
This is the public version of the design doc.
Dependency-diff Visualization as a

Scorecard GitHub Action
Visibility: Public
Status: Current
Authors: aidenwang9867
Reviewers: laurentsimon, azeemsshaikh38, naveensrinivasan
Last major revision: Aug 1, 2022

Motivation and Objective
Users now can use the Dependency-diff API and CLI to surface Scorecard results for their
dependencies. We might also want to expand the scope of the API usage to a GitHub pull
request CI workflow, by implementing the “dependency-diff” as an additional running mode of
the Scorecard GitHub Action.

With this design in place, the Scorecard Action will be further empowered to surface Scorecard
checking results for those dependency-diffs (changes) between a base and an arriving head in a
GitHub pull request (PR), visualizing them in a PR issue comment as a report (similar to the
CodeCov one), and in a check run as annotations.

Background
In 2019, Googlers were active in over 70,000 repositories on GitHub, pushing commits and
opening pull requests on over 40,000 repositories (Source: Open Source by the Numbers at
Google). With commits & pull requests becoming the most common and popular way to
contribute to open source codebases and repositories, it also brings higher risks for a code
commit to introduce insecure dependencies and thus lead to malicious exploits by attackers to
affect the repository itself and users who use it. Tools such as GitHub Dependabot and Mend
Renovate are developed to help developers address this issue and find healthy dependencies
for their open-source projects.

GitHub Dependabot
GitHub Dependabot is an automated dependency updating tool built into GitHub that can be
configured to GitHub repository workflows and automatically keeps dependencies up to date,
alleviating the pain by updating them automatically. Moreover, it helps reduce the risk of

https://github.com/aidenwang9867
https://github.com/laurentsimon
https://github.com/azeemshaikh38
https://github.com/naveensrinivasan
https://docs.google.com/document/d/16JzSapoL_FfqlnzmrIkLtrn35QBZ2oEMnK2tLaNKsC4
https://github.com/ossf/scorecard-action
https://opensource.googleblog.com/2020/08/open-source-by-numbers-at-google.html
https://opensource.googleblog.com/2020/08/open-source-by-numbers-at-google.html
https://github.com/dependabot
https://github.com/renovatebot/renovate
https://github.com/renovatebot/renovate

exploiting dependency vulnerabilities to attack a repository. It performs a scan to find vulnerable
dependencies and sends Dependabot alerts when (1) new vulnerabilities are added to the
GitHub Advisory Database, and (2) the dependency graph for a repository changes. For (1), the
GitHub Advisory Database uses four threat intelligence sources to detect if a new vulnerability is
added. For (2), the dependency graph change can be detected not only between the newly
arrived commit and the previous one but also in a GitHub pull request (PR). This way,
dependencies can be free from security vulnerabilities before they reach the codebase.

Mend Renovate
Renovate provides automated dependency updates with multi-platform and multi-language
support. Compared to Dependabot, Renovate has an independent Dependency Dashboard to
manage all history dependency changes. It creates one single PR for developers to solve all
dependency updates at once, while Dependabot gives each update a separate PR. It can be set
up as more versatile and flexible.

Scorecard Action
The Scorecard Action runs ossf-scorecard checks as a GitHub code scanning tool to harness
GitHub's alert management abilities. The current running modes of the Scorecard Action include
(1) a scheduled weekly run and (2) a run triggered by a push to the default branch.

To remediate the risks of introducing tampered dependencies, as of June 2022, Scorecard has
already proposed two dependency-related security checks, Dependency-Update-Tool and
Pinned-Dependencies, which check if the project uses tools to help update its dependencies
and if the project declares and pin dependencies, respectively. However, being able to check for
dependency changes in different branches and code commits is still a TODO for the Scorecard
Action.

Framework

This figure shows the framework of this design. We are adding a new workflow event listener
that can be triggered by either (1) creating a new pull request to the default branch or (2）

https://docs.github.com/en/code-security/dependabot/dependabot-alerts/about-dependabot-alerts
https://docs.github.com/en/code-security/dependabot/dependabot-alerts/browsing-security-vulnerabilities-in-the-github-advisory-database#about-the-github-advisory-database
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://app.renovatebot.com/dashboard
https://github.com/ossf/scorecard-action
https://github.com/ossf/scorecard
https://docs.github.com/en/code-security/secure-coding/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning
https://docs.github.com/en/code-security/secure-coding/automatically-scanning-your-code-for-vulnerabilities-and-errors/managing-code-scanning-alerts-for-your-repository
https://github.com/ossf/scorecard/blob/main/docs/checks.md#dependency-update-tool
https://github.com/ossf/scorecard/blob/main/docs/checks.md#pinned-dependencies

submitting a new code commit to an existing pull request to the default branch. Same as the
other two Scorecard Actions’ running modes, this is a workflow automation configured in the
GitHub Actions and the repository workflow. The difference is, that we use this new one as a
pre-submit check run on those dependency changes.

Inputs

Workflow Environment Variable Inputs
Since the Dependency-diff Action workflow is triggered by a pull request, it will automatically
fetch the three parameters repoURI, base, and head from the GitHub workflow environment
variables.

Input Parameters GitHub Default Workflow Env

repoURI GITHUB_REPOSITORY

base GITHUB_BASE_REF

head GITHUB_HEAD_REF

In the above table, the GITHUB_REPOSITORY variable stores the repoURI of the current GitHub
repository, e.g. “ossf/allstar”, GITHUB_BASE_REF stores the base branch name reference, e.g.
“main”, and GITHUB_HEAD_REF stores the head branch name reference, e.g. “dev”. Here we give
the API the branch name references as the base and head inputs, so it will handle and convert
them into the latest commitSHAs of the specific branch.

Action Inputs
Furthermore, the Original Scorecard Actions’ inputs are defined in actions.yaml. For the
Dependency-diff Action in a pull request, none of the original inputs are used and three
additional ones are created:

name description required default

checks Checks to run. false Maintained,Securi

ty-Policy,License

,Code-Review,SAST

change_types Change types to
check.

false added

pull_request_head_sha The commitSHA of the
pull request head

false ${{github.event.p

ull_request.head.

https://docs.github.com/en/actions/quickstart
https://docs.github.com/en/actions/learn-github-actions/environment-variables
https://docs.github.com/en/actions/learn-github-actions/environment-variables
https://docs.github.com/en/actions/learn-github-actions/environment-variables#default-environment-variables
https://github.com/ossf/scorecard-action/blob/main/action.yaml

reference. sha}}

All three of the inputs are not required and have their default values. checks and change_types
are inputs for the Dependency-diff API, and the pull_request_head_sha is a special
requirement for the annotations API, which will be discussed later.

Outputs
The outputs of the Dependency-diff Action contain two separate parts: (1) visualization as a pull
request comment and (2) visualization as check run annotations.

The reason we visualize the dependency-diff results in two different positions:

●​ Justifications for visualizing as a comment:
○​ The comments in a pull request provide a straightforward and clear UI for users

to take a quick look at the Scorecard checking results for their dependency
changes.

○​ The pull request comments support the markdown syntax, making it easier to
create tags, links, bold fonts, etc. that are related to the dependencies.

●​ Justifications for visualizing as check run annotations.
○​ Putting too much information in the comments will lead to long and redundant

comments spamming the entire pull request.
○​ Annotations are check run “notes” given in a specific changed file with a start line

and an end line. See the CodeCov annotations example here. Compared to a
pull request comment, an annotation can contain more information and details,
which is perfect to supplement those fields that are dropped in the comments.

○​ The dependency ManifestPath returned by the GitHub Dependency Review API
is a perfect input for an annotation file path.

Visualization as a pull request comment [example]
We visualize each dependency on a per-line basis in a pull request issue comment (a general
comment). The CreateComment, EditComment, and ListComments API in the package
github.com/google/go-github@v45 is used for this purpose. Specifically, CreateComment is used
to create a new comment if there is none, ListComments is used for listing the existing
comments so that we can search through its returned list to find our previous comment to a pull
request. If such a comment exists, EditComment will be used for updating that comment and
generating a new dependency-diff visualization report there.

Change type tags
The default change types are “added” and “removed”. To make it more explicit in a pull request
comment, we also create an “updated” tag for those dependencies updating from an old
version. The markdown back quote ”`” is used to create such a tag.

https://docs.codecov.com/docs/github-checks#annotations-in-the-checks-tab
https://github.com/aidenwang9867/my_workflow_test/pull/66#issuecomment-1202002239
https://docs.github.com/en/rest/issues/comments
https://github.com/google/go-github/blob/master/github/issues_comments.go#L110
https://github.com/google/go-github/blob/master/github/issues_comments.go#L129
https://github.com/google/go-github/blob/master/github/issues_comments.go#L129
http://github.com/google/go-github

Sorting by the aggregate score
We first calculate the aggregate score for each dependency if it has a valid
ScorecardCheckResult field, then use (ChangeType, AggregateScore) as the composite key
to sort the dependency entries. At last, we’ll see added dependencies shown in the front, then
removed dependencies. Also, a dependency with a higher aggregate score will be shown in the
front. The aggregate score of a package will also be shown in a Score tag, using the markdown
back quote “`”.

Generating the deps.dev package link
The Open Source Insights deps.dev provides a comprehensive overview of the packages in
different ecosystems. For each dependency with a valid package ecosystem, package name,
and package version, deps.dev provides the following REST API to query the existence of the
corresponding deps.dev package page:

deps.dev/_/s/{ecosystem}/p/{name}/v/{version}

By sending standard HTTP requests to this API for each dependency package, we can fetch its
response status and decide if there is a valid page for a package - if the response status is 200
OK, we will create a deps.dev link for the dependency leading to its deps.dev page. For example,
we can request deps.dev/_/s/PyPI/p/tensorflow/v/2.7.0 and create the
deps.dev/pypi/tensorflow/2.7.0 link for it if the response status is 200 OK.

Note the package name needs to be escaped using the url.PathEscape() API if it contains a
path, especially for a lot of Go packages that use their URI paths to their source repositories as
the package names, e.g. github.com/ossf/scorecard/v4/checks.

Visualization as check run annotations [example]
Dependency-diff annotations is generated on a per-check basis. For a single dependency-diff,
there could be multiple annotation entries for each of its checks. This way, the check score, and
check reason will be more explicit to users, and the check raw details will be put into the raw
output section. Users might want to click the raw output button to see the raw details of a
check, e.g., for the Security-Policy check, the security policy file path will be put into the raw
details if such a file is detected.
Example raw outputs:
Info: security policy detected in current repo: SECURITY.md:1

By default, we will make every annotation a check notice. If the score of a single check is
lower than 60% (6.0) of the maximum score (10), we will change that annotation to a check
warning with a warning sign and showing the package name in yellow fonts, such that it is
easier for a user to quickly identify the checks with lower scores. This might be helpful to find a
potential insecure dependency.

http://deps.dev/_/s/PyPI/p/tensorflow/v/2.7.0
http://deps.dev/pypi/tensorflow/2.7.0
https://github.com/aidenwang9867/my_workflow_test/pull/66/files#diff-33ef32bf6c23acb95f5902d7097b7a1d5128ca061167ec0716715b0b9eeaa5f6

Project Management

Time Schedule and Work estimates
Estimated time for developing the visualization in comment: 1.5 weeks
Estimated time for developing the visualization as annotations: 0.5 weeks.
Estimated time for adding the unit tests: 0.5 weeks.
E2e tests: TBD, can skip this and add in the future when this feature is ready to release.

Documentation plan
This one will be used as the design document for the Dependency-diff Visualization as a
Scorecard GitHub Action feature.

 is another design document [Public] [Design Doc] Scorecard Dependency-diff API
associated with this one.

Testing plan
Unit tests and e2e tests are needed after incorporating this module into the scorecard project.
Specifically, we’ll need unit tests to cover the visualization as a comment and visualization as
annotations, making sure they won’t crash.

Since this feature will remain as an experimental one once it is merged into the Scorecard
Action repo, the e2e tests can be added later when we add the Scorecard REST API support
and it is ready for release.

Further Discussions
This section contains other discussions and issues that have already been resolved (in gray
fonts) or are currently pending solutions.

https://docs.google.com/document/d/13UGTr7r_kYDdmpTxePZSJxEhAfBa694KFcSR23-eJQs

	Dependency-diff Visualization as a Scorecard GitHub Action
	Motivation and Objective
	Background
	GitHub Dependabot
	Mend Renovate
	Scorecard Action

	Framework
	Inputs
	Workflow Environment Variable Inputs
	Action Inputs

	Outputs
	Visualization as a pull request comment [example]
	Change type tags
	Sorting by the aggregate score
	Generating the deps.dev package link

	Visualization as check run annotations [example]

	Project Management
	Time Schedule and Work estimates
	Documentation plan
	Testing plan

	Further Discussions

