
Publicly Shared

Benchmarking LLM Workloads for
Performance Evaluation and Autoscaling in

Kubernetes
Author: Ashok Chandrasekar

Shared with dev@kubernetes.io for commenter
Shared with wg-serving@kubernetes.io for editing

Benchmarking Landscape

Model Server Benchmarks
There are lots of different tools to benchmark model servers and inference workloads available
today. Each model server has their own set of tools like vLLM, Triton, TGI, and Jetstream. These
are focussed on single model server benchmark which helps measure throughput and latency
with a specific dataset and in most cases works well / only with their corresponding model
server. They provide little in the way of traffic shaping for autoscaling.

Hosted Offering Benchmarks
There are also other benchmarking tools like LLMPerf which helps to benchmark hosted
offerings like Vertex, Sagemaker, Anthropic, etc. These are meant to benchmark specific API
endpoints and provide latency and throughput numbers so they can be compared against each
other and a leaderboard can be provided among them. These offer less customizability and
don't address traffic shaping needs of autoscaling.

Accelerator Benchmarks
There are hardware accelerator benchmarks like MLPerf which provides a loadgen and a way to
benchmark and compare different hardware accelerators. It is more on the academic side and
is useful for individual chip manufacturers and cloud providers to claim infrastructure
performance. They are not suitable for Kubernetes and autoscaling benchmarking needs.

mailto:achandrasekar@google.com
mailto:dev@kubernetes.io
mailto:wg-serving@kubernetes.io
https://github.com/vllm-project/vllm/tree/main/benchmarks
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/client/src/c%2B%2B/perf_analyzer/README.html
https://github.com/huggingface/text-generation-inference/tree/main/benchmark
https://github.com/google/JetStream/tree/main/benchmarks
https://github.com/ray-project/llmperf

Generic Web Benchmarks
There are generic http / web server benchmarks like Locust, Apache Bench, etc. which help
generate http traffic against the inference servers. These are the most useful when it comes to
autoscaling. These tools help control the concurrency of requests and it can be increased or
decreased as the test happens which allows you to introduce spikes which are good to
benchmark autoscaling. A comparison of these can be seen below.

Tool Language License RPS control Distributed
Load Testing

Containerization Spike / Burst
Traffic

Locust Python MIT No Yes Yes Manual

Apache Bench C Apache Yes No No Manual

Apache JMeter Java Apache Yes Yes No Manual

Gatling Java / JS Apache - Yes No Yes

K6 Go / JS AGPL No Yes Yes Automated

Of the available tools, Locust is the most useful in terms of being written in python and having a
good support ecosystem. But there are some missing features still which makes it a not so
good choice.

1.​ GenAI features need to be implemented as extensible tasks which makes it harder to
both implement because of the friction involved and scale because of how resource
requirements are harder to figure out when these extensions are implemented.

2.​ The request rate cannot be controlled which is a key requirement for benchmarking any
model server. Only the number of users to send requests from can be controlled which
makes it not very useful for GenAI benchmarking, since each user can send a new
request only after the existing one completes and since AI inference requests take in
the order of seconds to minutes, this makes it hard to hit any specific request rate.

3.​ gRPC support is lacking.
4.​ There are multiple components to run including a locust master and one or more

workers. So deploying and managing it is a little complicated which adds friction to
someone who wants a benchmark they can easily run.

5.​ Load spikes need to be manually introduced. So, hands off benchmarking is harder to
do.

Benchmarking Tooling for Kubernetes

Requirements

We need a benchmarking tool that we can run in a Kubernetes cluster for the following
reasons.

1.​ With a specific model server and accelerator, how does the performance look?
a.​ This is needed for model catalogs and any pre-baked configurations that we

want to publish.
2.​ To identify, what is the saturation point for model server compute (the inflection point

where we cannot get more throughput with a higher request rate, but start to incur
additional latency) so we can autoscale effectively?

3.​ To measure the baseline for autoscaling performance so it is easier to compare
different metrics and thresholds that we can use for autoscaling and pick the one that
performs better.

4.​ To measure the performance of Instance Gateway and other future orchestration
enhancements we might build in Kubernetes.

Other general requirements include the following:

1.​ To be able to repeatedly rerun the tool against vastly different inference stacks /
infrastructure. This can include hosted offerings like Vertex, Sagemaker, etc. too in
addition to different model servers running on Kubernetes.

2.​ To be able to extend the tool and to easily integrate with tokenizers and other client
libraries in the GenAI ecosystem.

Options
To solve the above requirements, we have two options.

1.​ Benchmark as Data:
In this model, the benchmarking tool will target ease of use so it can be easily deployed
and performance data can be obtained. It would be useful especially for newer users
and users who are focussed on getting the supported benchmarking data on their
Kubernetes clusters. It is less extensible and any new support would need to be
implemented in the tool first before it can be used.

2.​ [Preferred] Benchmark as Code:
In this model, the benchmarking tool will target extensibility to support different use
cases and it will be a tool that ML engineers can use for a variety of inference
benchmarking needs. This will be useful to the model server teams and will have use
outside of the Kubernetes ecosystem. Additional effort will be needed in making it
easier to deploy and run on Kubernetes. But that is relatively easier to solve.

Considering the above options, we propose to go with the benchmark as code approach.
With this approach, it is better to build a python based benchmarking tool. This makes it easier

to integrate and use client libraries in the GenAI ecosystem like tokenizers directly. It can be
directly adopted by the model server implementers and GenAI developers who are already
familiar and would prefer to work in the python ecosystem. We can use the vLLM
benchmarking script as a starting point which we can then expand to support all the needed
functionalities.

Design
This section describes the high level design for the tool. It includes the following components.

Dataset Preprocessor
Dataset Preprocessor takes in a known dataset like ShareGPT or OpenOrca as the input and
pre-processes them by making sure the prompt length and generation length are aligned with
the user input to support different options like fixed input / output length tests, variable length
tests (larger input / smaller output and the vice versa). This allows us to support different GenAI
use cases like chat completion, summarization, code completion, etc. depending on the dataset
and the benchmarking user’s inputs.

LoadGen
LoadGenerator is the component which generates different traffic patterns based on user input.
This can include a fixed RPS test for a predetermined amount of time or include a way to
generate bursts in traffic or other traffic patterns as desired for autoscaling and other use cases.

Request Processor
Request Processor provides a way to support different model servers and their corresponding
request payload with different configurable parameters. This makes our tool model server
agnostic and provides a generic way to benchmark different model servers and produce apples
to apples comparison between them. This component will also support different protocols like
http and grpc and options like request streaming which is important to produce time to first token
(TTFT) metric.

Response Processor / Data Collector
Response Processor / Data Collector component allows us to process the response and
measure the actual performance of the model server in terms of request latency, TPOT, TTFT
and throughput.

Report Generator / Metrics Exporter
Report Generator / Metrics Exporter generates a report based on the data collected during
benchmarking. It can also export the different metrics that we collected during benchmarking as
metrics into Prometheus which can then be consumed by other monitoring or visualization
solutions.

https://github.com/vllm-project/vllm/blob/main/benchmarks/benchmark_serving.py
https://github.com/vllm-project/vllm/blob/main/benchmarks/benchmark_serving.py

This addresses specific things we need for LLM and GenAI benchmarking in Kubernetes.

1.​ Support to use a prompt dataset as input.
2.​ Support for different model servers with their own API format and protocol.
3.​ Support to generate different loads / traffic patterns needed for autoscaling.
4.​ Support for a benchmarking report generation with the required LLM metrics to measure

performance.

Benchmarking API for Kubernetes
To take this one step further, we can also build a benchmarking operator in Kubernetes which
would make this easier to run in a continuous fashion in any Kubernetes cluster to benchmark
any model server along with autoscaling and load balancing.

Something like:

{

 metadata: {

 name: llama3-405b-2024-07-01,

 namespace: llm,

 },

 spec: {

 endpoint: llm-1.svc.local,

 port: 8000,

 performance: {

 traffic-shape: {

 req-rate: 10 qps,

 model-type: instruction-tuned-llm/diffusion,

 dataset: share-gpt,

 input-length: 1024,

 max-output-length: 1024,

 total-prompts: 1000,

 traffic-spike: {

 burst: 10m,

https://docs.google.com/document/d/1SpSp1E6moa4HSrJnS4x3NpLuj88sMXr2tbofKlzTZpk/edit?resourcekey=0-ob5dR-AJxLQ5SvPlA4rdsg&tab=t.0#bookmark=id.qtqr02x68kp9

 req-rate: 20 qps,

 }

 }

 }

 },

 status: {

 status: success,

 results: gcs-bucket-1/llama3-405b-2024-07-01,

 }

}

	Benchmarking LLM Workloads for Performance Evaluation and Autoscaling in Kubernetes
	Benchmarking Landscape
	Model Server Benchmarks
	Hosted Offering Benchmarks
	Accelerator Benchmarks
	Generic Web Benchmarks

	Benchmarking Tooling for Kubernetes
	Requirements
	Options
	Design
	Dataset Preprocessor
	LoadGen

	LoadGenerator is the component which generates different traffic patterns based on user input. This can include a fixed RPS test for a predetermined amount of time or include a way to generate bursts in traffic or other traffic patterns as desired for autoscaling and other use cases.
	Request Processor

	Request Processor provides a way to support different model servers and their corresponding request payload with different configurable parameters. This makes our tool model server agnostic and provides a generic way to benchmark different model servers and produce apples to apples comparison between them. This component will also support different protocols like http and grpc and options like request streaming which is important to produce time to first token (TTFT) metric.
	Response Processor / Data Collector
	Report Generator / Metrics Exporter

	Benchmarking API for Kubernetes

