifests connect directly
to their targets:

- **Root Manifest A** connects directly to **Data Manifest M1**
- **Root Manifest B** connects directly to **Data Manifest M1** and **Data File D4**
- **Root Manifest C** connects directly to **Data Manifest M1**, **Data File D4**, and **Data
File D5**

The tabular representation of the manifests still shows the entry names and their status
(ADDED/EXISTING), but the diagram structure is now cleaner and more direct, showing the
actual references without the intermediate entry node abstractions.

User

Please Left Justify the text in the tables in the Manifest Nodes, and add status "ADDED" to all
rows in the Data Manifest M1 node

Cursor

Perfect! I've updated the diagram with the requested changes:

1. **Left-justified all text** in the manifest table nodes using `style='text-align:left'` for better
readability
2. **Added "ADDED" status** to all rows in the Data Manifest M1 node, so it now shows:
 - D1 | ADDED
 - D2 | ADDED
 - D3 | ADDED

Now the Data Manifest M1 is consistent with the root manifests in showing both the entry name
and its status, and all table content is properly left-aligned for a cleaner, more professional
appearance.

User

Remove the Word Entry from D4 Entry and D5 Entry

Cursor

Perfect! I've cleaned up the diagram by removing the word "Entry" from the root manifest tables.
Now the entries are simply labeled as:

- **Root Manifest B**: M1 | EXISTING and D4 | ADDED
- **Root Manifest C**: M1 | EXISTING, D4 | EXISTING, and D5 | ADDED

This makes the diagram cleaner and more concise while maintaining clarity about the different
types of entries (manifest references vs direct data file references) in each root manifest.

User

Using the same style and instructions as above, create the digram for this description

Snapshot 1 is linked to Root Manifest A which has a single ADDED Data Manifest Entry M1
which in turn links to Data Manifest M1 which has three rows (D1, D2, D3) each representing a
Data File.

Snapshot 2 is linked to Root Manifest B which has preserved the entry for M1 but adds a new
top level ADDED Data Manifest Entry M2 which contains three rows (D4, D5, D6)

Cursor

I've created a diagram that shows the new scenario with two snapshots and two data manifests.
The diagram illustrates:

Snapshot 1: Links to Root Manifest A with a single entry M1 (ADDED), which connects to
Data Manifest M1 containing D1, D2, and D3 (all ADDED).

Snapshot 2: Links to Root Manifest B which preserves M1 (now EXISTING) and adds a new
entry M2 (ADDED), which connects to Data Manifest M2 containing D4, D5, and D6 (all
ADDED).

This structure demonstrates how Iceberg efficiently manages data organization by:
- Preserving existing manifest references across snapshots (M1 stays as EXISTING in Root
Manifest B)
- Adding new manifests as data grows (M2 as ADDED in Root Manifest B)
- Maintaining separate data manifests for different sets of data files

The diagram uses the same styling with left-aligned table text and consistent color coding for
different component types.

User

In the same style,

Snapshot 1 is linked to Root Manifest A which has a single ADDED Data Manifest Entry M1
which in turn links to Data Manifest M1 which has three rows (D1, D2, D3) each representing a
Data File.

Snapshot 2 removes a file D2 by preserving the entry for M1 and then adding a new entry for a
Delete Vector DV1 which applies to M1. The contents of DV1 mark the row at ordinal 1 as being
removed.

Cursor

I've created a diagram showing the delete vector scenario. The diagram illustrates:

Snapshot 1: Links to Root Manifest A with M1 (ADDED), connecting to Data Manifest M1
containing D1, D2, D3 (all ADDED).

Snapshot 2: Links to Root Manifest B which:
- Preserves M1 (EXISTING) - efficiently reusing the existing data manifest
- Adds DV1 (ADDED) - the delete vector for handling the deletion

The **Delete Vector DV1** shows:
- "Applies to M1" indicating which manifest it targets
- "Ordinal 1 | REMOVED" marking the row at position 1 (D2) as logically deleted

The dotted line from DV1 to Data Manifest M1 illustrates that the delete vector applies to that
specific manifest.

This demonstrates Iceberg's efficient deletion approach using delete vectors rather than
rewriting data files - the original data files (D1, D2, D3) remain unchanged, but D2 is logically
removed through the delete vector, providing both performance benefits and the ability to
time-travel to see data before the deletion.

User

Is there a way to lay it out so that Root manifest nodes are at the same height and DV1 and M1
are at the same height

Cursor

I've reorganized the diagram using subgraphs to control the layout. Now:

1. **Snapshots** (S1, S2) are grouped at the top level
2. **Root Manifests** (RMA, RMB) are grouped at the same height on the second level

3. **Data Manifest M1 and Delete Vector DV1** are grouped at the same height on the third
level
4. **Data Files** (D1, D2, D3) are grouped at the bottom level

The subgraphs help ensure that nodes at each level are positioned at the same height, creating
a more organized and visually balanced layout. The connections still flow logically from
snapshots to root manifests to their respective entries, while the dotted line shows the "applies
to" relationship between the delete vector and the data manifest.

User

Data Manifest M1 and Delete Vector DV1 should be at the same height

Cursor

I've simplified the diagram structure to ensure Data Manifest M1 and Delete Vector DV1 are at
the same height. By removing the subgraphs and having both nodes connected at the same
level from Root Manifest B, Mermaid should naturally position them at the same horizontal level.
This creates a cleaner layout where:

- Snapshots are at the top level
- Root Manifests are at the second level
- Data Manifest M1 and Delete Vector DV1 are at the same third level
- Data Files are at the bottom level

The diagram maintains all the relationships while ensuring the alignment you requested.

User

Can you make the subgroup boxes transparent and without a border

Cursor

Perfect! I've created the diagram with transparent subgroup boxes. The subgroups are still there
to control the layout and ensure that:

- Snapshots are at the top level
- Root Manifests are at the same height on the second level
- Data Manifest M1 and Delete Vector DV1 are at the same height on the third level
- Data Files are at the bottom level

But now the subgroup containers are invisible - they provide the structural layout without the
visual clutter of borders and background colors. This gives you the clean positioning you wanted
while maintaining the hierarchical organization of the diagram elements.

User

Remove the text "Applies to M1" from DV1 and the text "Ordinal" from Ordinal 1

Cursor

Perfect! I've cleaned up the Delete Vector DV1 table by:

1. **Removing** the "Applies to M1" row entirely
2. **Simplifying** "Ordinal 1" to just "1"

Now the Delete Vector DV1 table is much cleaner, showing only:
- **Header**: Delete Vector DV1
- **One row**: 1 | REMOVED

The relationship to Data Manifest M1 is still clear through the dotted "applies to" connection line,
making the table content more concise while maintaining the visual relationship in the diagram.

User

remove the text "REMOVED" from DV1

Cursor

Perfect! I've removed the "REMOVED" text from the Delete Vector DV1 table. Now the Delete
Vector DV1 shows:

- **Header**: Delete Vector DV1
- **One row**: 1 | (empty)

This creates a very clean and minimal representation where the delete vector simply lists the
ordinal position "1" that is affected, with the understanding that being present in a delete vector
implies removal. The dotted line to Data Manifest M1 still clearly shows the relationship.

User

please remove the borders on the subgroups

Cursor

Perfect! I've updated the diagram to remove the subgroup borders by adding `clusterBkg:
"transparent"` and `clusterBorder: "transparent"` to the theme variables. Now the subgroups are
completely invisible - they still provide the structural layout to keep nodes at the same height
levels, but without any visual borders or backgrounds. This gives you a clean diagram with
proper positioning but no distracting subgroup boundaries.

User

Using this stame style create two graphs depicting the old Iceberg metadata with a manifest list
and the new layout using a Root Manifest

Cursor

I'll create two diagrams showing the evolution from the old Iceberg metadata structure with
manifest lists to the new structure using root manifests.

I've created two diagrams showing the evolution of Iceberg's metadata structure:

First diagram - Old Structure (Manifest List):
- Snapshots pointed to a **Manifest List**
- The Manifest List could only contain references to Data Manifests
- Simple, linear structure: Snapshot → Manifest List → Data Manifests → Data Files
- Limited flexibility in what could be referenced

Second diagram - New Structure (Root Manifest):
- Snapshots point to a **Root Manifest**
- The Root Manifest can contain multiple types of entries:
 - **Data Manifest references** (M1, M2) - like before
 - **Direct Data File references** (D5) - new capability
 - **Delete Vector references** (DV1) - for efficient deletions
- More flexible structure enabling advanced features

Key improvements in the new structure:
1. **Mixed entry types** - Can reference manifests, individual files, and delete vectors all from
the same root manifest
2. **Delete vectors** - Enable efficient deletions without rewriting data files
3. **Direct file references** - Allow for more granular control and optimization
4. **Better performance** - More efficient metadata operations and reduced I/O

This evolution maintains backward compatibility while enabling more sophisticated metadata
operations that improve both performance and functionality.

User

Create me another diagram in this style for the following situation

Snapshot 1 represents a table which has accumulated several delete vectors modifying existing
metadata files. Snapshot 1 points to Root Manifest A which contains several existing data
manifests M1 and M2 as well as existing delete vectors DV1 and DV2. D1 and D2 contain data
files D1,D2,D3 and D4, D5, D6 respectively. DV1 applies to M1 and removes the row at ordinal
0. DV2 applies to M2 and removes the row at ordinal 1. In Snapshot 2 a new file is added to the
Root manifest while simultaneously compacting the existing manifests. Snapshot 2 points to a
new Root Manifest B which contains M3, and added data file D7. M3 contains entries for
existing data files D2,D3,D5 and D6.

Cursor

I've created a diagram showing the compaction scenario you described. This illustrates a
common Iceberg operation where accumulated delete vectors are consolidated during
compaction:

Snapshot 1 - Before Compaction:
- **Root Manifest A** contains fragmented metadata:

 - M1 and M2 (EXISTING data manifests)
 - DV1 and DV2 (EXISTING delete vectors)
- **Data Manifest M1** contains D1, D2, D3
- **Data Manifest M2** contains D4, D5, D6
- **DV1** applies to M1 and removes ordinal 0 (D1)
- **DV2** applies to M2 and removes ordinal 1 (D5)

Snapshot 2 - After Compaction:
- **Root Manifest B** contains cleaned metadata:
 - M3 (ADDED - new consolidated manifest)
 - D7 (ADDED - new data file)
- **Data Manifest M3** contains only the remaining valid data files: D2, D3, D5, D6

Key benefits of this compaction:
1. **Metadata consolidation** - Multiple manifests + delete vectors → Single manifest
2. **Performance improvement** - Faster query planning with fewer metadata files
3. **Storage optimization** - Removes references to deleted data
4. **Simplified structure** - Cleaner metadata hierarchy

This process demonstrates how Iceberg efficiently manages metadata growth over time,
applying delete vectors during compaction to create a cleaner, more performant metadata
structure while simultaneously allowing new data (D7) to be added.

User

Again for,

Snapshot 1 represents a table which has accumulated several delete vectors modifying existing
metadata files. Snapshot 1 points to Root Manifest A which contains several existing data
manifests M1 and M2 as well as existing delete vectors DV1 and DV2. D1 and D2 contain data
files D1,D2,D3 and D4, D5, D6 respectively. DV1 applies to M1 and removes the row at ordinal
0. DV2 applies to M2 and removes the row at ordinal 1. In Snapshot 2 a new file is added to the
Root manifest while simultaneously compacting the existing manifests. Snapshot 2 points to a
new Root Manifest B which contains M3, and added data file D7. M3 contains entries for
existing data files D2,D3,D4 and D6.

Cursor

I've created the corrected diagram showing the compaction scenario. The key difference from
the previous version is in the final consolidated manifest:

Snapshot 1 - Before Compaction:
- **Root Manifest A** contains fragmented metadata:
 - M1 and M2 (EXISTING data manifests)
 - DV1 and DV2 (EXISTING delete vectors)
- **Data Manifest M1** contains D1, D2, D3
- **Data Manifest M2** contains D4, D5, D6
- **DV1** applies to M1 and removes ordinal 0 (D1)
- **DV2** applies to M2 and removes ordinal 1 (D5)

Snapshot 2 - After Compaction:
- **Root Manifest B** contains cleaned metadata:
 - M3 (ADDED - new consolidated manifest)
 - D7 (ADDED - new data file)
- **Data Manifest M3** contains the remaining valid data files: D2, D3, D4, D6

Effective result of the delete vectors:
- From M1: D1 is removed (ordinal 0), D2 and D3 remain
- From M2: D5 is removed (ordinal 1), D4 and D6 remain
- M3 consolidates all remaining files: D2, D3, D4, D6

This demonstrates how compaction efficiently applies accumulated delete vectors to create a
clean, consolidated metadata structure while simultaneously adding new data.

User

If possible can we arrange this so all the children of the Root Manifests are on the same vertical
level? Then we can order it
M1 DV1 M2 DV2 M3 then D7 in that layer

Cursor

Perfect! I've rearranged the diagram so that all the children of the Root Manifests are positioned
at the same vertical level in the third subgroup. The ordering is now:

Third level (same height): M1, DV1, M2, DV2, M3, D7

This creates a much cleaner visual organization where:

1. **Snapshots** are at the top level

2. **Root Manifests** (A and B) are at the second level
3. **All manifest children** are aligned horizontally at the third level in your requested order
4. **Individual data files** are at the bottom level

The logical relationships are maintained:
- Root Manifest A connects to M1, M2, DV1, DV2
- Root Manifest B connects to M3, D7
- Delete vectors still show their "applies to" relationships with dotted lines
- Data manifests connect down to their respective data files

This layout makes it much easier to see the structural relationships and compare the
before/after states of the compaction process.

User

Visually I want all of the nodes that are children of the Root manifests to be on the same vertical
place, I also want to avoid edges crossing each other

Cursor

Perfect! I've rearranged the diagram to minimize edge crossings while keeping all children of the
Root Manifests at the same vertical level. The key improvements:

Positioning to avoid crossings:
- **Left side**: Children of Root Manifest A (M1, DV1, M2, DV2) are positioned under their
parent
- **Right side**: Children of Root Manifest B (M3, D7) are positioned under their parent
- **Strategic ordering**: DV1 is placed next to M1, and DV2 next to M2 to minimize the length of
"applies to" dotted lines

Clean edge flow:
- Root Manifest A's edges flow down to its children on the left
- Root Manifest B's edges flow down to its children on the right
- No crossing between the solid connection lines
- Dotted "applies to" lines are short and don't interfere with other connections

This layout creates a much cleaner visual flow while maintaining all the logical relationships and
keeping the children of both root manifests at exactly the same vertical level as requested.

User

Put all the children of root manifests in a transparent subgraph with no border

Cursor

Perfect! I've created a transparent subgraph that contains all the children of the root manifests.
Now all the elements that are direct children of Root Manifest A and Root Manifest B (M1, DV1,
M2, DV2, M3, D7) are grouped together in the same invisible container:

Grouped in transparent subgraph:
- Data Manifest M1
- Delete Vector DV1
- Data Manifest M2
- Delete Vector DV2
- Data Manifest M3
- Data File D7

This ensures they all appear at exactly the same vertical level while maintaining the clean visual
appearance with no visible borders around the grouping. The transparent subgraph provides the
structural constraint to keep them aligned without adding any visual clutter to the diagram.

User

Remove D1,D2,D3,D4,D5,D6

Cursor

Perfect! I've removed all the individual data file nodes (D1, D2, D3, D4, D5, D6) from the
diagram. This creates a much cleaner view that focuses on the metadata structure:

What remains:
- Snapshots and Root Manifests at the top levels
- All children of root manifests (M1, DV1, M2, DV2, M3, D7) in the transparent subgraph at the
same level
- Data manifests showing their file contents in table format
- Delete vectors with their ordinal positions

- D7 as a direct data file reference

What was removed:
- Individual data file nodes for D1-D6
- All the connections from data manifests to individual files
- The bottom subgraph layer

The diagram now provides a cleaner view of the metadata relationships while still showing the
file contents within the manifest tables themselves. This focuses attention on the structure and
relationships rather than the individual file nodes.

User

All the entries of M3 should be marked as Existing

Cursor

Perfect! I've updated Data Manifest M3 to mark all its entries as "EXISTING" instead of
"ADDED". This accurately reflects that M3 is a compacted manifest that consolidates existing
data files:

Data Manifest M3 now shows:
- D2 | EXISTING (from M1, survived deletion)
- D3 | EXISTING (from M1, survived deletion)
- D4 | EXISTING (from M2, survived deletion)
- D6 | EXISTING (from M2, survived deletion)

This makes logical sense because during compaction:
1. The delete vectors (DV1, DV2) are applied to the original manifests
2. M3 consolidates the remaining valid files that already existed in the system
3. Only D7 is truly new data being added

The diagram now correctly shows that M3 contains references to existing data files that have
been reorganized and consolidated, rather than newly created files.

User

The entry for M3 should also be EXISTING

Cursor

Perfect! I've updated Root Manifest B to mark the M3 entry as "EXISTING" instead of "ADDED".

Root Manifest B now shows:
- M3 | EXISTING
- D7 | ADDED

This indicates that while M3 is a consolidated manifest created during compaction, it's being
treated as an existing manifest reference in the context of the new root manifest, with only D7
representing truly new data being added to the table.

User

In the same style add 2 graphs

Snapshot V3 pointing to Manifest List which points to Manifest which points to Data Files

Snapshot V4 pointing to a Root Manifest which points to a Manifest, Data File and a Delete
Vector. The Manifest has. a child data file.

Cursor

I've created two diagrams in the same style showing the evolution from the old to new Iceberg
metadata structure:

First diagram - Snapshot V3 (Old Structure):
- Simple linear hierarchy: Snapshot V3 → Manifest List → Manifest M1 → Data Files
- Manifest List contains only one entry (M1)
- Manifest M1 contains D1, D2, D3
- Clean but limited structure

Second diagram - Snapshot V4 (New Structure):
- More flexible hierarchy: Snapshot V4 → Root Manifest with multiple child types
- Root Manifest contains:
 - M1 (manifest reference)
 - D5 (direct data file reference)

 - DV1 (delete vector reference)
- Manifest M1 has a child data file D4
- Delete Vector DV1 applies to M1
- All children of the Root Manifest are positioned at the same level in a transparent subgroup

Both diagrams maintain the same styling with transparent subgroups, left-aligned table text, and
consistent color coding. This clearly demonstrates how the new Root Manifest structure enables
more sophisticated metadata operations while maintaining the core functionality of the original
Manifest List approach.

User

place both diagrams in the same graph and remove the Data Files

Cursor

Perfect! I've combined both diagrams into a single graph showing the comparison between the
old and new Iceberg metadata structures, and removed all the individual data file nodes (D1,
D2, D3, D4).

The combined diagram shows:

Left side - Snapshot V3 (Old Structure):
- Simple hierarchy: Snapshot V3 → Manifest List → Manifest M1
- Manifest List can only contain manifest references

Right side - Snapshot V4 (New Structure):
- Flexible hierarchy: Snapshot V4 → Root Manifest with multiple child types
- Root Manifest contains M1, D5 (direct data file), and DV1 (delete vector)
- Both snapshots reference the same Manifest M1

Key elements:
- Both structures share the same Manifest M1 (showing efficient reuse)
- Manifest M1 shows its contents in table format (D1, D2, D3)
- Delete Vector DV1 applies to M1 with dotted line
- All children of the manifests are positioned at the same level in a transparent subgroup
- Individual data file nodes are removed, focusing on metadata structure

This side-by-side comparison clearly demonstrates the evolution from the limited Manifest List to
the more powerful Root Manifest approach while maintaining clean visual organization.

User

Never mind keep them separate

Cursor

Perfect! I've created two separate diagrams in the same style, without the individual data file
nodes:

First diagram - Snapshot V3 (Old Structure):
- Simple hierarchy: Snapshot V3 → Manifest List → Manifest M1
- Clean, linear structure with limited capabilities
- Manifest M1 shows its data file contents in table format

Second diagram - Snapshot V4 (New Structure):
- Flexible hierarchy: Snapshot V4 → Root Manifest with multiple child types
- Root Manifest contains:
 - M1 (manifest reference)
 - D5 (direct data file reference)
 - DV1 (delete vector reference)
- All children positioned at the same level in a transparent subgroup
- Delete Vector DV1 applies to Manifest M1
- Demonstrates the enhanced capabilities of the Root Manifest approach

Both diagrams maintain consistent styling and clearly show the evolution from the restrictive
Manifest List to the more powerful Root Manifest structure.

User

A new Diagram in the same style, do not make explicit nodes for data files

In Snapshot 1 we have a Root Manifest A with existing Data Manifest M1 and existing Delete
Manifest M2. M1 contains entries for D1, D2, and D3. M2 contains an entry for a Delete Vector
removing rows in D2.

In Snapshot 2 we delete more rows from D2 by adding a new Delete Vector in a new Delete
Manifest M3.

In Snapshot 3 we delete even more rows from D2 by adding two Delete Vectors to Delete
Manifest M4. One representing the deletes present in Snapshot 1 and 2 and one representing
the deletes added in snapshot 3. Delete Manifests M2 and M3 are removed.

Cursor

I've created a diagram showing the evolution of delete manifests across three snapshots. This
demonstrates how Iceberg manages and consolidates delete metadata over time:

Snapshot 1:
- Root Manifest A contains Data Manifest M1 and Delete Manifest M2
- M1 contains data files D1, D2, D3
- M2 contains DV1 (delete vector targeting D2)

Snapshot 2:
- Root Manifest B preserves M1 and M2, adds new Delete Manifest M3
- M3 contains DV2 (additional delete vector for D2)
- Shows accumulation of delete metadata

Snapshot 3:
- Root Manifest C keeps M1 but consolidates delete metadata
- New Delete Manifest M4 contains:
 - DV3 (representing consolidated deletes from Snapshots 1&2)
 - DV4 (new deletes added in Snapshot 3)
- M2 and M3 are removed, showing cleanup of fragmented delete metadata

Key features:
- All delete manifests apply to the same Data Manifest M1 (shown with dotted lines)
- Demonstrates metadata consolidation - multiple delete manifests merged into one
- Shows how Iceberg optimizes delete metadata over time
- All manifest children positioned at the same level in transparent subgroups
- No explicit data file nodes, keeping focus on metadata structure

This pattern shows how Iceberg can efficiently manage growing delete metadata by periodically
consolidating multiple delete manifests into fewer, more comprehensive ones.

User

DV3 is Existing

Cursor

Perfect! I've updated Delete Manifest M4 to show DV3 as "EXISTING" instead of "ADDED". This
accurately reflects that:

Delete Manifest M4 now shows:
- DV3 | EXISTING (consolidated delete vectors from Snapshots 1 & 2)
- DV4 | ADDED (new delete vectors added in Snapshot 3)

This makes logical sense because DV3 represents the consolidation of existing delete
information from the previous snapshots, while only DV4 represents truly new delete operations
introduced in Snapshot 3. The diagram now correctly distinguishes between reorganized
existing data and newly added data in the consolidation process.

%%{init: {"flowchart": {"htmlLabels": true}, "theme": "base", "themeVariables": {"primaryColor":
"#ffffff", "primaryTextColor": "#000000", "primaryBorderColor": "#000000", "lineColor":
"#000000", "sectionBkColor": "transparent", "altSectionBkColor": "transparent", "gridColor":
"#000000", "secondaryColor": "#ffffff", "tertiaryColor": "#ffffff", "clusterBkg": "transparent",
"clusterBorder": "transparent"}}}%%
graph TD
 subgraph " "
 S1["Snapshot 1"]
 S2["Snapshot 2"]
 S3["Snapshot 3"]
 S4["Snapshot 4"]
 end

 subgraph " "
 RMA["<table><tr><td colspan='2' style='text-align:left'>Root Manifest
A</td></tr><tr><td style='text-align:left'>M1</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 RMB["<table><tr><td colspan='2' style='text-align:left'>Root Manifest
B</td></tr><tr><td style='text-align:left'>M1</td><td
style='text-align:left'>EXISTING</td></tr><tr><td style='text-align:left'>DV1</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 RMC["<table><tr><td colspan='2' style='text-align:left'>Root Manifest
C</td></tr><tr><td style='text-align:left'>M1</td><td
style='text-align:left'>EXISTING</td></tr><tr><td style='text-align:left'>DV1</td><td
style='text-align:left'>EXISTING</td></tr><tr><td style='text-align:left'>DV2</td><td
style='text-align:left'>ADDED</td></tr></table>"]

 RMD["<table><tr><td colspan='2' style='text-align:left'>Root Manifest
D</td></tr><tr><td style='text-align:left'>M1</td><td
style='text-align:left'>EXISTING</td></tr><tr><td style='text-align:left'>DV3</td><td
style='text-align:left'>EXISTING</td></tr><tr><td style='text-align:left'>D4</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 end

 subgraph " "
 DM1["<table><tr><td colspan='2' style='text-align:left'>Data Manifest
M1</td></tr><tr><td style='text-align:left'>D1</td><td
style='text-align:left'>ADDED</td></tr><tr><td style='text-align:left'>D2</td><td
style='text-align:left'>ADDED</td></tr><tr><td style='text-align:left'>D3</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 DV1["<table><tr><td colspan='2' style='text-align:left'>Delete Vector
DV1</td></tr><tr><td style='text-align:left'>1</td><td
style='text-align:left'></td></tr></table>"]
 DV2["<table><tr><td colspan='2' style='text-align:left'>Delete Vector
DV2</td></tr><tr><td style='text-align:left'>2</td><td
style='text-align:left'></td></tr></table>"]
 DV3["<table><tr><td colspan='2' style='text-align:left'>Delete Vector
DV3</td></tr><tr><td style='text-align:left'>1</td><td style='text-align:left'></td></tr><tr><td
style='text-align:left'>2</td><td style='text-align:left'></td></tr></table>"]
 end

 S1 --> RMA
 S2 --> RMB
 S3 --> RMC
 S4 --> RMD
 RMA --> DM1
 RMB --> DM1
 RMB --> DV1
 RMC --> DV1
 RMC --> DM1
 RMC --> DV2
 RMD --> DM1
 RMD --> DV3
 DV1 -.->|applies to| DM1
 DV2 -.->|applies to| DM1
 DV3 -.->|applies to| DM1

 classDef snapshot fill:#e1f5fe,stroke:#01579b,stroke-width:2px
 classDef rootManifest fill:#f3e5f5,stroke:#4a148c,stroke-width:2px
 classDef dataManifest fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px
 classDef dataFile fill:#fff8e1,stroke:#f57f17,stroke-width:2px

 classDef deleteVector fill:#ffebee,stroke:#c62828,stroke-width:2px

 class S1,S2,S3,S4 snapshot
 class RMA,RMB,RMC,RMD rootManifest
 class DM1 dataManifest
 class DV1,DV2,DV3 deleteVector
%%{init: {"flowchart": {"htmlLabels": true}, "theme": "base", "themeVariables": {"primaryColor":
"#ffffff", "primaryTextColor": "#000000", "primaryBorderColor": "#000000", "lineColor":
"#000000", "sectionBkColor": "transparent", "altSectionBkColor": "transparent", "gridColor":
"#000000", "secondaryColor": "#ffffff", "tertiaryColor": "#ffffff", "clusterBkg": "transparent",
"clusterBorder": "transparent"}}}%%
graph TD
 subgraph " "
 S1["Snapshot 1"]
 S2["Snapshot 2"]
 end

 subgraph " "
 RMA["<table><tr><td colspan='2' style='text-align:left; vertical-align: middle;'>Root
Manifest A</td></tr><tr><td style='text-align:left; vertical-align: middle;'>M1</td><td
style='text-align:left; vertical-align: middle;'>EXISTING</td></tr><tr><td style='text-align:left;
vertical-align: middle;'>M2</td><td style='text-align:left; vertical-align:
middle;'>EXISTING</td></tr><tr><td style='text-align:left; vertical-align: middle;'>DV1</td><td
style='text-align:left; vertical-align: middle;'>EXISTING</td></tr><tr><td style='text-align:left;
vertical-align: middle;'>DV2</td><td style='text-align:left; vertical-align:
middle;'>EXISTING</td></tr></table>"]
 RMB["<table><tr><td colspan='2' style='text-align:left; vertical-align: middle;'>Root
Manifest B</td></tr><tr><td style='text-align:left; vertical-align: middle;'>M3</td><td
style='text-align:left; vertical-align: middle;'>EXISTING</td></tr><tr><td style='text-align:left;
vertical-align: middle;'>D7</td><td style='text-align:left; vertical-align:
middle;'>ADDED</td></tr></table>"]
 end

 subgraph manifest_children [" "]
 DM1["<table><tr><td colspan='2' style='text-align:left; vertical-align: middle;'>Data
Manifest M1</td></tr><tr><td style='text-align:left; vertical-align: middle;'>D1</td><td
style='text-align:left; vertical-align: middle;'>ADDED</td></tr><tr><td style='text-align:left;
vertical-align: middle;'>D2</td><td style='text-align:left; vertical-align:
middle;'>ADDED</td></tr><tr><td style='text-align:left; vertical-align: middle;'>D3</td><td
style='text-align:left; vertical-align: middle;'>ADDED</td></tr></table>"]
 DV1["<table><tr><td colspan='2' style='text-align:left; vertical-align: middle;'>Manifest
DV1</td></tr><tr><td style='text-align:left; vertical-align: middle;'>0</td><td
style='text-align:left; vertical-align: middle;'></td></tr></table>"]

 DM2["<table><tr><td colspan='2' style='text-align:left; vertical-align: middle;'>Data
Manifest M2</td></tr><tr><td style='text-align:left; vertical-align: middle;'>D4</td><td
style='text-align:left; vertical-align: middle;'>ADDED</td></tr><tr><td style='text-align:left;
vertical-align: middle;'>D5</td><td style='text-align:left; vertical-align:
middle;'>ADDED</td></tr><tr><td style='text-align:left; vertical-align: middle;'>D6</td><td
style='text-align:left; vertical-align: middle;'>ADDED</td></tr></table>"]
 DV2["<table><tr><td colspan='2' style='text-align:left; vertical-align: middle;'>Manifest
DV2</td></tr><tr><td style='text-align:left; vertical-align: middle;'>1</td><td
style='text-align:left; vertical-align: middle;'></td></tr></table>"]
 DM3["<table><tr><td colspan='2' style='text-align:left; vertical-align: middle;'>Data
Manifest M3</td></tr><tr><td style='text-align:left; vertical-align: middle;'>D2</td><td
style='text-align:left; vertical-align: middle;'>EXISTING</td></tr><tr><td style='text-align:left;
vertical-align: middle;'>D3</td><td style='text-align:left; vertical-align:
middle;'>EXISTING</td></tr><tr><td style='text-align:left; vertical-align: middle;'>D4</td><td
style='text-align:left; vertical-align: middle;'>EXISTING</td></tr><tr><td style='text-align:left;
vertical-align: middle;'>D6</td><td style='text-align:left; vertical-align:
middle;'>EXISTING</td></tr></table>"]
 D7["Data File D7"]
 end

 S1 --> RMA
 S2 --> RMB
 RMA --> DM1
 RMA --> DV1
 RMA --> DM2
 RMA --> DV2
 RMB --> DM3
 RMB --> D7
 DV1 -.->|applies to M1| DM1
 DV2 -.->|applies to M2| DM2

 classDef snapshot fill:#e1f5fe,stroke:#01579b,stroke-width:2px
 classDef rootManifest fill:#f3e5f5,stroke:#4a148c,stroke-width:2px
 classDef dataManifest fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px
 classDef dataFile fill:#fff8e1,stroke:#f57f17,stroke-width:2px
 classDef manifestDeleteVector fill:#fed7aa,stroke:#ea580c,stroke-width:2px

 class S1,S2 snapshot
 class RMA,RMB rootManifest
 class DM1,DM2,DM3 dataManifest
 class D7 dataFile
 class DV1,DV2 manifestDeleteVector%%{init: {"flowchart": {"htmlLabels": true}, "theme":
"base", "themeVariables": {"primaryColor": "#ffffff", "primaryTextColor": "#000000",
"primaryBorderColor": "#000000", "lineColor": "#000000", "sectionBkColor": "transparent",

"altSectionBkColor": "transparent", "gridColor": "#000000", "secondaryColor": "#ffffff",
"tertiaryColor": "#ffffff", "clusterBkg": "transparent", "clusterBorder": "transparent"}}}%%
graph TD
 subgraph " "
 S1["Snapshot 1"]
 S2["Snapshot 2"]
 S3["Snapshot 3"]
 end

 subgraph " "
 RMA["<table><tr><td colspan='2' style='text-align:left'>Root Manifest
A</td></tr><tr><td style='text-align:left'>M1</td><td
style='text-align:left'>EXISTING</td></tr><tr><td style='text-align:left'>M2</td><td
style='text-align:left'>EXISTING</td></tr></table>"]
 RMB["<table><tr><td colspan='2' style='text-align:left'>Root Manifest
B</td></tr><tr><td style='text-align:left'>M1</td><td
style='text-align:left'>EXISTING</td></tr><tr><td style='text-align:left'>M2</td><td
style='text-align:left'>EXISTING</td></tr><tr><td style='text-align:left'>M3</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 RMC["<table><tr><td colspan='2' style='text-align:left'>Root Manifest
C</td></tr><tr><td style='text-align:left'>M1</td><td
style='text-align:left'>EXISTING</td></tr><tr><td style='text-align:left'>M4</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 end

 subgraph manifest_children [" "]
 DM1["<table><tr><td colspan='2' style='text-align:left'>Data Manifest
M1</td></tr><tr><td style='text-align:left'>D1</td><td
style='text-align:left'>ADDED</td></tr><tr><td style='text-align:left'>D2</td><td
style='text-align:left'>ADDED</td></tr><tr><td style='text-align:left'>D3</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 DLM2["<table><tr><td colspan='2' style='text-align:left'>Delete Manifest
M2</td></tr><tr><td style='text-align:left'>DV1</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 DLM3["<table><tr><td colspan='2' style='text-align:left'>Delete Manifest
M3</td></tr><tr><td style='text-align:left'>DV2</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 DLM4["<table><tr><td colspan='2' style='text-align:left'>Delete Manifest
M4</td></tr><tr><td style='text-align:left'>DV3</td><td
style='text-align:left'>EXISTING</td></tr><tr><td style='text-align:left'>DV4</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 end

 S1 --> RMA

 S2 --> RMB
 S3 --> RMC
 RMA --> DM1
 RMA --> DLM2
 RMB --> DM1
 RMB --> DLM2
 RMB --> DLM3
 RMC --> DM1
 RMC --> DLM4
 DLM2 -.->|applies to| DM1
 DLM3 -.->|applies to| DM1
 DLM4 -.->|applies to| DM1

 classDef snapshot fill:#e1f5fe,stroke:#01579b,stroke-width:2px
 classDef rootManifest fill:#f3e5f5,stroke:#4a148c,stroke-width:2px
 classDef dataManifest fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px
 classDef deleteManifest fill:#ffebee,stroke:#c62828,stroke-width:2px

 class S1,S2,S3 snapshot
 class RMA,RMB,RMC rootManifest
 class DM1 dataManifest
 class DLM2,DLM3,DLM4 deleteManifest%%{init: {"flowchart": {"htmlLabels": true}, "theme":
"base", "themeVariables": {"primaryColor": "#ffffff", "primaryTextColor": "#000000",
"primaryBorderColor": "#000000", "lineColor": "#000000", "sectionBkColor": "transparent",
"altSectionBkColor": "transparent", "gridColor": "#000000", "secondaryColor": "#ffffff",
"tertiaryColor": "#ffffff", "clusterBkg": "transparent", "clusterBorder": "transparent"}}}%%
graph TD
 subgraph " "
 S4["Snapshot V4"]
 end

 subgraph " "
 RM["<table><tr><td colspan='2' style='text-align:left; vertical-align: middle;'>Root
Manifest</td></tr><tr><td style='text-align:left; vertical-align: middle;'>M1</td><td
style='text-align:left; vertical-align: middle;'>ADDED</td></tr><tr><td style='text-align:left;
vertical-align: middle;'>D5</td><td style='text-align:left; vertical-align:
middle;'>ADDED</td></tr><tr><td style='text-align:left; vertical-align: middle;'>DV1</td><td
style='text-align:left; vertical-align: middle;'>ADDED</td></tr></table>"]
 end

 subgraph manifest_children [" "]
 DM1["<table><tr><td colspan='2' style='text-align:left; vertical-align: middle;'>Manifest
M1</td></tr><tr><td style='text-align:left; vertical-align: middle;'>D1</td><td
style='text-align:left; vertical-align: middle;'>ADDED</td></tr><tr><td style='text-align:left;

vertical-align: middle;'>D2</td><td style='text-align:left; vertical-align:
middle;'>ADDED</td></tr><tr><td style='text-align:left; vertical-align: middle;'>D3</td><td
style='text-align:left; vertical-align: middle;'>ADDED</td></tr></table>"]
 D5["Data File D5"]
 DV1["<table><tr><td colspan='2' style='text-align:left; vertical-align: middle;'>Manifest
DV1</td></tr><tr><td style='text-align:left; vertical-align: middle;'>1</td><td
style='text-align:left; vertical-align: middle;'></td></tr></table>"]
 end

 S4 --> RM
 RM --> DM1
 RM --> D5
 RM --> DV1
 DV1 -.->|applies to M1| DM1

 classDef snapshot fill:#e1f5fe,stroke:#01579b,stroke-width:2px
 classDef rootManifest fill:#f3e5f5,stroke:#4a148c,stroke-width:2px
 classDef dataManifest fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px
 classDef dataFile fill:#fff8e1,stroke:#f57f17,stroke-width:2px
 classDef manifestDeleteVector fill:#fed7aa,stroke:#ea580c,stroke-width:2px

 class S4 snapshot
 class RM rootManifest
 class DM1 dataManifest
 class D5 dataFile
 class DV1 manifestDeleteVector%%{init: {"flowchart": {"htmlLabels": true}, "theme": "base",
"themeVariables": {"primaryColor": "#ffffff", "primaryTextColor": "#000000", "primaryBorderColor":
"#000000", "lineColor": "#000000", "sectionBkColor": "transparent", "altSectionBkColor":
"transparent", "gridColor": "#000000", "secondaryColor": "#ffffff", "tertiaryColor": "#ffffff",
"clusterBkg": "transparent", "clusterBorder": "transparent"}}}%%
graph TD
 subgraph " "
 S3["Snapshot V3"]
 end

 subgraph " "
 ML["<table><tr><td colspan='2' style='text-align:left'>Manifest List</td></tr><tr><td
style='text-align:left'>M1</td><td style='text-align:left'>ADDED</td></tr></table>"]
 end

 subgraph " "
 DM1["<table><tr><td colspan='2' style='text-align:left'>Manifest
M1</td></tr><tr><td style='text-align:left'>D1</td><td
style='text-align:left'>ADDED</td></tr><tr><td style='text-align:left'>D2</td><td

style='text-align:left'>ADDED</td></tr><tr><td style='text-align:left'>D3</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 end

 S3 --> ML
 ML --> DM1

 classDef snapshot fill:#e1f5fe,stroke:#01579b,stroke-width:2px
 classDef manifestList fill:#fff3e0,stroke:#e65100,stroke-width:2px
 classDef dataManifest fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px

 class S3 snapshot
 class ML manifestList
 class DM1 dataManifest%%{init: {"flowchart": {"htmlLabels": true}, "theme": "base",
"themeVariables": {"primaryColor": "#ffffff", "primaryTextColor": "#000000", "primaryBorderColor":
"#000000", "lineColor": "#000000", "sectionBkColor": "transparent", "altSectionBkColor":
"transparent", "gridColor": "#000000", "secondaryColor": "#ffffff", "tertiaryColor": "#ffffff",
"clusterBkg": "transparent", "clusterBorder": "transparent"}}}%%
graph TD
 subgraph " "
 S1["Snapshot 1"]
 S2["Snapshot 2"]
 end

 subgraph " "
 RMA["<table><tr><td colspan='2' style='text-align:left'>Root Manifest
A</td></tr><tr><td style='text-align:left'>M1</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 RMB["<table><tr><td colspan='2' style='text-align:left'>Root Manifest
B</td></tr><tr><td style='text-align:left'>M1</td><td
style='text-align:left'>EXISTING</td></tr><tr><td style='text-align:left'>DV1</td><td
style='text-align:left'>ADDED</td></tr><tr><td style='text-align:left'>D4</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 end

 subgraph manifest_children [" "]
 DM1["<table><tr><td colspan='2' style='text-align:left'>Data Manifest
M1</td></tr><tr><td style='text-align:left'>D1</td><td
style='text-align:left'>ADDED</td></tr><tr><td style='text-align:left'>D2</td><td
style='text-align:left'>ADDED</td></tr><tr><td style='text-align:left'>D3</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 DV1["<table><tr><td colspan='2' style='text-align:left'>Manifest
DV1</td></tr><tr><td style='text-align:left'>1</td><td
style='text-align:left'></td></tr></table>"]

 end

 S1 --> RMA
 S2 --> RMB
 RMA --> DM1
 RMB --> DM1
 RMB --> DV1
 DV1 -.->|applies to M1| DM1

 classDef snapshot fill:#e1f5fe,stroke:#01579b,stroke-width:2px
 classDef rootManifest fill:#f3e5f5,stroke:#4a148c,stroke-width:2px
 classDef dataManifest fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px
 classDef manifestDeleteVector fill:#fed7aa,stroke:#ea580c,stroke-width:2px

 class S1,S2 snapshot
 class RMA,RMB rootManifest
 class DM1 dataManifest
 class DV1 manifestDeleteVector%%{init: {"flowchart": {"htmlLabels": true}, "theme": "base",
"themeVariables": {"primaryColor": "#ffffff", "primaryTextColor": "#000000", "primaryBorderColor":
"#000000", "lineColor": "#000000", "sectionBkColor": "transparent", "altSectionBkColor":
"transparent", "gridColor": "#000000", "secondaryColor": "#ffffff", "tertiaryColor": "#ffffff",
"clusterBkg": "transparent", "clusterBorder": "transparent"}}}%%
graph TD
 subgraph " "
 S1["Snapshot 1"]
 S2["Snapshot 2"]
 end

 subgraph " "
 RMA["<table><tr><td colspan='2' style='text-align:left; vertical-align: middle;'>Root
Manifest A</td></tr><tr><td style='text-align:left; vertical-align: middle;'>M1</td><td
style='text-align:left; vertical-align: middle;'>ADDED</td></tr></table>"]
 RMB["<table><tr><td colspan='2' style='text-align:left; vertical-align: middle;'>Root
Manifest B</td></tr><tr><td style='text-align:left; vertical-align: middle;'>M1</td><td
style='text-align:left; vertical-align: middle;'>EXISTING</td></tr><tr><td style='text-align:left;
vertical-align: middle;'>DV1</td><td style='text-align:left; vertical-align:
middle;'>ADDED</td></tr></table>"]
 end

 subgraph manifest_children [" "]
 DM1["<table><tr><td colspan='2' style='text-align:left; vertical-align: middle;'>Data
Manifest M1</td></tr><tr><td style='text-align:left; vertical-align: middle;'>D1</td><td
style='text-align:left; vertical-align: middle;'>ADDED</td></tr><tr><td style='text-align:left;
vertical-align: middle;'>D2</td><td style='text-align:left; vertical-align:

middle;'>ADDED</td></tr><tr><td style='text-align:left; vertical-align: middle;'>D3</td><td
style='text-align:left; vertical-align: middle;'>ADDED</td></tr></table>"]
 DV1["<table><tr><td colspan='2' style='text-align:left; vertical-align: middle;'>Manifest
DV1</td></tr><tr><td style='text-align:left; vertical-align: middle;'>1</td><td
style='text-align:left; vertical-align: middle;'></td></tr></table>"]
 end

 S1 --> RMA
 S2 --> RMB
 RMA --> DM1
 RMB --> DM1
 RMB --> DV1
 DV1 -.->|applies to M1| DM1

 classDef snapshot fill:#e1f5fe,stroke:#01579b,stroke-width:2px
 classDef rootManifest fill:#f3e5f5,stroke:#4a148c,stroke-width:2px
 classDef dataManifest fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px
 classDef manifestDeleteVector fill:#fed7aa,stroke:#ea580c,stroke-width:2px

 class S1,S2 snapshot
 class RMA,RMB rootManifest
 class DM1 dataManifest
 class DV1 manifestDeleteVector%%{init: {"flowchart": {"htmlLabels": true}, "theme": "base",
"themeVariables": {"primaryColor": "#ffffff", "primaryTextColor": "#000000", "primaryBorderColor":
"#000000", "lineColor": "#000000", "sectionBkColor": "transparent", "altSectionBkColor":
"transparent", "gridColor": "#000000", "secondaryColor": "#ffffff", "tertiaryColor": "#ffffff",
"clusterBkg": "transparent", "clusterBorder": "transparent"}}}%%
graph TD
 subgraph " "
 S1["Snapshot 1"]
 S2["Snapshot 2"]
 end

 subgraph " "
 RMA["<table><tr><td colspan='2' style='text-align:left; vertical-align: middle;'>Root
Manifest A</td></tr><tr><td style='text-align:left; vertical-align: middle;'>D1</td><td
style='text-align:left; vertical-align: middle;'>EXISTING</td></tr><tr><td style='text-align:left;
vertical-align: middle;'>D2</td><td style='text-align:left; vertical-align:
middle;'>EXISTING</td></tr></table>"]
 RMB["<table><tr><td colspan='2' style='text-align:left; vertical-align: middle;'>Root
Manifest B</td></tr><tr><td style='text-align:left; vertical-align: middle;'>D1</td><td
style='text-align:left; vertical-align: middle;'>DELETED</td></tr><tr><td style='text-align:left;
vertical-align: middle;'>D2</td><td style='text-align:left; vertical-align:
middle;'>EXISTING</td></tr></table>"]

 end

 S1 --> RMA
 S2 --> RMB

 classDef snapshot fill:#e1f5fe,stroke:#01579b,stroke-width:2px
 classDef rootManifest fill:#f3e5f5,stroke:#4a148c,stroke-width:2px

 class S1,S2 snapshot
 class RMA,RMB rootManifest%%{init: {"flowchart": {"htmlLabels": true}, "theme": "base",
"themeVariables": {"primaryColor": "#ffffff", "primaryTextColor": "#000000", "primaryBorderColor":
"#000000", "lineColor": "#000000", "sectionBkColor": "transparent", "altSectionBkColor":
"transparent", "gridColor": "#000000", "secondaryColor": "#ffffff", "tertiaryColor": "#ffffff",
"clusterBkg": "transparent", "clusterBorder": "transparent"}}}%%
graph TD
 subgraph " "
 S1["Snapshot 1"]
 S2["Snapshot 2"]
 end

 subgraph " "
 RMA["<table><tr><td colspan='2' style='text-align:left'>Root Manifest
A</td></tr><tr><td style='text-align:left'>D1</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 RMB["<table><tr><td colspan='2' style='text-align:left'>Root Manifest
B</td></tr><tr><td style='text-align:left'>D1</td><td
style='text-align:left'>EXISTING</td></tr><tr><td style='text-align:left'>DV1</td><td
style='text-align:left'>ADDED</td></tr><tr><td style='text-align:left'>D2</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 DV1["<table><tr><td colspan='2' style='text-align:left'>Delete Vector
DV1</td></tr><tr><td style='text-align:left'>5</td><td style='text-align:left'></td></tr><tr><td
style='text-align:left'>12</td><td style='text-align:left'></td></tr></table>"]
 end

 S1 --> RMA
 S2 --> RMB
 RMB --> DV1
 DV1 -.->|applies to data file D1| RMB

 classDef snapshot fill:#e1f5fe,stroke:#01579b,stroke-width:2px
 classDef rootManifest fill:#f3e5f5,stroke:#4a148c,stroke-width:2px
 classDef deleteVector fill:#ffebee,stroke:#c62828,stroke-width:2px

 class S1,S2 snapshot

 class RMA,RMB rootManifest
 class DV1 deleteVector
%%{init: {"flowchart": {"htmlLabels": true}, "theme": "base", "themeVariables": {"primaryColor":
"#ffffff", "primaryTextColor": "#000000", "primaryBorderColor": "#000000", "lineColor":
"#000000", "sectionBkColor": "transparent", "altSectionBkColor": "transparent", "gridColor":
"#000000", "secondaryColor": "#ffffff", "tertiaryColor": "#ffffff", "clusterBkg": "transparent",
"clusterBorder": "transparent"}}}%%
graph TD
 subgraph " "
 S1["Snapshot 1"]
 S2["Snapshot 2"]
 S3["Snapshot 3"]
 end

 subgraph " "
 RMA["<table><tr><td colspan='2' style='text-align:left'>Root Manifest
A</td></tr><tr><td style='text-align:left'>D1</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 RMB["<table><tr><td colspan='2' style='text-align:left'>Root Manifest
B</td></tr><tr><td style='text-align:left'>D1</td><td
style='text-align:left'>DELETED</td></tr><tr><td style='text-align:left'>D2</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 RMC["<table><tr><td colspan='2' style='text-align:left'>Root Manifest
C</td></tr><tr><td style='text-align:left'>D2</td><td
style='text-align:left'>DELETED</td></tr><tr><td style='text-align:left'>D3</td><td
style='text-align:left'>ADDED</td></tr></table>"]
 end

 S1 --> RMA
 S2 --> RMB
 S3 --> RMC

 classDef snapshot fill:#e1f5fe,stroke:#01579b,stroke-width:2px
 classDef rootManifest fill:#f3e5f5,stroke:#4a148c,stroke-width:2px

 class S1,S2,S3 snapshot
 class RMA,RMB,RMC rootManifestgraph TD
 subgraph "Current"
 subgraph "Snapshot A"
 ML1["Manifest List"]
 DM1["Data Manifest 1"]
 DM2["Data Manifest 2"]
 DelM1["Delete Manifest 1"]
 DF1["Data Files"]

 DF2["Data Files"]
 DelF1["Delete Files"]

 ML1 --> DM1
 ML1 --> DM2
 ML1 --> DelM1
 DM1 --> DF1
 DM2 --> DF2
 DelM1 --> DelF1
 end
 end

 subgraph "Proposed"
 subgraph "Snapshot A"
 RM1["Root Manifest
(Entry Point)"]

 subgraph "Direct Entries"
 DF3["Data File 1
"]
 DV1["Delete Vector 1
"]
 end

 subgraph "Manifest Entries"
 DM3["Data Manifest
"]
 DelM2["Delete Manifest
"]
 DF4["Data Files"]
 DelF2["Delete Files"]
 end

 RM1 --> DF3
 RM1 --> DV1
 RM1 --> DM3
 RM1 --> DelM2
 DM3 --> DF4
 DelM2 --> DelF2
 end
 end

 classDef current fill:#ffebee,stroke:#c62828,stroke-width:2px
 classDef proposed fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px
 classDef difference fill:#fff3e0,stroke:#ef6c00,stroke-width:2px
 classDef highlight fill:#e1f5fe,stroke:#01579b,stroke-width:3px

 class ML1,DM1,DM2,DelM1,DF1,DF2,DelF1 current

 class RM1,DM3,DelM2,DF3,DF4,DV1,DelF2 proposed
 class RM1 highlight

(WIP Merge) Adaptive Metadata Tree

(Merging into Single File Commit Proposal)

Iceberg V4 Adaptive Metadata Tree

Amogh Jahagirdar amoghj@apache.org, Ryan Blue blue@apache.org, Anoop Johnson
anoop@apache.org, Daniel Weeks dweeks@apache.org

Background
The existing metadata structure in Iceberg consists of a manifest list as an intermediate layer
between the snapshot entry and manifest files. This manifest list provides structure and
information about the contained manifests, improving scan planning by enabling pruning based
on partition summaries (lower/upper bounds, contains null/nan). Over time, additional relevant
fields have been added to track information such as sequence numbers and row IDs.

There are a few challenges with the current metadata tree structure:

mailto:amoghj@apache.org
mailto:blue@apache.org
mailto:anoop@apache.org

1.​ High write latency since every write would need to produce new data files, new manifest,

a new manifest list containing the new manifest and produce a root level metadata file
which is atomically updated in the catalog. All of this is currently done serially. The high
write latency is most noticeable for single file commits and small tables.

2.​ High metadata storage footprint: the manifest lists and manifests are immutable and
rewritten when modified, and need to be retained during the time travel window.

3.​ High maintenance overhead: small writes produce small manifest files that need to be
compacted.

4.​ Column upper and lower bounds currently only exist at the manifest level, but do not
exist at higher levels in the tree for pruning.

Goals
1.)​ Reduce metadata write latency for small commits by introducing an adaptive metadata

tree structure which enables fast single file commits and a simple structure for small
tables, while being able to adapt and scale simply as the table grows so that Iceberg’s
planning performance is still retained at scale.

2.)​ Enable effective pruning at all levels in the tree by including aggregate column statistics
at all levels, considering new data types such as geospatial.

3.)​ Reduce the need to compact manifests
4.)​ Further improve planning performance by reading fewer small manifests and avoid 2

phase planning between data files and deletion vector files

Proposed Structure

Key Decisions and other Considerations
The following are key structural changes being proposed for the adaptive metadata tree in V4:

1.​ A single manifest structure will be used throughout the tree. There is a single root
manifest and there can be leaf manifests. Manifests can contain a limited set of contents
depending on if it's a root or a leaf manifest (this set will be elaborated below). This will
be a 2 level tree structure.

2.​ Leaf Manifest Deletion Vectors (DVs) will be added to reduce metadata write
amplification involved in rewriting manifests; these leaf manifest DVs can only exist in

root manifests and they express which positions in a leaf manifest are deleted. The leaf
manifest DVs may be stored inline or in a separate file.

3.​ Remove partition struct metadata for manifests and data files in favor of columnar stats
in manifest entries.

Each of these points are elaborated below.

Single Manifest Structure
A single manifest structure will be used in the proposed metadata tree structure where there are
2 levels, and there can be a single root manifest and leaf manifest. We still maintain separate
manifests for data files and DVs at the leaf level; the rationale of this organization is explained
later on. In this model, there’s no completely separate “manifest list” structure; the root manifest
is logically acting as that.

Manifest Type Allowed Content

Root ●​ Leaf Data Manifests
●​ Leaf Delete Manifests
●​ Leaf Manifest DVs
●​ Data Files
●​ DVs on Data Files
●​ Equality Deletes

Leaf data manifest ●​ Data Files

Leaf delete manifest ●​ DVs
●​ Equality Deletes

Why a common manifest structure throughout the tree?
The primary advantage of having a common manifest structure is around simply code reuse at
different levels of the tree. Implementations of the Iceberg V4 spec don’t need to have
completely separate manifest list readers vs manifest readers/writers. There is the additional
complexity of managing the fact that certain types of content are allowed at different levels in the
tree, but writers can be differentiated between root/leaf and that additional complexity should not
be nearly as much as the separation of manifest and manifest list that exist today.

Why limit tree depth to 2?

The reason we propose not to have unbounded hierarchies is to prevent writers from doing
things that seem performant for writers in the short term but lead to complicated reads and
maintenance.

●​ The primary issue with not bounding the levels is that writers could keep writing a top
level manifest which references the previous top level to keep having fast writes.
However, this quickly leads to a skewed tree structure, which at scale leads to tables
becoming unreadable without a flattening of manifests.

●​ With a skewed tree, parallelism on reading metadata is essentially eliminated; manifests
would have to be read in a hierarchical order. This would be a step backwards compared
to Iceberg’s planning capabilities today

●​ Lastly, the depth of the tree can be scaled up in the future if it really ends up being
required. With clear recursive implementations, we should be always able to increase
this, but for now it seems better to start with the 2-level tree.

Leaf Manifest DVs
In this new structure, we propose adding the concept of a leaf manifest DVs which expresses
positions in a leaf manifest which are deleted. We also propose that this is inlined in binary
format since these are fairly small structures. Due to the requirement that this is a 2-level
content metadata tree, only the root manifest can have these leaf manifest DVs. There can be
at most 1 leaf manifest DV for a given leaf manifest.

New data file/DV writes will target the root manifest. Beyond a threshold for a large write, entries
in root manifest would be flushed out to leaf manifests as part of the commit. The details of this
maintenance and the scaling dynamics are elaborated more in later sections since those are
inextricably linked to how we propose data and delete manifests should be laid out with affinity.

How do we track replaced or removed leaf entries with Leaf Manifest DVs?

Here we outline how inline leaf manifest DVs will be used in different write operations to track
removed entries in leaf manifests.

Replacing DVs and Data Files

Replacing DVs on data files would first involve determining which manifests contain those DVs
and which position in those manifests that need to be marked to be deleted. The same principle
applies for replacing data files. This reading of manifests is a cost that’s already incurred for
write operations in general so there’s no additional work being done here compared to the
current state.

Once the positions to replace in the affected manifests are determined:

1.​ The new data files and DVs will be written to the root manifest
2.​ Leaf manifest DVs containing the bitmap of the manifest positions which should be

marked as removed, would be produced and written to the root.

Removing Data Files

Removing a data file contained in a leaf manifest requires removing any corresponding DV to
prevent orphans. First, the position in the leaf data manifest to mark as removed will be
determined. Then if there’s a referenced DV file for the data file, then any associated delete
manifests will need to be read to determine which position in the delete manifest will be
removed. In this case, 2 leaf manifest DVs will be produced, 1 for the data manifest and 1 for
the delete manifest. These leaf manifest DVs will be merged with any existing leaf manifest DV
for those manifests and placed in the root manifest.

Why not have inline data DVs?
Data DVs are typically much larger than leaf manifest DVs. If the bitmap is dense, the data DVs
can reach several megabytes. Since this can cause metadata bloat and out of memory issues,
they are not supported.

Affinity between Data and Delete Manifests

Iceberg currently has separate manifests for data and row-level deletes. This is a flexible writing
pattern, but the downside is that readers need to join the data manifests against delete
manifests to match the data file with the DV. To reduce the cost of the two phase planning, we
propose an affinity between data and delete manifests: a delete manifest can be affiliated to
exactly one data manifest. A data manifest can have more than one affiliated delete manifest.

Flushing the data files or DVs from the root to leaf manifests will require leaf delete manifests to
be rewritten. To reduce the write amplification, we can maintain a small number of unaffiliated
delete manifests. These unaffiliated delete manifests can be read once and broadcast.

Pros:

●​ Single-pass planning: readers can do a parallel colocated association of data and delete
manifests.

●​ Statistics-based pruning works on delete manifests: we only need to open the delete
manifests of unpruned data manifests.

●​ Low write amplification: we only need to update delete manifests while updating DVs.

Cons:

●​ Large-scale deletions with low data locality (e.g. MERGE using a UUID field) can
produce large unaffiliated delete manifests or rewrite of a large number of affiliated
delete manifests.

A variant of this approach is to do physical colocation of the data files and the DVs as separate
rows in the same leaf manifest file. The advantage is fewer manifest files and simplified
planning, as leaf manifests are self-contained. This option was discarded because of higher
write amplification to replace DVs, as the data files need to be rewritten as well.

How does planning work?

1.​ Read the root manifest to determine any leaf manifests to read as well as any applicable
data/delete files in the root manifest.

2.​ Load leaf manifest DVs for the leaf manifests to read
3.​ Leaf data manifests along with their associated delete manifests, along with any

additional unaffiliated delete manifests will be read, filtering out any deleted positions in
the leaf manifest DVs or any manifest entries marked as deleted. Note that for any leaf
data and delete manifests with affinity, both manifests can be read in parallel.

Alternate approach: No affinity between data and delete manifests (Existing behavior)
Pros:

●​ Lowest write amplification.

Cons:

●​ Expensive join operation during reads.
●​ No statistics-based pruning for delete manifests.

Alternate approach: Unified Manifests: Manifest entry contains Data File, DV Pair

In this approach, we do not have the separation between data and delete manifests. Each
manifest entry has the data file and its DV.

Pros:

●​ Fast single-pass planning.

Cons:

●​ Read amplification: changing a DV requires reading the associated statistics for the data
files so that they can be copied.

●​ Write amplification: changing a DV requires copying the data files and associated
statistics.

Metadata Tree Maintenance

The data files and DVs in the root manifest will be flushed to new leaf manifests. The flushing
will be based on configurable thresholds on the maximum number of data files and DVs that can
be present in the root node: we propose separate thresholds for data files and DVs, as the
storage footprint is different. Ideally the time to do I/O on the root node should be close to the
round trip latency of cloud storage systems. Past this point, the CoW at the root level will be so
expensive relative to the size of the write and compromise any future small writes; it makes
sense to flush to a leaf manifest at this point.

If there are many small leaf manifests, periodic metadata maintenance can coalesce them to
optimize scan performance.

V4 content entry structure

Field ID Name Type Required or Optional Description

134 type int required int with
meaning:
0: DATA
1: POSITION_DELETE
2: EQUALITY_DELETE
3: DATA_MANIFEST
4: DELETE_MANIFEST
5: MANIFEST_DV

Type of content stored by
the data file: data, equality
deletes, or position deletes
(all v1 files are data files).
Content types 3, 4 and 5,
can only be defined in the
root manifest.

100 location string required Location of the file.

5 version_info struct optional See version_info struct
below. Groups information
like status, and snapshot,
sequence number

147 deletion_vector struct optional See deletion_vector struct
below. Must be defined if
content type is 1 or 5. Must
be null for all other types.

147 partition_spec_id int required ID of partition spec used to
write manifest or data/delete
files.

140 sort_order_id int optional ID representing sort order
for this file. Can only be set
if content_type is 0.

103 record_count long required Number of records in this
file, or the cardinality of a
deletion vector

104 file_size_in_bytes long optional Total file size in bytes.
Must be defined if location
is defined

10000 (individual
fields in

column_stats struct optional Stats struct
 Column Stats Improv…

https://docs.google.com/document/d/1uvbrwwAJW2TgsnoaIcwAFpjbhHkBUL5wY_24nKgtt9I/edit?tab=t.0
https://docs.google.com/document/d/1in8mi4xohkvIK7lUZeDen_2boU-3PNHoh8tYhx2bQ8s/edit?tab=t.0#heading=h.r1q4v52q62sv
https://docs.google.com/document/d/1in8mi4xohkvIK7lUZeDen_2boU-3PNHoh8tYhx2bQ8s/edit?tab=t.0#heading=h.jmoazv73fchm

column_stats
struct will have
their own IDs)

521 manifest_stats struct optional Manifest stats struct
containing
added_files_count (504),
existing_files_count (505),
deleted_files_count (506),
added_rows_count (512),
existing_rows_count (513),
deleted_rows_count (514),
min_sequence_number(51
6)

Must be set if content_type
is 3 or 4, otherwise must
be null

143 referenced_file string optional Location of data file that a
DV references if
content_type is 1 or 5.

Location of affiliated data
manifest if content_type
is 4 or null if delete manifest
is unaffiliated.

131 key_metadata binary optional Implementation-specific key
metadata for encryption

132 split_offsets list<133:
long>

optional Split offsets for the data file.
For example, all row group
offsets in a Parquet file.
Must be sorted ascending

135 equality_ids list<136:
int>

optional Field ids used to determine
row equality in equality
delete files. Required when
content=2 and must be null
otherwise. Fields with ids
listed in this column must be
present in the delete file

142 first_row_id long optional The _row_id for the first
row in the data file if content
is 0. If content is 3, this is
the starting _row_id to
assign to rows added by
ADDED data files. See First
Row ID Inheritance

https://iceberg.apache.org/spec/#first-row-id-inheritance
https://iceberg.apache.org/spec/#first-row-id-inheritance

V4 content entry version_info struct

0 status int with
meaning: 0:
EXISTING 1:
ADDED 2:
DELETE

required Carried over from current
format: Used to track
additions and deletions of
any entries including leaf
manifests in the root.
Deleted entries are
required when the
snapshot has a non-null
parent-id. Deletes are not
used in scans.

1 snapshot_id long optional Carried over from current
format:
Snapshot ID where the file
was added, or deleted if
status is 2. Inherited when
null.

3 sequence_numbe
r

long optional Carried over from current
format: Data sequence
number of the file.
Inherited in when null and
status is 1 (added). Must
be equal to
file_sequence_number if
type is 3 or 4.

4 file_sequence_nu
mber

long optional File sequence number
indicating when the file
was added. Inherited
when null and status is
added. Must be equal to
sequence_number if type
is 3 or 4.

V4 content entry deletion_vector struct

144 offset long optional The offset in the file where
the content starts.

145 size_in_bytes long optional The length of a referenced
content stored in the file;
required if content_offset

is present.

146 inline_content binary optional Serialized bitmap for inline
DVs.

V4 Manifest Key Value Metadata

Name Type Required or Optional Description

format-version string required Iceberg Table format version used
when writing the manifest

content string required Content being tracked by manifest.
Must be data, delete, or root

Note, as seen in the table we are proposing to remove the serialized schema and spec from
key/value metadata in V4 since those fields can add significant overhead without much value
considering we can always determine those from their corresponding IDs.

How existing manifest list Fields map to Proposed V4 content entry fields

Manifest list field V4 content entry field Rationale or description

manifest_path location Shared location field for data
files, DVs, equality deletes
and manifests.

manifest_length file_size_in_bytes Shared file size field for data
files, DVs,
Equality deletes, and
manifests

partition_spec_id partition_spec_id Still require partition spec for
equality delete matching

content type Renamed to type since this is
just an enumeration, and the
original name of content was
misleading that it contained
the actual content

sequence_number version_info.sequence_number Moved to version_info
structure

added_snapshot_id version_info.snapshot_id Shared with snapshot_id

min_sequence_number manifest_stats.min_sequence_num
ber

Moved to manifest_stats
struct in content entry

added_files_count manifest_stats.added_files_count Moved to manifest_stats
struct in content entry

existing_files_count manifest_stats.existing_files_count Moved to manifest_stats
struct in content entry

deleted_files_count manifest_stats.deleted_files_count Moved to manifest_stats
struct in content entry.

added_rows_count manifest_stats.added_rows_count Moved to manifest_stats
struct in content entry.

existing_rows_count manifest_stats.existing_rows_count Moved to manifest_stats
struct in content entry.

deleted_rows_count manifest_stats.deleted_rows_count
s

Moved to manifest_stats
struct in content entry

partitions REMOVED Relocated info to column
stats. General data filtering
will be performed rather than
specific partition filters
lower_bound -> lower_bound
upper_bound -> upper_bound
contains_null -> null_count
contains_nan -> nan_count

key_metadata key_metadata Shared with
content_entry.key_metadata

first_row_id first_row_id First row ID is now set on
manifest entry so it can be
shared across entries for data
files and entries which are
data manifests

How existing manifest fields map to Proposed V4 content entry fields

Manifest Entry field V4 content entry field Rationale or description

data_file No separate struct element, the
entire record for an entry in a

Manifest entries now have
more generic content than prior

V4 manifest will now be
referred to as a content entry.

versions. An entry can either be
a data file, DV, equality delete
or a data/delete manifest. As a
result, the entire structure of a
record in a manifest has been
renamed to content entry.

status version_info.status

snapshot_id version_info.snapshot_id

sequence_number version_info.sequence_number (data sequence number)

file_sequence_number version_info.file_sequence_nu
mber

data_file.file_path location Renamed, same ID

data_file.file_format file_format (Parquet, Avro, ORC, Puffin)

data_file.record_count record_count

data_file.file_size_in_bytes file_size_in_bytes

data_file.column_sizes REMOVED Replaced by column stats
(avg/max uncompressed size)

data_file.value_counts REMOVED Replaced by column stats
value_count

data_file.null_value_counts REMOVED Replaced by column stats
null_count

data_file.nan_value_counts REMOVED Replaced by column stats
nan_count (optional)

data_file.lower_bounds REMOVED Replaced by column stats
lower_bound

data_file.upper_bounds REMOVED Replaced by column stats
upper_bound

data_file.partition REMOVED Represented in column stats
(need to support translation for
equality deletes)Represented in
column stats (need to support
translation for equality deletes)

data_file.key_metadata key_metadata Carried over, still needed for
encryption

data_file.split_offsets split_offsets Carried over

data_file.sort_order_id sort_order_id Carried over

data_file.referenced_data_file referenced_file Renamed to referenced_file to
be able to support delete
manifests expressing affinity to
a data manifest.

data_file.content_offset deletion_vector.offset Grouping offset and content
size required for DVs into a
deletion_vector struct.
Renaming to just offset
because content is redundant
in the context of being grouped
under deletion_vector.

data_file.content_size_in_bytes deletion_vector.size_in_bytes Grouping offset and content
size required for DVs into a
deletion_vector struct.
Renaming to just size_in_bytes
because content is redundant
in the context of being grouped
under deletion_vector.

data_file.equality_ids equality_ids Carried over since we still need
to be able to express in
metadata which field IDs are
stored in the delete file.

How do we remove partition tuple and represent them in columnar stats?

Most partition transforms in Iceberg, such as time-based and identity transforms, are
monotonically increasing—as the underlying column value increases, so does the partition
value. This property enables effective pruning using lower and upper bound statistics for the
original field, instead of using lower and upper bounds for partition values. Pruning via column
stats can occur at the root of the tree, where these bounds represent aggregates over the

None

manifest’s contents, or at any layer, including data files and DVs. As a result, column
statistics-based pruning is now possible at the top level, with root manifests holding aggregated
lower and upper bounds for their referenced leaf manifests.

The notable exception to monotonically increasing transforms are bucket transformations.
Bucket transforms are non-monotonic since they are the result of a hash function modulo
buckets.

To handle non-monotonic functions, stats for derived values need to be stored to be able to
achieve the same level of pruning that exists in the current manifest list partitions field.

Another important point to preserve the pruning capabilities of identity based transforms on
strings/binary is that identity transform values stored in stats must not be truncated.

There are 2 high level approaches to representing partition values in the proposed columnar
stats representation. They can either be stored as separate top level derived column stats
structure or they can be stored as special fields within the column stats of the source column of
the transform.

Let’s take the example partition spec (identity(event_type), date(event_ts)):

a.) (Preferred) store new top level derived column stats structs for all partition transforms
except for identity transforms since identity transforms are just the columns themselves. Note, in
this model, the stats struct for data file/delete file entries may just keep the derived partition
value in the lower_bound since there’s no need to duplicate the same value in the upper_bound.
For manifests, both upper and lower bounds can be defined since a given manifest can
reference a range of partition values, and bounds can be used for pruning there.

As part of this approach, we propose using a global ID space for both field and partition field
IDs. This update not only streamlines the ID system but also gives us the chance to improve
metadata handling for expressions, particularly as it relates to virtual columns.
ToDo: explain the benefit of storing multiple files associated with different partition specs in the
same leaf manifest
ToDo: Will need a notion of exact bounds for effective matching, an additional boolean?

1 -> event_type field id
101 -> date(event_ts) expression field id for partition transform

1: {
 //maybe don't need partition_value, if lower==upper its
inherently partitioned?

None

 partition_value string; // for identity partitioning, never
truncated
 lower_bound string;
 upper_bound string
 value_count long;
 null_count long;
 average_uncompressed_length int;
 max_uncompressed_length int;
}

101: {
 lower_bound date;
 upper_bound date;
 null_count long;
}

Pros:

●​ Given a global ID space across partition field IDs and schema field IDs, we can easily
look up the stats struct for any partition field or regular field.

●​ For data file stats, writers can just leave the upper bound as null for columns which have
an identity partition. If both lower and upper bounds are null, then the original column
must be null.

●​ Should just work for multi argument transforms since the ID is just a partition field
representing the output of the transform and the stats values are the transform value.

b.) Store the partition value as a field in the stats struct for all transforms which reference that
field. In this approach for data files only a singular partition value will be stored in a naming
scheme like partition_field_id_transform. Manifests would have lower/upper bounds for this
partition value.

1 -> event_type field id

2 -> event_ts field id

1: {
 lower_bound string; // if identity partitioned, this is used to
construct the partition tuple
 upper_bound string;
 value_count long;
 null_count long;
 average_uncompressed_length int; // generated for variable
length types
 max_uncompressed_length int;
}

2: {
 lower_bound timestamptz;
 upper_bound timestamptz;
 partition_1001_ts_day date; // defined for data files​
 partition_1001_ts_day_lower_bound date; // defined for
manifests
 partition_1001_ts_day_upper_bound date;
 value_count long;
 null_count long;
}

Pros:

●​ Encoding the partition field information in the source field’s stats means that we do not
need to worry about handling any collisions for IDs

Cons:

●​ It’s an open question if and how this model would work for multi-argument transforms
since in this approach the transformed value is associated with a single source field; this
representation is at odds with a multi-arg transform.

●​ Writing stats is a bit more complicated since we are differentiating between fields to write
for manifests vs data file stats

JSON

Why and how do we address having a global field ID space in V4?
Historically in the project, we’ve hit quite a few issues when it comes to partition field ID and
schema field ID overlap. Generally in implementations, partition fields start at 1000 and schema
fields start at 1. Combine this with the inherent assumption in many places where partition fields
and schema fields are different, after 1000 fields there are collisions.

It’s also important to consider ongoing work for V4 for addressing virtual columns and generated
expressions where additional expressions based on column inputs will also need to be stored in
metadata with IDs. Fundamentally, partition transforms are expressions on columns.

What we propose is introducing a new expressions field in table metadata, each with IDs that
are also part of the table field ID space. Partition specs will be made of transforms, where each
transform is associated with an expression. Having this shared field ID space will allow us to
consistently store stats for derived columns, including derived column for transforms or
any general virtual column function; the stats structs can now be keyed by these IDs.

Take the following example where the table is partitioned on day(ts) and bucket16(a, b).
Expressions will be defined for both of these transforms. The below example also demonstrates
how expressions could store

"schema": {{9,"ts", timestamp}, {11, "str", string}, {2, "a", int}, {3, "b",
int}}

Partition Spec Before V4
"partition-spec": [{"field-id": 1000, "source-id": 9, "transform":
"day", "name": "ts_day"}, {"field-id": 1001, "source-ids": [2, 3],
"transform": "bucket[16]", "name": "bucket_a_b"}

Partition Spec After V4
"partition-spec": [{"expr-id": 101}, {"expr-id": 104}]

"expressions": [
 {"expr-id": 101, "expr": {"source-id": 9, "transform": "day", "name":
"ts_day"}, "partition-field-id": 1000},
 {"expr-id": 102, "expr": {"source-id": 11, "transform": "lower", "name":
"lower_str"}},
 {"expr-id": 104, "expr": {"source-ids": [2, 3], "transform": "bucket[16]",
"name": "bucket_a_b", "partition-field-id": 1001}}
]

https://github.com/apache/iceberg/issues/9923#issuecomment-1987912598

JSON

On upgrade of a table from V3 to V4, new expressions for existing transforms for the current
partition specs must be defined (with IDs starting from max(schema field IDs + 1)); partition
specs will also be updated for each transform to have a link to its associated expression.

How do we match equality deletes to data files without partition tuples?
In the long run, if we have an effective way which allows us to remove equality deletes, then all
of the following is moot, but for now we will propose a solution under the assumption that we will
be preserving the ability to write equality deletes in V4.

Even though we propose to remove the explicitly materialized partition tuples, readers can still
derive the partition tuple from the partition spec and the columnar stats which contain the actual
values. The same indexing logic that exists today should work with modifications to derive the
partition struct from the spec + the stats stored in the equality delete.

Equality delete entry stats for the partition transform derived column will be guaranteed to have
a lower_bound for the partition value. For example, let’s take a table partitioned on
identity(event_type) and date(event_ts) and there is a file where the partition is ("commit",
06-20-2025T10:00:00.123).

 We can prove that given the equality delete stats for the transform columns and the spec itself,
we can reconstitute the partition struct back into ("commit", 06-20-2025T10:00:00.123).

Schema: <event_type 1: string, event_ts 2: timestamptz>
Partitioning: (identity(1), date(event_ts))

// Column stats for event_type

event_type {
 lower_bound string= "commit";
 ...
}

// Derived Column stats for date transform on event_ts​
date_event_ts {
 lower_bound date = 06-20-2025
 ...
}

If there’s an equality delete on some records where partition is equal to “commit” and the day
transform is 06-20-2025, presuming the sequence number is greater than a given data file(s),
we will be able to determine that the equality delete must be indeed be applied as we already
do.

V4 Upgrade Path
After upgrading to V4, older style manifest lists/manifests will co-exist with the new proposed
structure.
We should be able to support an upgrade which does not require rewriting older manifest
lists/manifests.
On upgrade, a new table metadata json would be written out including all the above proposed
changes for modeling partition transforms as expressions. On any subsequent write, a new root
manifest would be produced with whatever new data/delete files produced from the write and
the older style manifests would be referenced as leaf manifests. Over time, the older manifests
can age out and would be cleaned up as part of snapshot expiration. Users that want to eagerly
move older manifests into the newer structure to get the benefits could run a rewrite manifest
operation to produce columnar manifests with the new representation.

Questions
1.​ Do we need to allow non-inline leaf manifest DVs in the root manifest? Assuming 5%

density, a one-million entry bitmap would require a 100KB roaring bitmap. If we only
allow inline leaf manifest DVs these roaring bitmaps will need to be copied around for
every commit.

a.​ Related to this, are inline leaf manifestDVs going to be required to be
compressed? Will need to run some tests to figure out the metadata storage size
vs compression/decompression overhead tradeoffs.

Discarded Alternatives
1.)​ Buffering changes to the metadata.json itself. Instead of a root level manifest, writers

would write new file references to metadata.json in some field. This was discarded
because having potentially unbounded content in the metadata.json is risky for the
following reasons:

a.)​ Metadata.json would essentially grow as the table data grows. Of course this can
always be flushed and cleaned, but this is additional table maintenance burden
that we want to move away from

b.)​ Catalog load table latency would be variable depending on the size of the file
which we’ve generally strayed away from

​ All in all, it seems the best to keep the root level metadata.json independent of the
underlying table metadata/data size.

None

Next Steps
1.​ If there’s general agreement, start working on a prototype and collecting numbers

around when we should flush to leaf manifests so that we have a sane set of defaults
from the beginning.

Appendix

Bitvector compression benchmarking
https://github.com/amogh-jahagirdar/iceberg/tree/bitset-benchmarking

Implementation in
https://github.com/amogh-jahagirdar/iceberg/blob/bitset-benchmarking/core/src/jmh/java/org/apa
che/iceberg/BitsetCompressionBenchmark.java​

./gradlew :iceberg-core:jmh -PjmhIncludeRegex=BitsetCompressionBenchmark
-PjmhOutputPath=benchmark/bitsetbenchmark.txt

grep "numBytes" core/benchmark/bitsetbenchmark.txt

Compressed Sizes (bytes) of Bit Vectors by Algorithm, Density,
and Scale for Random Positions

In parens, bytes/delete

Method Density 1,000 10,000 100,000 1,000,000

LZ4 0.01 57 (5.70) 383 (3.83) 3,545 (3.54) 32,713 (3.27)

 0.05 98 (1.96) 920 (1.84) 8,480 (1.70) 75,451 (1.51)

 0.1 130 (1.30) 1,155 (1.16) 10,600 (1.06) 108,987 (1.09)

 0.2 135 (0.68) 1,264 (0.63) 12,541 (0.63) 125,493 (0.63)

Roaring Bitmap 0.01 36 (3.60) 216 (2.16) 2,024 (2.02) 20,136 (2.01)

 0.05 116 (2.32) 1,016 (2.03) 10,024 (2.00) 100,136 (2.00)

 0.1 216 (2.16) 2,016 (2.02) 15,340 (1.53) 126,440 (1.26)

https://github.com/amogh-jahagirdar/iceberg/tree/bitset-benchmarking
https://github.com/amogh-jahagirdar/iceberg/blob/bitset-benchmarking/core/src/jmh/java/org/apache/iceberg/BitsetCompressionBenchmark.java
https://github.com/amogh-jahagirdar/iceberg/blob/bitset-benchmarking/core/src/jmh/java/org/apache/iceberg/BitsetCompressionBenchmark.java

 0.2 416 (2.08) 4,016 (2.01) 16,408 (0.82) 129,918 (0.65)

ZSTD-3 0.01 46 (4.60) 224 (2.24) 1,826 (1.83) 17,690 (1.77)

 0.05 93 (1.86) 533 (1.07) 4,727 (0.95) 46,987 (0.94)

 0.1 97 (0.97) 715 (0.72) 6,599 (0.66) 67,170 (0.67)

 0.2 129 (0.65) 981 (0.49) 9,227 (0.46) 91,923 (0.46)

Raw Bitset (dense encoding) 0.01 123 (12.3) 1,247 (12.47) 12,485 (12.48)
124,980
(12.50)

 0.05 123 (2.46) 1,247 (2.49) 12,494 (2.50) 124,985 (2.50)

 0.1 123 (1.23) 1,247 (1.25) 12,500 (1.25) 125,000 (1.25)

 0.2 125 (0.63) 1,250 (0.63) 12,500 (0.63)
125,000 (0.63)

Method Density 1,000 10,000 100,000 1,000,000

LZ4 0.01 57 383 3,545 32,713

 0.05 98 920 8,480 75,451

 0.1 130 1,155 10,600 108,987

 0.2 135 1,264 12,541 125,493

Roaring Bitmap 0.01 36 216 2,024 20,136

 0.05 116 1,016 10,024 100,136

 0.1 216 2,016 15,340 126,440

 0.2 416 4,016 16,408 129,918

ZSTD-3 0.01 46 224 1,826 17,690

 0.05 93 533 4,727 46,987

 0.1 97 715 6,599 67,170

 0.2 129 981 9,227 91,923

Raw Bitset
(dense
encoding) 0.01 123 1,247 12,485 124,980

 0.05 123 1,247 12,494 124,985

 0.1 123 1,247 12,500 125,000

 0.2 125 1,250 12,500 125,000

Brainstorming about detecting changes

1.)​ Diff between roots (Hold no previous state)
a.)​ RootManifest(Added DV_1)
b.)​ RootManifest(Added DV_2)
c.)​ RootManifest(Added DV_3)

2.)​ Store DV Deltas Separately - Existing DV (Stored inline or Externally) + Change DV
stored in root manifest

a.)​ External DV lives in Puffin File
b.)​ Perform a commit that adds more deletes via a Change DV in the root manifest

i.)​ RootManifest (ChangeDV_1) + Puffin (StateDV)
c.)​ Now I want to add another set of deletes

i.)​ Rootmanifest (ChangeDV_2) + New State DV?
3.)​ Store Previously Removed DVs - Removed DV and New DV stored in Root Manifest

a.)​ RootManifest (Existing DV_1)
b.)​ RootManifest (Added DV_2, Removed DV_2)
c.)​ RootManifest (Added DV_3, Removed DV_2)

References
●​ Column Stats Improvements

https://docs.google.com/document/d/1uvbrwwAJW2TgsnoaIcwAFpjbhHkBUL5wY_24nKgtt9I/edit?tab=t.0

Appendix - Change Detection Scenarios

Append Files​ 1

Appends To the Root Manifest​ 1
Appends to the Root Manifest using new Data Manifests​ 2

Remove Files​ 3
Removing a File From the Root Manifest​ 3
Removing a File From a Leaf Manifest​ 4

A: regular manifest DV (same as data DV)​ 5
B: a regular manifest DV + a diff DV​ 7
Storage size comparison​ 8

Manifest compaction + removing files from a leaf manifest​ 8
A: regular manifest DV (same as data DV)​ 8
B: a regular manifest DV + a diff DV​ 9

Overwrite Files​ 10
Overwrite Files in Root Manifest​ 10
Overwrite Files in in Leaf Manifest​ 11

A: regular manifest DV (same as data DV)​ 13
B: a regular manifest DV + a diff DV​ 14

Manifest compaction + overwriting files in a leaf manifest file​ 15
A: regular manifest DV (same as data DV)​ 15
B: a regular manifest DV + a diff DV​ 16

Row Delta​ 17
Root Manifest Only Row Delta​ 17
Complex row delta with modified data DVs​ 19

A: regular manifest DV (same as data DV)​ 19
B: regular manifest DV + diff DV​ 21

Append Files

Appends To the Root Manifest
​
Appends can be done by rewriting only the top level manifest without adding any
additional child manifests.​
​
​

​
​
Change detection

●​ Added data files
○​ ADDED data file entries from the root manifest file
○​ ADDED data file entries from ADDED leaf manifest files

Appends to the Root Manifest using new Data Manifests​

Snapshot 2: Larger appends can still be done by adding new child manifests directly. This is
basically the same as the behavior in previous versions of Iceberg where the Root manifest
takes the place of the Manifest List.​
​
Snapshot 3: appended new files are combined with manifest file rewrite. M3 contains existing
files from M1 and added new files (D7 and D8).​
​

​
​
Change detection

●​ Added data files
○​ ADDED data file entries from the root manifest file
○​ ADDED data file entries from ADDED leaf manifest files

Remove Files

Removing a File From the Root Manifest
A file in the Root Manifest can be removed by producing a new Root Manifest where the
file is marked as deleted.

Change detection

●​ Removed data files
○​ DELETED data file entries from the root manifest file or added leaf manifest files

Removing a File From a Leaf Manifest
Removing a file from a leaf manifest requires creating a Manifest Delete Vector which marks the
row in the Data Manifest containing that file as deleted.

Change detection

●​ Removed data files
○​ join DV1 (ADDED manifest DV) on EXISTING leaf manifest M1

A: regular manifest DV (same as data DV)

The new DV has ADDED status and the previous DV has DELETED status.

Change detection

Snapshot 3:

●​ Removed data files:
○​ join MDV2-MDV1 (ADDED - DELETED manifest DV) on EXISTING leaf manifest

M1

Snapshot 4:

●​ Removed data files
○​ join MDV3-MDV2 (ADDED - DELETED manifest DV) on EXISTING leaf manifest

M1

Tradeoffs

●​ Pro: consistent with data DV concept. It could simplify manifest entry structure, as the
root manifest file can contain both data and manifest DVs

●​ Pro: commits only need to generate one new DV
●​ Con: change detection needs to compute DV subtraction (ADDED - DELETED) before

applying to leaf manifest files
●​ Con: if the existing DV is relatively large/full and delta change is small, this almost

doubles the DV storage.
○​ But if DV is pretty full, should the leaf manifest be rewritten anyway?

B: a regular manifest DV + a diff DV

Change detection

Snapshot 3:

●​ Removed data files
○​ join diff MDV3 on EXISTING leaf manifest M1

Snapshot 4:

●​ Removed data files
○​ join diff MDV5 on EXISTING leaf manifest M1

Tradeoffs

●​ Con: inconsistent model compared to data DV. Root manifest entries can have more
complex structure or status.

●​ Con: commits need to generate two DVs
●​ Pro: change detection needs to just join the diff DV (ADDED) to leaf manifest files
●​ Pro: smaller storage overhead (more often than not)

Storage size comparison

Scenario 1 (more often): previous DV has 100 entries and new commit removes 10 files

●​ A: regular manifest DV (same as data DV)
○​ total DV size: 210 (100 old and 110 new)

●​ B: a regular manifest DV + a diff DV
○​ total DV size: 120 (110 new and 10 diff)

 Scenario 2 (less often): previous DV has 10 entries and new commit removes 100 files

●​ A: regular manifest DV (same as data DV)
○​ total DV size: 120 (10 old and 110 new)

●​ B: a regular manifest DV + a diff DV
○​ total DV size: 210 (110 new and 100 diff)

Manifest compaction + removing files from a leaf manifest

A: regular manifest DV (same as data DV)

Change detection

Snapshot 4:

●​ Removed data files
○​ DELETED data file entries from the root manifest file or added leaf manifest files

B: a regular manifest DV + a diff DV

Change detection

Snapshot 4:

●​ Removed data files
○​ DELETED data file entries from the root manifest file or added leaf manifest files

Overwrite Files

Overwrite Files in Root Manifest
An Overwrite (Adding Files and Removing Files) can be done at the Root Manifest level
without any additional metadata files by changing the entries of the Root Manifest.

Change detection

●​ Added data files
○​ ADDED data file entries from the root manifest file

●​ Removed data files
○​ DELETED data file entries from the root manifest file

Overwrite Files in in Leaf Manifest
An overwrite can also use a combination of adding files at the Root Manifest and within
Manifests to represent the replacement of files within the table.

Change detection

●​ Added data files
○​ ADDED data file entries from the root manifest file
○​ ADDED data file entries from ADDED leaf manifest files

●​ Removed data files
○​ DELETED data file entries from the root manifest file
○​ Join DV1 (ADDED manifest DV) with EXISTING leaf manifest file M1

A: regular manifest DV (same as data DV)

Change detection

Snapshot 3:

●​ Added data files

○​ ADDED data file entries from the root manifest file - D6
○​ ADDED data file entries from ADDED leaf manifest files

●​ Removed data files:
○​ DELETED data file entries from the root manifest file
○​ join MDV2 - MDV1 (ADDED - DELETED manifest DV) on EXISTING leaf

manifest M1 - D3

Snapshot 4:

●​ Added data files
○​ ADDED data file entries from the root manifest file
○​ ADDED data file entries from ADDED leaf manifest files - D7

●​ Removed data files
○​ DELETED data file entries from the root manifest file
○​ join MDV3 - MDV2 (ADDED - DELETED manifest DV) on EXISTING leaf

manifest M1 - D1

B: a regular manifest DV + a diff DV

Change detection

Snapshot 3:

●​ Added data files
○​ ADDED data file entries from the root manifest file - D6

○​ ADDED data file entries from ADDED leaf manifest files
●​ Removed data files:

○​ DELETED data file entries from the root manifest file
○​ join ADDED diff MDV3 on EXISTING leaf manifest M1 - D3

Snapshot 4:

●​ Added data files
○​ ADDED data file entries from the root manifest file
○​ ADDED data file entries from ADDED leaf manifest files - D7

●​ Removed data files
○​ DELETED data file entries from the root manifest file
○​ join ADDED diff MDV5 on EXISTING leaf manifest M1 - D1

Manifest compaction + overwriting files in a leaf manifest file

A: regular manifest DV (same as data DV)

Change detection

Snapshot 4:

●​ Added data files
○​ ADDED data files from the root manifest file or added leaf manifest files - D7

●​ Removed data files
○​ DELETED data file entries from the root manifest file or added leaf manifest files

- D1

B: a regular manifest DV + a diff DV

Change detection

Snapshot 4:

●​ Added data files
○​ ADDED data files from the root manifest file or added leaf manifest files - D7

●​ Removed data files
○​ DELETED data file entries from the root manifest file or DELETED entries from

added leaf manifest files - D1

Row Delta

Root Manifest Only Row Delta
A Row Delta can be performed at the Root Manifest level by adding a root level file delete
vector and adding a new root level file.

​
​
Snapshot 1 shows a Root Manifest with a single data file D1. In Snapshot 2, D1 is modified by
data file delete vector DV1 and new rows are added in D2.

Change detection

●​ Added rows
○​ Live rows in ADDED data files (after applying data DV) from the root manifest file

or ADDED leaf manifest files (D2)
●​ Removed rows

○​ For every ADDED data DV from the root manifest file or ADDED delete manifest
file, find the previous DV (DELETED if exist) for the same data file. Compute the
DV diff and join with the data file. - join (DV1 - empty) with D1 .

■​ The previous data DV could be a DELETED data DV entry in the root
manifest file (or)

■​ The previous data DV could be a DELETED data DV entry in an ADDED
delete manifest file.

Complex row delta with modified data DVs

A: regular manifest DV (same as data DV)

Snapshot 2

●​ replace data DV1 with data DV4 (applies to D1)
●​ Add data file D3

Snapshot 3

●​ Replace data DV2 with data DV7 (applies to D2)

Snapshot 4 (including manifest compaction)

●​ replace data DV4 with data DV8 (applies to D1)
●​ Add data file D4

Change detection

Snapshot 2

●​ Added rows
○​ Live rows (after applying data DV) in ADDED data files (D3) from the root

manifest file or ADDED leaf manifest files
●​ Removed rows

○​ For every ADDED data DV (DV4) from the root manifest file or ADDED delete
manifest file (DVM2), find the previous data DV (if exist) applicable to the same
data file. Compute the DV diff and join with the data file. - join (DV4 - DV1) with
D1 .

■​ The previous data DV could be a DELETED data DV entry in the root
manifest file (or)

■​ The previous data DV could be a DELETED data DV entry in an ADDED
delete manifest file.

■​ The previous data DV (DV1) could be deleted by manifest DV diff
(MDV3-none)

Snapshot 3

●​ Added rows
○​ none

●​ Removed rows
○​ For every ADDED data DV (DV7) from the root manifest file or ADDED delete

manifest file (DVM3), find the previous data DV (if exist) applicable to the same
data file. Compute the DV diff and join with the data file. - join (DV7 - DV2) with
D2 .

■​ The previous data DV could be a DELETED data DV entry in the root
manifest file (or)

■​ The previous data DV could be a DELETED data DV entry in an ADDED
delete manifest file.

■​ The previous data DV (DV2) could be deleted by manifest DV diff
(MDV5-MDV3)

Snapshot 4 (with manifest compaction)

●​ Added rows
○​ Live rows (after applying data DV) in ADDED data files (D4) from the root

manifest file or ADDED leaf manifest files

●​ Removed rows
○​ For every ADDED data DV (DV8) from the root manifest file or ADDED delete

manifest file (DVM4), find the previous data DV (if exist) applicable to the same
data file. Compute the DV diff and join with the data file. - join (DV8 - DV4) with
D1 .

■​ The previous data DV could be a DELETED data DV entry in the root
manifest file (or)

■​ The previous data DV (DV4) could be a DELETED data DV entry in an
ADDED delete manifest file (DVM4).

■​ The previous data DV could be deleted by manifest DV diff

B: regular manifest DV + diff DV

Snapshot 2

●​ replace data DV1 with data DV4 (applies to D1)
●​ Add data file D3

Snapshot 3

●​ Replace data DV2 with data DV7 (applies to D2)

Snapshot 4 (including manifest compaction)

●​ replace data DV4 with data DV8 (applies to D1)
●​ Add data file D4

Change detection

Snapshot 2

●​ Added rows
○​ Live rows (after applying data DV) in ADDED data files (D3) from the root

manifest file or ADDED leaf manifest files
●​ Removed rows

○​ For every ADDED data DV (DV4) from the root manifest file or ADDED delete
manifest file (DVM2), find the previous data DV (if exist) applicable to the same
data file. Compute the DV diff and join with the data file. - join (DV4 - DV1) with
D1 .

■​ The previous data DV could be a DELETED data DV entry in the root
manifest file (or)

■​ The previous data DV could be a DELETED data DV entry in an ADDED
delete manifest file.

■​ The previous data DV could be deleted by a diff DV (MDV3b)

Snapshot 3

●​ Added rows
○​ none

●​ Removed rows
○​ For every ADDED data DV (DV7) from the root manifest file or ADDED delete

manifest file (DVM3), find the previous data DV (if exist) applicable to the same
data file. Compute the DV diff and join with the data file. - join (DV7 - DV2) with
D2 .

■​ The previous data DV could be a DELETED data DV entry in the root
manifest file (or)

■​ The previous data DV could be a DELETED data DV entry in an ADDED
delete manifest file.

■​ The previous data DV (DV2) could be deleted by a diff DV (MDV5b)

Snapshot 4 (with manifest compaction)

●​ Added rows
○​ Live rows (after applying data DV) in ADDED data files (D4) from the root

manifest file or ADDED leaf manifest files
●​ Removed rows

○​ For every ADDED data DV (DV8) from the root manifest file or ADDED delete
manifest file (DVM4), find the previous data DV (if exist) applicable to the same
data file. Compute the DV diff and join with the data file. - join (DV8 - DV4) with
D1 .

■​ The previous data DV could be a DELETED data DV entry in the root
manifest file (or)

■​ The previous data DV (DV4) could be a DELETED data DV entry in an
ADDED delete manifest file (DVM4).

■​ The previous data DV could be deleted by a diff DV.

Appendix - Partition Tuple Handling

Appendix - Partition Tuple Handling

One ideal property to have in the V4 metadata tree is to decouple a manifest from a given
partition spec. Currently, the spec is associated with the manifest because the partition tuple
schema in file entries is based on the partition spec. Decoupling this enables flexible ways of
clustering metadata and allows storing unpartitioned and differently partitioned files in the same
manifest.

Another aspect to note is that from a pruning perspective, considering the proposed V4 stats
structure, we don’t strictly need the tuple, as we could just use stats; most partition transforms
are monotonic, so the lower/upper bounds of the source columns can be used for pruning. For
non-monotonic transforms like bucketing, we could use stats on expressions (derived columns)
to achieve the same pruning. See how stats on expressions could look like in this doc

There are a few different approaches to be able to achieve decoupling a manifest from a given
partition spec.

The key tradeoffs between the approaches come down to how much burden is acceptable for
readers/writers for making sure equality deletes are handled correctly and also ensuring
metadata storage/amplification is kept to a minimum.

Approach 1 - Remove the partition tuple and only use
Lower/Upper Bounds in stats. Partition Scoped Equality Deletes
are matched by recovering the tuple from stats.

In this approach, we assume that partition transforms are modeled as expressions, and we will
store lower/upper bound stats for these expressions, simply treating them as stats on a derived
column.

In this approach if a given file is partitioned on any expression, the lower and upper
bound for that expression must be equal.

In this approach we will need to reconstruct the tuple for the purpose of matching against
partition-scoped equality deletes.

Recovering the tuple will involve reading the lower/upper bounds of the stats struct for the
expression ID representing the transforms. The one additional nuance here is for identity
partitioned strings/binary fields. Currently, these stats may be truncated.

https://docs.google.com/document/d/1oV8dapKVzB4pZy5pKHUCj5j9i2_1p37BJSeT7hyKPpg/edit?tab=t.0

1.​ A writer requirement here is that if there’s an identity partition on a given column,
the lower/upper bounds for that column must be complete values.

2.​ A reader requirement that readers must fail when lower != upper for an
expression that’s partitioned. This check would happen in the specific case where
readers need to reconstruct the tuple for partition-scoped equality delete
matching.

Example
Say we have an events table which is identity partitioned on event_type, hours partitioned on
event_ts and bucketed on event_id. The stats structure would look like the following to
represent the values.

1 -> event_type field id​
101 -> hours(event_ts) expression field id for hours(event_ts) transform​
102 -> bucket(16, event_id) expression field id for bucket16(event_id)

​
1: {

 // Lower and upper must not be truncated​
 lower_bound string;​
 upper_bound string​
 value_count long;​
 null_count long;​
}​
​
101: { ​
 lower_bound int;​
 upper_bound int;​
 null_count long;​
}

​
102: { ​
 lower_bound int;​
 upper_bound int;​
 null_count long;​
}

Now let’s say there’s an equality delete issued against event_type user_login where event_ts is
before June 1, 2025. At read time, to determine the equality deletes to apply for a given data
file, we need to reconstruct the partition tuple. The reader has to determine that the stats for
expressions 1, 101, and 102 are what is required to reconstruct the tuple, which involves some
backreferencing of expression ID to partition transform metadata, and then for each of those
validate that lower == upper.

Pros:

●​ This approach is elegant in that we really treat everything as just stats throughout the
tree, and partitioning isn’t treated as a special concept until absolutely needed
(reconstructing the tuple for matching against partition scoped equality deletes)

●​ This approach is probably better for storage, since removing the tuple removes a column
from every manifest entry. The columnar storage of the expression stats will likely have
better compression as well.

●​ In this approach, writers can still write arbitrarily clustered files spanning values how they
like. Partitioning is simply a special-case clustering where the lower/upper are the same
for the partitioned expressions.

Cons:
●​ Additional requirements on readers and writers

○​ Writers must ensure stats on fields lower/upper are equal for stats on partition
expressions and that these stats must be complete for identity partitioned fields.

○​ When recreating the partition tuple for equality deletes, readers must fail in case
the lower bound is not equal to the upper bound. Readers have some complexity
in this validation in that they have to backreference if a given expression ID is
associated with a partition transform.

Approach 2 - Remove the partition tuple, all new equality deletes
are global and are matched based on stats
This approach is similar to Approach 1, with the difference that equality delete matching does
not need to reconstruct the partition tuple. In this method, writers produce global equality
deletes with statistics describing the deleted values. Producing partition scoped deletes would
no longer be allowed. Global equality deletes with covering stats effectively would act as scoped
deletes.

At read time, an equality delete must be applied to a data file if the data file has an older
sequence number than the equality delete, and any of the following conditions are true:

●​ The data file is missing statistics for one or more equality field IDs referenced in the
equality delete (unknown if it matches or not, so we have to apply).

●​ The data file’s statistics overlap with the equality delete’s statistics for the same equality
field IDs.

Overlap condition: For each equality field ID, the equality delete must be applied if both of the
following are true:

1.​ The upper bound of that field in the data file ≥ the lower bound of the field in the equality
delete.

2.​ The lower bound of that field in the data file ≤ the upper bound of the field in the equality
delete.

Since writers can already produce equality deletes with partition values, in this approach the
additional effort is in producing equality deletes with lower/upper bounds that represent these
partition values. However, readers may end up in situations where they are over-applying

equality deletes compared to before (false-positives), since writers would not be required to
produce equality deletes with these stats. There’s also some friction for upgrades because there
may be existing equality deletes with partition values; in this case we could say that upgrades
are only possible after all equality deletes are removed either through a rewrite to DVs or a
complete compaction.

Pros:

●​ No special case handling identity partitions, they can be truncated. Just stats all the way
down

●​ Not too much additional burden for writer implementations, the moving from producing
equality deletes with partition values to producing equality deletes with lower/upper
bounds shouldn’t be too much of a lift, since we’d be doing the same work for data files.

Cons:
●​ Potentially increased false positive rate if writers choose to produce global eq. Deletes

without stats
○​ May not be a huge concern if the lift to move from producing eq deletes with

partition values to stats isn’t that big; in that case how many writers are producing
truly global deletes? Comes down to how reasonable it is to stop producing
partition scoped deletes, etc.

○​ Could potentially have a strict requirement on producing stats in the case the
equality delete predicate is on partition columns? This also comes down to how
much of a lift it is to require this, but does have the benefit of guaranteeing the
matching to be as selective as it is today for partition scoped deletes.

●​ Burden on upgrade, where existing eq deletes have to be compacted or rewritten to DVs

Approach 3 - Keep the Tuple, the schema of the tuple is a union
schema of all partition specs in the table.
In this approach we would keep the partition tuple, but the schema of the partition tuple is a
union schema of all the partition specs in the table. In this approach, there’d be a table property
for defining if equality deletes are allowed or not. This tuple would only be produced if equality
deletes are allowed.

Pros:

●​ Relatively simple in terms of implementation since we already have places where we
produce a union schema

●​ Still addresses the issue of not tying a partition spec to a manifest; the schema for the
tuple is always going to be a union of all partition specs

Cons:
●​ Not as ideal of a modeling since we still preserve the current modeling of separating

partition values and stats, which is awkward considering partition values are just
derivations of column values.

●​ Additional flag to have if eq. Deletes are allowed or not, and once it’s disabled it cannot
be turned back on. This approach has the chance of losing flexibility for writers who want
to write equality deletes.

●​ Metadata bloat/amplification cost from having to keep additional columns from the union
schema as partition evolutions are performed

○​ This bloat exists so long as the specs are not maintained, depends on how many
partition evolutions are actually performed

Approach 4 - Store a separate partition value in the stats struct
itself

This approach is similar to 1, except that identity partition values will be stored as a separate
field partition_value in the stats struct and the lower/upper bounds are just left as stats which
can be truncated.

1 -> event_type field id​
101 -> hours(event_ts) expression field id for hours(event_ts) transform​
102 -> bucket(16, event_id) expression field id for bucket16(event_id)

​
1: {

 // Explicit partition value for identity partitioned columns

 partition_value string​
 lower_bound string;​
 upper_bound string​
 value_count long;​
 null_count long;​
}​
​
101: { ​
 lower_bound int;​
 upper_bound int;​
 null_count long;​
}

​
102: { ​
 lower_bound int;​
 upper_bound int;​
 null_count long;​
}

Pros:

●​ Compared to approach 1 there are less writer constraints for identity partitioned values

Cons:
●​ Readers still need to reconstruct the tuple for equality delete and make sure lower ==

upper for the non-identity.
●​ Slightly worse storage compared to approach 1, due to additional partition_value column

for identity partitioned column.
○​ Maybe not a big deal, since an identity string partition value (short string like

country_code for example) would likely be dictionary encoded anyways?

	Iceberg Single File Commits
	Iceberg Single File Commits
	Motivation
	Goals
	Non-Goals

	Proposal
	​Root Manifests
	Why limit tree depth to 2?

	Commit Procedure
	​Examples
	Append Files
	Appends To the Root Manifest
	Appends to the Root Manifest using new Data Manifests​

	Remove Files
	Removing a File From the Root Manifest
	Removing a File From a Leaf Manifest

	Overwrite Files
	Overwrite Files in Root Manifest
	Overwrite Files in in Leaf Manifest

	Row Delta
	Root Manifest Only Row Delta
	A Complex Row Delta with Modified Delete Vectors

	Manifest Compaction
	Manifest Compaction During an Append

	Optional Affinity between Data and Delete Manifests

	Proposed Manifest Structure
	V4 content entry structure
	
	V4 content entry tracking_info struct
	V4 content entry deletion_vector struct

	V4 Manifest Key Value Metadata
	How existing manifest list fields map to Proposed V4 content entry fields
	How existing manifest fields map to Proposed V4 content entry fields

	Upgrade
	Open Questions:
	Appendix
	Compressed Sizes (bytes) of Bit Vectors by Algorithm, Density, and Scale for Random Positions
	
	
	
	Discarded Approaches
	Using Multiple Delete Vectors to Keep Changes Distinct

	Diagram Source
	(WIP Merge) Adaptive Metadata Tree
	Iceberg V4 Adaptive Metadata Tree
	Background
	Goals

	Proposed Structure
	Key Decisions and other Considerations
	Single Manifest Structure
	Why a common manifest structure throughout the tree?
	Why limit tree depth to 2?
	Leaf Manifest DVs
	How do we track replaced or removed leaf entries with Leaf Manifest DVs?
	Replacing DVs and Data Files
	Removing Data Files

	Why not have inline data DVs?

	Affinity between Data and Delete Manifests
	How does planning work?
	Alternate approach: No affinity between data and delete manifests (Existing behavior)
	Alternate approach: Unified Manifests: Manifest entry contains Data File, DV Pair

	Metadata Tree Maintenance
	V4 content entry structure
	
	V4 content entry version_info struct
	V4 content entry deletion_vector struct

	V4 Manifest Key Value Metadata
	How existing manifest list Fields map to Proposed V4 content entry fields
	How existing manifest fields map to Proposed V4 content entry fields

	
	
	How do we remove partition tuple and represent them in columnar stats?
	Why and how do we address having a global field ID space in V4?
	How do we match equality deletes to data files without partition tuples?
	V4 Upgrade Path

	Questions
	Discarded Alternatives
	Next Steps
	Appendix

	Bitvector compression benchmarking
	Compressed Sizes (bytes) of Bit Vectors by Algorithm, Density, and Scale for Random Positions
	References

	Appendix - Change Detection Scenarios
	
	Append Files
	Appends To the Root Manifest
	Appends to the Root Manifest using new Data Manifests​

	Remove Files
	Removing a File From the Root Manifest
	Removing a File From a Leaf Manifest
	A: regular manifest DV (same as data DV)
	B: a regular manifest DV + a diff DV
	Storage size comparison

	Manifest compaction + removing files from a leaf manifest
	A: regular manifest DV (same as data DV)
	B: a regular manifest DV + a diff DV

	Overwrite Files
	Overwrite Files in Root Manifest
	Overwrite Files in in Leaf Manifest
	A: regular manifest DV (same as data DV)
	B: a regular manifest DV + a diff DV

	Manifest compaction + overwriting files in a leaf manifest file
	A: regular manifest DV (same as data DV)
	B: a regular manifest DV + a diff DV

	Row Delta
	Root Manifest Only Row Delta
	Complex row delta with modified data DVs
	A: regular manifest DV (same as data DV)
	B: regular manifest DV + diff DV

	Appendix - Partition Tuple Handling
	Appendix - Partition Tuple Handling
	Approach 1 - Remove the partition tuple and only use Lower/Upper Bounds in stats. Partition Scoped Equality Deletes are matched by recovering the tuple from stats.
	Example

	Approach 2 - Remove the partition tuple, all new equality deletes are global and are matched based on stats
	Approach 3 - Keep the Tuple, the schema of the tuple is a union schema of all partition specs in the table.
	Approach 4 - Store a separate partition value in the stats struct itself

