
DNS HTTPS Records
This Document is Public

Author: ericorth@chromium.org​
2021-04

One-page overview

Summary

Query and parse DNS HTTPS records (previously known as HTTPSSVC records) alongside
the traditional A and AAAA records. Use information from these records to improve privacy
and performance of HTTPS web connections.

Platforms

Mac, Windows, Linux (eventually), Chrome OS, Android. (Those platforms where the
Chrome built-in DNS resolver is available.)

Team

ericorth@chromium.org
net-dev@chromium.org

Bug

crbug.com/1206455

Code affected

Network stack

https://crbug.com/1206455

One-page overview

Summary
Platforms
Team
Bug
Code affected

Background
SVCB/HTTPS Records
Previous Experiments
Akamai Research

Design
DNS Stack Interface

HTTPS-required error
Adding scheme to input hostname
net::AddressList replacement

DNS Stack Internals
Querying HTTPS
Handling HTTPS Responses
Followup Queries
HostCache Rewrite

Network Connection Logic Changes
HTTPS connection upgrade
Encrypted Client Hello (ECH)
Protocol upgrade

Metrics
Success metrics
Regression metrics
Experiments

Rollout plan

Core principle considerations
Speed
Simplicity
Security

Privacy considerations

Testing plan

Followup work

Background

SVCB/HTTPS Records
HTTPS DNS records are a new IETF standard, currently a draft (draft-ietf-dnsop-svcb-https) but
at this point stable and widely regarded to be ready for implementation. This standard defines
two new DNS record types, SVCB and HTTPS, that are both designed to provide information
about service endpoints hosted at a domain name in order to facilitate connections to those
endpoints.

SVCB is the general version of this new record type, while HTTPS is a variant specifically
designed for facilitating connections to HTTPS web services. As a web browser, Chrome’s
interest in these records is primarily to facilitate HTTPS connections, and therefore Chrome will
primarily use the HTTPS record variant. This document will also frequently only specify
“HTTPS”, even when referring to SVCB and HTTPS in general, and most code implemented in
Chrome for dealing with the records will be capable of dealing with either variant.

Summary of Chrome-relevant information communicated via HTTPS records:

●​ HTTPS upgrade. Mere presence of an HTTPS record (but not just SVCB records)
indicates that all HTTP resources at that domain name are available via HTTPS. A
well-behaved client would use this information to upgrade an HTTP request to an
HTTPS request, avoiding susceptibility to many forms of SSL Stripping attacks. In this
way, HTTPS records can act similarly to HSTS (HTTP Strict Transport Security). Unlike
HSTS, this protection is available from the first connection to a site, without many of the
hefty requirements of mechanisms like the HSTS Preload List.

●​ ECH keys. Encrypted Client Hello (ECH) is a new TLS extension to encrypt the TLS
ClientHello message, especially for the purpose of encrypting the Server Name
Indication (SNI), which traditionally reveals the user’s visited web domain in the clear.
ECH is defined by draft-ietf-tls-esni.​
​
HTTPS is the distribution mechanism for cryptographic keys and any other configuration
information needed for ECH.

●​ Domain aliasing. DNS aliasing is traditionally done using CNAME records, but due to
conflicting requirements, CNAME records are not allowed at apex domains, e.g.
example.com, only subdomains, e.g. www.example.com. Sites that need to alias apex
domains (especially common for CDN scenarios), need to take less-ideal steps such as
HTTP-redirecting to CNAME-able subdomains or maintaining DNS mappings to point
directly at the correct destination addresses.​

https://tools.ietf.org/html/draft-ietf-dnsop-svcb-https-07
https://tools.ietf.org/html/draft-ietf-tls-esni-09

​
HTTPS includes an alias form that acts similarly to CNAME but is also compatible with
apex domains. Unlike CNAME, which is handled entirely by DNS recursive resolver
servers, HTTPS aliasing can be resolved either by clients or servers to maximize
compatibility with legacy DNS servers and maximize performance with updated DNS
servers.

●​ Protocol Upgrade. HTTPS allows communicating information about supported
protocols such as QUIC, along with the information necessary to perform the protocol
connection. Such protocol upgrades are traditionally performed using mechanisms like
Alt-Svc, which can often require a “wasted” connection before discovering the available
upgrade and “starting over” with the upgraded connection. Alt-Svc upgrade information
can sometimes be cached or hard-coded, but HTTPS allows an alternate and
standardized mechanism to communicate available protocol upgrades for any
HTTPS-serving domain from before the first connection.

Because browser usage of DNS has been stable for many years around making only A and
AAAA queries, there is a general ossification concern around the risk when querying a new type
of DNS record, breaking Chrome users or the DNS ecosystem. One specific concern is that, in
order to avoid a theorized security issue with ECH, the HTTPS spec states that if HTTPS
queries are made via a secure channel such as DoH, SERVFAIL or timed out responses should
be considered fatal for the entire connection attempt. As a result of this, if some portion of the
web responds to unknown queries or query types with SERVFAIL or by blackholing the query
(either of which behavior would be against traditional DNS specs), the affected domains could
become unusable by Chrome when enabling HTTPS.

Previous Experiments
In 2020Q4 and 2021Q1, Chrome has been running initial experiments (design doc) to query and
parse both HTTPS records and a new experiment-invented record called INTEGRITY. When
the experiment is active for one of these types, the record is queried, any results are parsed,
metrics are recorded, and then Chrome continues its traditional behavior as normal without any
effect from the HTTPS or INTEGRITY records received.

Experiment is still ongoing, but initial early results suggest that HTTPS can generally be queried
and parsed successfully by Chrome, at least via DoH. Overall performance of HTTPS queries is
roughly on-par with A/AAAA queries. Blackholed, SERVFAIL, and network failure queries seem
maybe rare enough to reasonably allow following the spec and blocking the connection, but it is
difficult to differentiate between this case and “normal” transient timed out queries. Overall, the
results generally look good to push forward, but not so good that we won’t need to keep a
careful eye on similar data as usage of HTTPS is rolled out.

Google employees can see more detailed data analysis notes.

https://tools.ietf.org/html/rfc7838
https://docs.google.com/document/d/14eCqVyT_3MSj7ydqNFl1Yl0yg1fs6g24qmYUUdi5V-k
https://docs.google.com/document/d/1GhGm-lvsIcE_JscYrPK5aHYKYYpfPS9dxVaNDdyvA0s/edit?usp=sharing

In 2021Q3, Chrome began a new version of the experiment to also make the same
experimental queries via Classic DNS rather than just DoH.

Akamai Research
At the DNS OARC 34 conference (2021-02), Akamai presented research regarding HTTPS
queries and the ability of the DNS ecosystem to properly respond to the queries. Their research
showed that DNS servers’ ability to properly handle queries for the new type has improved
rapidly as clients (especially Apple clients) have started making more HTTPS queries.

Also, in a review of about 12 million domains, they found only 4652 that reliably gave a “wrong”
response, primarily the timeout/blackhole response of particular interest to Chrome. This very
small number (0.03%) seems small enough to avoid significant worry over blocking connections
to those domains, but unknown if any of these problematic domains have an outsized impact on
Chrome queries. That will need to be researched further through Chrome’s query experiments.

Other Browsers/Clients
As announced at WWDC in 2020-06, Safari has been querying HTTPS for almost all HTTP
connections since 2020Q4. Unclear if this is browser-specific support or applying to all
resolutions going through the OS on iOS (and maybe MacOS). Also unclear what behavior
changes have been made based on the received HTTPS records. But overall, the success
making HTTPS queries alone is a strong sign that Chrome can safely make similar queries.

Design

DNS Stack Interface
All host resolution in Chrome goes through the net::HostResolver interface. In general, this
interface currently takes the domain to be queried as a net::HostPortPair and returns a
net::AddressList (essentially an RFC-3484-ordered list of net::IPEndPoint objects) of
address results. On resolution error, HostResolver currently merges almost all errors into a
single ERR_NAME_NOT_RESOLVED net error and provides a net::ResolveErrorInfo to provide
the underlying reason behind the error.

HTTPS-required error
A new error code, tentatively called ERR_DNS_NAME_HTTPS_ONLY, will be used to indicate that a
name being attempted for an HTTP connection has a compatible HTTPS record and thus
should be retried using HTTPS. As this is mostly a control-flow error, expected to be acted

https://indico.dns-oarc.net/event/37/
https://indico.dns-oarc.net/event/37/contributions/810/attachments/784/1413/dns-https-rr-final.pdf
https://docs.google.com/document/d/14eCqVyT_3MSj7ydqNFl1Yl0yg1fs6g24qmYUUdi5V-k
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver.h
https://source.chromium.org/chromium/chromium/src/+/master:net/base/host_port_pair.h
https://source.chromium.org/chromium/chromium/src/+/master:net/base/address_list.h
https://www.ietf.org/rfc/rfc3484.txt
https://source.chromium.org/chromium/chromium/src/+/master:net/base/ip_endpoint.h
https://source.chromium.org/chromium/chromium/src/+/master:net/base/net_error_list.h;drc=a836ee9868cf1b9673fce362a82c98aba3e195de;l=147
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/public/resolve_error_info.h

upon by connection code higher up the stack, this will be a top-level error, rather than the typical
merged ERR_NAME_NOT_RESOLVED.

Adding scheme to input hostname
As HTTPS records are only of use for HTTP or HTTPS (or websocket) web requests, and the
DNS stack needs to know which of those protocols is the case to determine whether or not to
return ERR_DNS_NAME_HTTPS_ONLY, the request scheme will need to be added to the
net::HostResolver inputs. This will be done by converting the current net::HostPortPair
parameter into a url::SchemeHostPort.

In the main request flow, the net::HostPortPair is created from a GURL in
net::HttpStreamFactory::JobController::DoCreateJobs(). The destination name is
then plumbed through and saved in the socket pool until being passed to net::HostResolver
in the socket connection logic. Most of these saved/passed net::HostPortPair instances will
be replaced with url::SchemeHostPort, serving the same purpose except maintaining the
scheme. If this replacement affects any fields used for keying the socket pool, this is not
expected to have any significant impact on pooling because the socket pool is already
bifurcated by SSL usage.

url::SchemeHostPort is slightly more restrictive on the data it can store compared to
net::HostPortPair and has some minor difference quirks, and while these differences may
cause some minor migration pain, it is not expected to be an insurmountable issue.

●​ It can only handle “standard” schemes, rather than non-standard schemes like "blob",
"filesystem", "data", and "javascript" or unknown empty schemes. This should not be an
issue for the main request flow because any such URL used with the socket pool or the
DNS stack is expected to have a “standard” scheme. But there are also cases where
there is no scheme (e.g. SOCKS proxies) or there potentially is a scheme, but that
scheme is completely unknown to the network stack (e.g. for the socket API). To support
such cases, we will add new methods to continue accepting net::HostPortPair, which
would disable making HTTPS queries. To discourage (accidental) use of these methods
compared to the url::SchemeHostPort methods (since only the with-scheme methods
will be able to use the advantages of HTTPS records), instead of being pure overloads,
they will use separate CreateWithoutScheme() methods and similar as the hostname
is plumbed through the stack. When both url::SchemeHostPort and
net::HostPortPair are accepted, it will be internally stored using an absl::variant.
This should only be necessary for net::HostResolver and net::ConnectJob layers
because HTTP stream factory and main socket pool logic is only used for standard
HTTP/HTTPS/WS/WSS requests and can exclusively use url::SchemeHostPort.

●​ It requires canonicalized hostnames. Also expected to already be the case for anything
going through the main request flow as the canonicalization is performed when
initializing URLs into GURLs (and the GURLs are then used to initialize the
net::HostPortPair). Corner cases, if not currently canonicalizing input, may need to
do so as an extra step.

https://source.chromium.org/chromium/chromium/src/+/master:net/base/net_error_list.h;drc=a836ee9868cf1b9673fce362a82c98aba3e195de;l=147
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver.h
https://source.chromium.org/chromium/chromium/src/+/master:net/base/host_port_pair.h
https://source.chromium.org/chromium/chromium/src/+/master:url/scheme_host_port.h
https://source.chromium.org/chromium/chromium/src/+/master:net/base/host_port_pair.h
https://source.chromium.org/chromium/chromium/src/+/master:url/gurl.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job_controller.cc;l=661;drc=5d4bf842d53c6c47f6c3656cea4a1d2964ac60d5
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver.h
https://source.chromium.org/chromium/chromium/src/+/master:net/base/host_port_pair.h
https://source.chromium.org/chromium/chromium/src/+/master:url/scheme_host_port.h
https://source.chromium.org/chromium/chromium/src/+/master:url/scheme_host_port.h
https://source.chromium.org/chromium/chromium/src/+/master:net/base/host_port_pair.h
https://source.chromium.org/chromium/chromium/src/+/master:net/base/host_port_pair.h
https://source.chromium.org/chromium/chromium/src/+/master:url/scheme_host_port.h
https://source.chromium.org/chromium/chromium/src/+/master:url/scheme_host_port.h
https://source.chromium.org/chromium/chromium/src/+/master:net/base/host_port_pair.h
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver.h
https://source.chromium.org/chromium/chromium/src/+/main:net/socket/connect_job.h
https://source.chromium.org/chromium/chromium/src/+/master:url/scheme_host_port.h
https://source.chromium.org/chromium/chromium/src/+/master:url/gurl.h
https://source.chromium.org/chromium/chromium/src/+/master:url/gurl.h
https://source.chromium.org/chromium/chromium/src/+/master:net/base/host_port_pair.h

●​ It stores IPv6 literals within brackets, while net::HostPortPair expects the brackets to
be stripped and currently does so within net::HostPortPair::FromURL(). Deeper in
the stack, the host resolution logic attempts to resolve as IP addresses by attempting
net::IPAddress::AssignFromIPLiteral(), which expects no brackets (and actually
internally adds brackets to it in order to pass to code that expects brackets). Best
solution is likely to make net::IPAddress more flexible and able to handle input both
with and without the brackets.

Per Section 8.6 of the HTTPS RFC, it is correct to use HTTPS queries for WS/WSS URLs, not
SVCB. Therefore host resolution logic will also recognize WS/WSS schemes and handle them
accordingly. But this should not be necessary to handle the main request flow where, in order to
prevent the socket pool from unnecessarily separating HTTP/HTTPS sockets from WS/WSS
sockets, WS/WSS schemes will be massaged into HTTP/HTTPS schemes.

net::AddressList replacement
Output from the DNS stack takes the form of Get*Results() methods on
net::HostResolver::ResolveHostRequest. Different query types provide data to different
result methods, but because HTTPS results can provide different values for different endpoint
services, the HTTPS data will need to be grouped with address results rather than being a
separate result type. An update/replacement will be created for GetAddressResults() and its
net::AddressList return type that will return HTTPS-derived data, grouped by endpoint
service.

The new return type will be a multimap (attempting to get permission for
absl::btree_multimap in this discussion thread, but may have to settle for std::multimap)
that maps a new protocol/version struct (tentatively called net::EndpointProtocol and using
net::NextProto) to a new data type tentatively called
net::EndpointServiceConnectionInfo:

struct EndpointServiceConnectionInfo {

 std::vector<net::IPEndPoint> ipv4_endpoints;

 std::string ipv4_alias_name;

 std::vector<net::IPEndPoint> ipv6_endpoints;

 std::string ipv6_alias_name;

 EchConfigList ech_config_list;

};

All values with the same key will be sorted by HTTPS record weight (for std::multimap, this
should be the order in which the entries were inserted in the multimap; unsure about
absl::btree_multimap). Note that EchConfigList will likely (TBD with full ECH plans) just
be an alias for a raw byte vector that gets plumbed across the stack as-is to BoringSSL to
handle the parsing/interpretation, and as such, not having ECH config info can just be
represented by an empty vector.

https://source.chromium.org/chromium/chromium/src/+/master:net/base/host_port_pair.h
https://source.chromium.org/chromium/chromium/src/+/master:net/base/host_port_pair.cc;l=28;drc=1d00cb24b27d946f3061e0a81e09efed8001ad45
https://source.chromium.org/chromium/chromium/src/+/master:net/base/ip_address.h;drc=1d00cb24b27d946f3061e0a81e09efed8001ad45
https://source.chromium.org/chromium/chromium/src/+/master:net/base/ip_address.h
https://tools.ietf.org/html/draft-ietf-dnsop-svcb-https-05#section-8.6
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver.h;drc=2bc48c70ec6b45c73757d5e75a459f27ed44cda2;l=56
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver.h;drc=2bc48c70ec6b45c73757d5e75a459f27ed44cda2;l=83
https://source.chromium.org/chromium/chromium/src/+/master:net/base/address_list.h
https://source.chromium.org/chromium/chromium/src/+/master:third_party/abseil-cpp/absl/container/btree_map.h;drc=47c7a1dee4ea814a4cf1e20f6da8c6b755fe9aa2;l=475
https://groups.google.com/a/chromium.org/g/cxx/c/82JABg9fX5o
https://source.chromium.org/chromium/chromium/src/+/master:net/socket/next_proto.h
https://source.chromium.org/chromium/chromium/src/+/master:third_party/abseil-cpp/absl/container/btree_map.h;drc=47c7a1dee4ea814a4cf1e20f6da8c6b755fe9aa2;l=475

This multimap or relevant subportions of it will replace all usage of net::AddressList in
Chrome, e.g. the net::IPEndPoint lists alone covers most usage of net::AddressList, so
just those lists could be passed into code such as socket connection code that doesn’t need any
more.

One item of note is aliasing. net::AddressList currently contains dns_aliases() and
GetCanonicalName() methods that allow retrieving the names used in the alias chain. This
has long been considered non-ideal to be stored in net::AddressList, especially because it
has been the only thing keeping net::AddressList from being converted into a simple
std::vector<net::IPEndPoint>. See this bug. Also, it’s not always accurate because while
GetCanonicalName() assumes a single final name, because separate DNS queries could
receive different CNAME records, A and AAAA results could end up with different final canonical
names, and HTTPS only further complicates the potential separation. Because nothing in
Chrome currently ever cares about the exact alias chain, only the final name or the unordered
names used in the chain, the new struct will contain the one final name for each address family
(typically the service name when HTTPS service records are involved). All other names used in
alias chains (including any aliases used only for HTTPS records) will be provided in no specific
order at a new get*Results() method on net::HostResolver::ResolveHostRequest.

DNS Stack Internals

Querying HTTPS
HTTPS queries will be made very similarly to those currently made for HTTPS experiments.
That is that the logic for deciding when to make the queries will live in
net::HostResolverManager::DnsTask::DnsTask() alongside current logic for deciding what
specific DNS queries/transactions to make using the built-in resolver for a given HostResolver
request.

The logic will add an HTTPS transaction to the transactions_needed_ queue for any
net::DnsQueryType::UNSPECIFIED request (the query type used for standard web requests
that currently make A and AAAA queries) when the relevant TBD feature flags are enabled.
The logic will also only add HTTPS for relevant schemes (http, https, ws, and wss). This means
the scheme (passed to net::HostResolverManager via url::SchemeHostPort) will need to
be plumbed into the net::HostResolverManager::DnsTask alongside the current hostname
string parameter. Also, HTTPS transactions may (TBD based on current experiments and will
likely be a separate feature or parameter flag) be added only when they will be made using
DoH, but DnsTask already has parameters to know whether or not DoH is used for the
transactions. DnsTask will then make its various requests to net::DnsTransaction, same as it
does for any other query type.

HTTPS query experiments currently have special timeout logic for HTTPS queries that allow the
experimental queries to be made without significant risk of the overall request blocking on a

https://source.chromium.org/chromium/chromium/src/+/master:net/base/address_list.h
https://source.chromium.org/chromium/chromium/src/+/master:net/base/ip_endpoint.h
https://source.chromium.org/chromium/chromium/src/+/master:net/base/address_list.h
https://source.chromium.org/chromium/chromium/src/+/master:net/base/address_list.h
https://source.chromium.org/chromium/chromium/src/+/master:net/base/address_list.h;drc=78c0778431c6fdd3dead532b1774270486829251;l=70
https://source.chromium.org/chromium/chromium/src/+/master:net/base/address_list.h;drc=78c0778431c6fdd3dead532b1774270486829251;l=62
https://source.chromium.org/chromium/chromium/src/+/master:net/base/address_list.h
https://source.chromium.org/chromium/chromium/src/+/master:net/base/address_list.h
http://crbug.com/126134
https://source.chromium.org/chromium/chromium/src/+/master:net/base/address_list.h;drc=78c0778431c6fdd3dead532b1774270486829251;l=62
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver.h;drc=2bc48c70ec6b45c73757d5e75a459f27ed44cda2;l=56
https://docs.google.com/document/d/14eCqVyT_3MSj7ydqNFl1Yl0yg1fs6g24qmYUUdi5V-k
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=dcd9b9a15df1981c0faa738bfebc2770ed6b0484;l=1107
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=e79e2a5be621abf85acf5f1c10fe1700123a5409;l=1526
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/public/dns_query_type.h;drc=e79e2a5be621abf85acf5f1c10fe1700123a5409;l=17
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.h
https://source.chromium.org/chromium/chromium/src/+/master:url/scheme_host_port.h
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=dcd9b9a15df1981c0faa738bfebc2770ed6b0484;l=1085
https://docs.google.com/document/d/14eCqVyT_3MSj7ydqNFl1Yl0yg1fs6g24qmYUUdi5V-k
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=dcd9b9a15df1981c0faa738bfebc2770ed6b0484;l=1085
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=488471b7913c65a41c6216827e8c0325a048e92e;l=1519
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=dcd9b9a15df1981c0faa738bfebc2770ed6b0484;l=1085
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/dns_transaction.h
https://docs.google.com/document/d/14eCqVyT_3MSj7ydqNFl1Yl0yg1fs6g24qmYUUdi5V-k
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=dcd9b9a15df1981c0faa738bfebc2770ed6b0484;l=1476

slow/blackholed query. Assuming query experiments do not discover significant
timeout/blackhole issues for HTTPS compared to A/AAAA, these special timeouts will not be
used beyond the experiments. HTTPS queries will be subject to the same
server-fallback/timeout logic as A and AAAA queries, and the overall host resolution request will
not complete until all 3 queries complete (or any 1 query fails or times out). Depending on
eventual experiment results for querying HTTPS via Classic DNS, we may want to introduce a
timeout for HTTPS via Classic DNS, similar to experiment times, as performance may be less
predictable with those servers, and the downsides of missing a potential HTTPS record will not
be as severe.

Note that there is an alternative to blocking overall host resolution on receiving results for all 3
queries: Fully handling results asynchronously as they come for different types, per RFC 8305.
Section 3 and Section 5.1 of the HTTPS spec discuss optional optimizations taking advantage
of RFC 8305. But such support would require very significant changes to Chrome connection
logic, beyond the DNS stack. Enough work that it would not be ideal to block HTTPS support
on it. Therefore, such efforts are out of scope for this design and should be considered for
future followup work.

Handling HTTPS Responses
For the special case where the HTTPS query times out or results in SERVFAIL while querying
via DoH, per the HTTPS spec, the desired behavior is for the entire connection attempt to fail to
avoid ECH downgrade attacks. As currently written, after a
net::HostResolverManager::DnsTask failure, net::HostResolverManager::Job will
attempt to run any fallback tasks available via
net::HostResolverManager::Job::RunNextTask(). This is the mechanism to do things like
fallback from DoH to non-DoH or fallback from the built-in DNS resolver to the system resolver.
To avoid fallback for this special case, there will be a new fatal_error parameter to pass from
net::HostResolverManager::DnsTask::OnTransactionComplete(), where it can be easily
determined whether or not it is the special case, through the failure flow to
net::HostResolverManager::Job::OnDnsTaskFailure() where RunNextTask() would
normally be called. Also, as net::HostResolverManager::DnsTask normally cancels
immediately, triggering fallback, on any A or AAAA failure, new logic will need to be written to
instead wait for any pending HTTPS requests to complete or fail if conditions make those
requests eligible to trigger the special behavior, in order to see if triggering fallback is
appropriate.

For any HTTPS failure not meeting the special fatal failure case, HTTPS failures will generally
be ignored and treated the same as a successful request with no HTTPS results. This is
different from A/AAAA failures, where any failure generally fails the
net::HostResolverManager::DnsTask and leads to potential fallback via
net::HostResolverManager::Job::RunNextTask(). But with HTTPS, fallback will often lead
to new tasks that do not support making HTTPS queries, e.g. via the system resolver, leading to
a very similar end result as if Chrome ignored the HTTPS failure.

https://source.chromium.org/chromium/chromium/src/+/master:net/dns/resolve_context.h;l=119-145
https://tools.ietf.org/html/rfc8305
https://tools.ietf.org/html/draft-ietf-dnsop-svcb-https-05#section-3
https://tools.ietf.org/html/draft-ietf-dnsop-svcb-https-05#section-5.1
https://tools.ietf.org/html/rfc8305
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=dcd9b9a15df1981c0faa738bfebc2770ed6b0484;l=1085
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=488471b7913c65a41c6216827e8c0325a048e92e;l=1578
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=488471b7913c65a41c6216827e8c0325a048e92e;l=1578
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=488471b7913c65a41c6216827e8c0325a048e92e;l=1238
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=488471b7913c65a41c6216827e8c0325a048e92e;l=2077
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=dcd9b9a15df1981c0faa738bfebc2770ed6b0484;l=1085
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=dcd9b9a15df1981c0faa738bfebc2770ed6b0484;l=1085
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=488471b7913c65a41c6216827e8c0325a048e92e;l=1578

On receiving a successful HTTPS response in
net::HostResolverManager::DnsTask::OnTransactionComplete(), the response is sent to
a net::DnsResponseResultExtractor, which parses the response and builds a resulting
net::HostCache::Entry (the type used both for caching results as well as the
internal-to-net::HostResolverManager generalized result type). From the work done for the
HTTPS query experiments, the extractor already has all logic to parse HTTPS responses, and
no necessary changes are expected there.

net::HostCache::Entry will need to be updated to store a generalized representation of
HTTPS results. Just like the replacement of net::AddressList in results from the DNS stack
interface, addresses results stored in net::HostCache::Entry (also currently
net::AddressList) will also need to be replaced. To assist with merging data from multiple
sources (especially A/AAAA and HTTPS), this will be stored as a map (likely base::flat_map
for the good memory performance since this will be stored in the cache, or maybe even
base::small_map to best handle the common case of a single service name) from service
name to a new data struct tentatively called net::HostCache::ResultServiceInfo:

struct ResultServiceInfo {

 struct Service {

 std::vector<net::IPAddress> ipv4_hints;

 std::vector<net::IPAddress> ipv6_hints;

 uint16_t port;

 EchConfigList ech_config_list;

 std::vector<net::EndpointProtocol> protocols;

 };

 std::vector<net::IPAddress> ipv4; // From A

 std::vector<net::IPAddress> ipv6; // From AAAA

 std::vector<Service> services; // In weighted order

};

Note that address hints are specific to a service entry (with a specific port, protocols, ech) but
any merged-in A/AAAA results apply to all service entries for the name.

In net::DnsResponseResultExtractor, only records recognized as supported will be
extracted into a net::HostCache::EndpointServiceInfo. This generally means only records
with “alpn” values that Chrome recognizes and knows how to convert into the appropriate
net::NextProto value and records without any “mandatory” fields that Chrome’s parser does
not know how to parse. Note that unless the record includes a “no-default-alpn” param that
http/1.1 is implicitly included as an alpn value and thus the record is compatible for the “alpn”
checks. As is explicitly allowed by the HTTPS RFC, to ensure good internet compatibility and
reasonable fallback availability, Chrome will reject all records for a name if all records include a
“no-default-alpn” param.

https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=488471b7913c65a41c6216827e8c0325a048e92e;l=1238
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/dns_response_result_extractor.h
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_cache.h;drc=488471b7913c65a41c6216827e8c0325a048e92e;l=100
https://docs.google.com/document/d/14eCqVyT_3MSj7ydqNFl1Yl0yg1fs6g24qmYUUdi5V-k
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_cache.h;drc=488471b7913c65a41c6216827e8c0325a048e92e;l=100
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_cache.h;drc=488471b7913c65a41c6216827e8c0325a048e92e;l=100
https://source.chromium.org/chromium/chromium/src/+/master:net/base/address_list.h
https://source.chromium.org/chromium/chromium/src/+/master:base/containers/flat_map.h
https://source.chromium.org/chromium/chromium/src/+/master:base/containers/small_map.h
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/dns_response_result_extractor.h
https://source.chromium.org/chromium/chromium/src/+/master:net/socket/next_proto.h

Followup Queries
Unlike A/AAAA there are cases where HTTPS responses could result in the need for Chrome to
make additional queries. (Note that Chrome, like most DNS clients, always relies on recursive
resolvers handling CNAME and including the full chain in responses seen by Chrome, so
CNAME results do not ever result in followup queries in current Chrome logic.)

If Chrome receives an HTTPS alias record, but a record for the alias target is not included in the
same response, Chrome will need to make an additional round of A/AAAA/HTTPS queries for
the alias target name. To avoid any issues with loops or poor performance from chains, Chrome
will only make one such round of followup. If more are needed, Chrome will behave as if the
HTTPS records do not exist and will use the data from the original A/AAAA records alone
(ignoring any A/AAAA results from the first followup query). Note that the potential for multiple
alias followups should only come from successive chain links because splitting aliases at the
same level are disallowed (spec states to pick one at random if it happens).

If Chrome receives a compatible HTTPS service record with a different service name than the
query name, but no address hints are given, Chrome will need to make additional A/AAAA
queries (but not an HTTPS query). In theory, Chrome could attempt such followups for all
compatible service records, but for simplicity/performance, Chrome will only allow one such
followup (possible exception for cache-only followups) per host resolution job, choosing the
highest priority service record based on protocol and weight.

net::HostResolverManager::DnsTask::OnTransactionComplete() will be updated to
recognize the conditions requiring followup queries and to modify
net::HostResolverManager::DnsTask::transactions_needed_ to queue the followup
tasks. Because followup queries will generally be made for different query names,
transactions_needed_ will also need to keep track of qnames rather than just qtypes as it
does now. Care will also need to be taken to ensure net::HostResolverManager::Job is
capable of adding more than one additional transaction to a DnsTask. It has some current
design to attempt to handle this sort of change, but I don’t have high expectations that it will
actually work for all required cases here, especially if HTTPS queries are made via Do53,
requiring Job to coordinate with the job dispatcher.

HostCache Rewrite
net::HostCache is currently designed around caching results of whole host resolver requests.
Cache keys primarily consist of the host resolution request parameters, and cached results are
the overall merged result or error. In its current design, the cache would be unsuitable for
caching individual DNS requests or similar used to merge into the overall response.

HTTPS creates a need for the cache to be able to provide such intermediate results. E.g., if an
HTTPS query necessitates followup A/AAAA queries for example.com, it would be extremely
desirable to be able to read that from the cache if example.com were already previously queried
for a similar or unrelated request. The current cache would only be able to provide overall

https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;l=1323-1351;drc=dcd9b9a15df1981c0faa738bfebc2770ed6b0484
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=f16cad21ac6fc30b080b57bfd77db7f61a9a8927;l=1526
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=f16cad21ac6fc30b080b57bfd77db7f61a9a8927;l=1578
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_cache.h

results for a similar request, missing out on possible matches with a same-named subquery but
different overall parameters, and in such cases where only a portion of results are desirable, it
would be difficult to separate them out from the current merged results. Similar situations for if
an HTTPS alias points to another domain that could have previously been requested (or been
the alias target name for a different request name). Another trait of HTTPS that leads to
problems with the current shared cache is that HTTPS is more likely to have different TTLs than
A and AAAA, and the current cache just uses 1 shared TTL (the min of the merged TTLs). If
e.g. a domain decides to use half the TTL for HTTPS results compared to A/AAAA, the current
cache would then give the result of unnecessarily doubling the frequency of the A/AAAA
queries.

While a net::HostCache rewrite would be good for any HTTPS query support (due to the
significant increase (~50%) in subqueries and TTL issues), it won’t be a blocker except for
support for followup queries (due to the larger reliance on interdependency between
subqueries). For initial no-followup HTTPS support, the old cache will be used, and per the
current design of that cache and all interactions with it, unless an entire request can be resolved
via cache, the current behavior means all subqueries will be retrieved fresh from the network,
even if they could theoretically be answered from the cache.

The rewritten net::HostCache will be keyed by individual DNS requests, thus a standard
request resulting in A, AAAA, and HTTPS queries will result in 3 cached entries (more if
followup queries are required), all with their own separate TTLs.

Alias links (both HTTPS aliases and CNAMEs), even when received as chains (as is typical for
CNAME where Chrome always receives the entire chain in a single DNS response) will be
stored as individual link entries. Since aliasing is not specific to DNS query types, alias links will
be keyed with an “any” type that can match any query type. The link-separated entries will allow
Chrome to use the cache for a name that may have previously been only used as the alias of a
previous query. This could be especially useful for HTTPS, e.g. if website operators start using
HTTPS aliases to alias from example.com to www.example.com (or vice versa), both names to
which the user or site links could reasonably lead to queries. With alias links indexed separately
in the cache, Chrome would be able to thereafter serve either example.com or
www.example.com directly from cache. To provide consistent behavior regarding Chrome’s
limits on followup queries, the cache entries will keep track of whether or not they were an
HTTPS alias that required Chrome to make a followup query. Resolution logic would then
disallow resolving through more than one of such links.

The resolution logic currently creates individual cache entries for each subquery (in
net::DnsResponseResultExtractor) and merges them together (in
net::HostResolverManager::DnsTask::OnTransactionComplete()) for storage in the
cache and passing the result back up the stack. The new cache would eliminate the need to
merge cache entries. Individual entries will be saved into the cache as they are created, and
the entries will be passed up the stack as results collectively in a std::vector or similar.

https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_cache.h
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_cache.h
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/dns_response_result_extractor.h
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;l=1323-1351;drc=dcd9b9a15df1981c0faa738bfebc2770ed6b0484

When using the system resolver, Chrome receives results as a single result containing both
IPv4 and IPv6 results, unlike Chrome’s built-in resolver which makes separate queries for each
query type (and will cache the query types separately once this net::HostCache rewrite work is
complete). For consistency and simplicity in the cache lookup logic, these combined system
resolver results will also be separated by IP family and stored in separate A and AAAA cache
entries (no HTTPS entry since we never get HTTPS results from the system resolver). This will
also allow cache reuse if an A-only request comes when an all-family request has been recently
made and cached.

On successful fallback (e.g. successful fallback to the system resolver after an error with the
built-in resolver (but not timeout or SERVFAIL for HTTPS queries that will no longer allow
fallback to prevent ECH downgrade attacks)), if the success is being cached for longer than any
cached errors from the failed queries, a “fallback” cache entry will be saved over the cached
error with the same TTL of the success. This is necessary because DNS errors are typically
cached with different TTLs from successes (and not all errors are cached at all), and it would be
undesirable to attempt the failed requests again just because the cached failure expired while a
cached successful fallback result is still available. Conversely, if the error causing fallback has a
TTL longer than the fallback success TTL, the original cached error will be kept, allowing
Chrome to immediately attempt the fallback logic for that query as long as the cached error is
unexpired.

During resolution, cache lookups will be done within the Task logic (e.g.
net::HostResolverManager::DnsTask), rather than between Tasks as a pseudo-Task as is
currently done, as the query-specific caching will allow the tasks to more easily lookup the
queries the task is about to make. Note though that
net::HostResolverManager::ResolveLocally() will still have a special case cache lookup
attempt to run before any Tasks are run in order to allow synchronous results if possible. The
Task will also be able to make partial queries, e.g. if net::HostResolverManager::DnsTask
finds that it has an unexpired A cache entry but not an AAAA entry, it could use the cached A
while doing a fresh query just for AAAA. This is especially relevant for HTTPS where server
operators are a little more likely to use different TTLs than they were for A vs AAAA. But while
partial caching will be used within a Task, for logical simplicity, fallback will be all or nothing. If
fallback is needed for one query (including if any one query has a cached error or cached
“fallback” entry), the fallback Task will attempt to get all query types and cached values
recognized by the previous Task will only be used for fallback if compatible (e.g. an insecure
DnsTask could read entries cached by any DnsTask, secure or insecure).

Some slight changes will also be beneficial in the cancellation logic for
net::HostResolverManager::Job. Currently, when the last attached
net::HostResolverManager::RequestImpl is cancelled, the entire job and all its underlying
tasks are immediately cancelled, meaning any pending results will never be cached. With all
the changes to make intermediate results usable from the cache, a cancelling
net::HostResolverManager::Job might as well wait for any pending queries to complete and
cache those results. Should still cancel before making any additional requests (followup or

https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_cache.h
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=dcd9b9a15df1981c0faa738bfebc2770ed6b0484;l=1085
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=dcd9b9a15df1981c0faa738bfebc2770ed6b0484;l=2770
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=dcd9b9a15df1981c0faa738bfebc2770ed6b0484;l=1085
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=d4e153d930f3bfed1eaf22dcd75fb07af647aff5;l=1591
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=d4e153d930f3bfed1eaf22dcd75fb07af647aff5;l=494
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;drc=d4e153d930f3bfed1eaf22dcd75fb07af647aff5;l=1591

fallback). Most of this work will be some simple additional logic in the task scheduling to
recognize a cancelling job and not move on to the next task.

Network Connection Logic Changes

HTTPS connection upgrade
On returning an ERR_DNS_NAME_HTTPS_ONLY error result, the error will be allowed to return up
the stack to net::URLRequestHttpJob::OnStartCompleted(). At that point, redirect headers
will be synthesized to mimic an actual HTTP redirect response, following the example of the
very similar logic in net::URLRequestHttpJob::Create() and
net::URLRequestRedirectJob that creates a 307 redirect for HSTS-matching hostnames and
then simulates receiving fake headers for that invented 307 to make use of the standard logic
for following actual HTTP header redirects. The correct behavior for receiving HTTPS records is
very similar as the HTTPS RFC spec defines the correct behavior to be to treat it as if receiving
a 307 redirect. Note that while it would be ideal to directly reuse
net::URLRequestRedirectJob, that would be difficult to do because DNS results are not
available until after the net::URLRequestHttpJob has started, and logic to restart the request
with a new job carries risks of novel and duplicating signals being sent to various delegates and
watchers as nothing has previously ever done a restart at that stage in a net::URLRequestJob
lifecycle.

One notable difference from HSTS however is that HSTS requires that “user recourse” (allowing
users to click through various HTTPS cert errors) be disallowed. HTTPS record upgrade has no
such requirement (merely allowing the behavior as a “MAY”). In conversations with Chrome
security and UX experts, we believe, slightly counter-intuitively, for it to be ideal to allow user
recourse, similarly to any normal HTTPS website. This is because there are a number of
scenarios where it is necessary for reasons outside the website’s control to fix as well as
research showing a low clickthrough rate for it being used to bypass security in non-ideal cases.
I believe the desired result will be achieved in implementation as long as no special action is
taken to replicate the HSTS behavior. I believe the security interstitials code receives the
information from net::SSLInfo::is_fatal_cert_error, which is sourced from HSTS-specific
code in net::TransportSecurityState::ShouldSSLErrorsBeFatal().

Encrypted Client Hello (ECH)
Most of the implementation of ECH is out of scope for this document and is covered in a
separate design doc. Here we concern ourselves only with plumbing ECH keys and
configuration from the DNS stack to TLS code.

For TLS, as interaction between sockets and DNS results generally occurs within the socket
transport connection code, e.g. see the accesses to the host resolution request object in
net::TransportConnectJob::DoTransportConnect(), the SSL/QUIC connection code will

https://source.chromium.org/chromium/chromium/src/+/main:net/url_request/url_request_http_job.cc;l=895;drc=3095f0ce2cadab0ffa2d0ae922ad7dffd3eeda30
https://source.chromium.org/chromium/chromium/src/+/master:net/url_request/url_request_http_job.cc;l=187-201;drc=955c490ff6157d6833d27eceaae3b18f4302c30c
https://source.chromium.org/chromium/chromium/src/+/master:net/url_request/url_request_redirect_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/url_request/url_request_redirect_job.h
https://source.chromium.org/chromium/chromium/src/+/main:net/url_request/url_request_http_job.h
https://source.chromium.org/chromium/chromium/src/+/main:net/url_request/url_request_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/ssl/ssl_info.h;drc=9680e17185f4d0a48a7047d0070ef26d1df282d6;l=116
https://source.chromium.org/chromium/chromium/src/+/master:net/http/transport_security_state.h;drc=9680e17185f4d0a48a7047d0070ef26d1df282d6;l=380
https://docs.google.com/document/d/1jOwfbFMJx_tP9ppoS7TQxPlsgwarWVL9YzGMoX_Ww3M/edit?usp=sharing
https://source.chromium.org/chromium/chromium/src/+/master:net/socket/transport_connect_job.h;drc=9680e17185f4d0a48a7047d0070ef26d1df282d6;l=145

have to retrieve the keys from the underlying transport code. So the transport connection code,
on successful connection will record which net::EndpointServiceConnectionInfo to which it
succeeded in connecting and provide an accessor to the SSL/QUIC layer to retrieve either the
ECH config info for that connection or maybe the entire
net::EndpointServiceConnectionInfo. This accessor can then be accessed by the SSL
connection code in net::SSLConnectJob. This logic is also expected to be sufficient for
HTTP/2, which uses the same ConnectJobs because the switch to HTTP/2 isn’t made until after
the TLS handshake.

QUIC code currently interacts with DNS in net::QuicStreamFactory::Job before passing the
results to and making various connection-related method calls to a
net::QuicChromiumClientSession. Should be a simple matter of passing ECH keys in one
of the method calls or replacing the current net::AddressList params with
net::EndpointServiceConnectionInfo.

Protocol upgrade
Alt-Svc information is currently stored (and persisted to disk) in the
net::HttpServerProperties, itself stored in the net::HttpNetworkSession. In
net::HttpStreamFactory::JobController::DoCreateJobs(), the stored Alt-Svc
information is checked, and if a compatible Alt-Svc info is saved, separate “main” and “alternate”
net::HttpStreamFactory::Jobs are created, with the “main” one initially paused for some
dynamically-determined delay before the two net::HttpStreamFactory::Jobs are allowed to
race.

The current pattern doesn’t work well for HTTPS-based upgrade because, as DNS is available
before the first connection, it is desired to use DNS results to affect that first connection, but
DNS queries are not made until later during socket creation, after the point when separate
net::HttpStreamFactory::Jobs are created. It would also not be desirable to move up the
DNS process to this point because extra DNS requests would be an unnecessary delay if a
socket is already open in the socket pool. It would also not be desirable to store DNS-based
upgrade information in net::HttpServerProperties as it would add considerable complexity
to keep that information in sync with net::HostCache; especially complex would be dealing
with cases where the HTTPS information changes in between reading from
net::HttpServerProperties and checking DNS results.

Rather than just the current “main” and conditional “alternate”,
net::HttpStreamFactory::JobController will be modified to start multiple
net::HttpStreamFactory::Jobs, all coordinated by the
net::HttpStreamFactory::JobController, without any prior knowledge of whether or not a
DNS-based upgrade will be available once DNS is queried. This gives the following potential
jobs (in order of preference if multiple are usable):

1.​ Alt-Svc (if QUIC)
2.​ DNS-based QUIC upgrade (if QUIC enabled and request protocol is HTTPS)

https://source.chromium.org/chromium/chromium/src/+/master:net/socket/ssl_connect_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/quic/quic_stream_factory.h
https://source.chromium.org/chromium/chromium/src/+/master:net/quic/quic_chromium_client_session.h
https://source.chromium.org/chromium/chromium/src/+/master:net/base/address_list.h
https://tools.ietf.org/html/rfc7838
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_server_properties.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_network_session.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job_controller.h;drc=8cd33c0a2ffc73d284354e431687011534e29fb8;l=181
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_server_properties.h
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_cache.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_server_properties.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job_controller.h;drc=8cd33c0a2ffc73d284354e431687011534e29fb8;l=181
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job_controller.h;drc=8cd33c0a2ffc73d284354e431687011534e29fb8;l=181

3.​ Alt-Svc (if not QUIC)
4.​ Non-upgrade (“Normal” HTTP)

(Note that only one Alt-Svc net::HttpStreamFactory::Job will be run per
net::HttpStreamFactory::JobController::DoCreateJobs() call, for a maximum of 3 jobs.
Also, Alt-Svc is currently disallowed for non-QUIC (because nothing ever changes
net::HttpNetworkSession::enable_http2_alternative_service from its default false),
so Job (3) might not exist either way. Undecided if, while making all these other changes,
support will be fully added to create jobs for non-QUIC or if support will be fully added to actually
allow non-QUIC Alt-Svc. TBD when it can be better determined how much extra work it would
take.)

Alt-Svc (QUIC or non-QUIC) and the non-upgrade net::HttpStreamFactory::Jobs will
behave about the same as the current “alternate” and “main” net::HttpStreamFactory::Jobs
respectively. TODO: Decide if any cleanup work will be done to split up
net::HttpStreamFactory::Job, e.g. into separate classes by quic vs non-quic.

The DNS-based QUIC upgrade net::HttpStreamFactory::Job will behave similarly to
Alt-Svc for QUIC upgrade, except when the net::HttpStreamFactory::Job calls into
net::QuicStreamFactory, it will provide a new parameter (name TBD) to specify that
net::QuicStreamFactory should fail if, after performing host resolution (the normal resolution
done as part of current net::QuicStreamFactory code), the DNS results do not specify an
upgrade to QUIC. The new parameter will likely need to be added to the
net::QuicSessionKey to keep net::QuicStreamFactory::Jobs from being merged for
different post-DNS lookup requirements. See below for a mitigating optimization to occur if
redundant QUIC net::HttpStreamFactory::Jobs are present after no already-connected
sockets/streams are found.

Each of these net::HttpStreamFactory::Jobs will, in priority order, check a new
net::ClientSocketPoolManager function to request a socket if and only if a compatible
socket is already available and connected (or for QUIC, similar functionality added in
net::QuicStreamFactory to determine if a compatible QUIC session is already available). If
any upgrade net::HttpStreamFactory::Jobs (Alt-Svc or DNS-based) find an
already-connected socket/session, it will be used and all other
net::HttpStreamFactory::Jobs are cancelled (in the case of higher priority
net::HttpStreamFactory::Jobs that did not have a connected socket/session) or never run
(in the case of lower-priority net::HttpStreamFactory::Jobs yet to begin the check). After
checking for an already-connected socket/session, each non-cancelled
net::HttpStreamFactory::Job will wait for a signal from the
net::HttpStreamFactory::JobController before proceeding further. Even if Alt-Svc QUIC
and DNS-based net::HttpStreamFactory::Jobs use the same destination, both must check
for already-available QUIC session because both net::HttpStreamFactory::Jobs would
result in different session keys, and it is possible that a DNS-based

https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job_controller.h;drc=8cd33c0a2ffc73d284354e431687011534e29fb8;l=181
https://source.chromium.org/chromium/chromium/src/+/main:net/http/http_network_session.h;drc=cfb168170153be6ddba2a695f72409f9793870b2;l=134
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/quic/quic_stream_factory.h
https://source.chromium.org/chromium/chromium/src/+/master:net/quic/quic_stream_factory.h
https://source.chromium.org/chromium/chromium/src/+/master:net/quic/quic_stream_factory.h
https://source.chromium.org/chromium/chromium/src/+/master:net/quic/quic_session_key.h
https://source.chromium.org/chromium/chromium/src/+/master:net/quic/quic_stream_factory.cc;drc=40a8d5fea781057ff74a699247bc699f71ca4d5d;l=316
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/socket/client_socket_pool_manager.h
https://source.chromium.org/chromium/chromium/src/+/master:net/quic/quic_stream_factory.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job_controller.h;drc=8cd33c0a2ffc73d284354e431687011534e29fb8;l=181
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h

net::HttpStreamFactory::Job previously created a session before the current
mostly-redundant Alt-Svc configuration was set.

For Alt-Svc upgrade, a non-upgrade socket has typically connected first, so it is desirable to
ignore it for a while and attempt the upgrade net::HttpStreamFactory::Job. To accomplish
this, iff an Alt-Svc entry was found but no already-connected QUIC stream was available for the
upgrade, a non-upgrade net::HttpStreamFactory::Job that finds an already-connected
socket will not cause the Alt-Svc net::HttpStreamFactory::Job to be cancelled. Both
net::HttpStreamFactory::Jobs will proceed to the next step and race.

DNS-based upgrade has no reliance on a non-upgrade socket ever being previously connected,
so if one is available, that is a strong signal that previous DNS-based upgrade attempts did not
succeed in upgrade (because there was no upgrade available in DNS results or because the
attempts failed or were slow). Therefore if a non-upgrade net::HttpStreamFactory::Job
finds an already-connected socket (which will only be checked if the DNS-based upgrade did
not find an already-connected QUIC stream), the DNS-based upgrade
net::HttpStreamFactory::Job will be canceled as a performance optimization to avoid
blocking the request on the DNS queries necessary to attempt DNS-based upgrade. As an
additional optimization, if both Alt-Svc QUIC upgrade and DNS-based QUIC upgrade
net::HttpStreamFactory::Jobs are uncancelled, if they are for the same destination
parameters (mostly the case if Alt-Svc does not change the destination host or port), they are
redundant (both expected to give the same result except one will potentially stop after DNS), so
the DNS-based upgrade net::HttpStreamFactory::Job will be canceled at that time.

If no net::HttpStreamFactory::Job finds an already-connected socket (or only a
non-upgrade net::HttpStreamFactory::Job does but there is still an Alt-Svc
net::HttpStreamFactory::Job to race it with), the non-cancelled
net::HttpStreamFactory::Jobs will race to attempt connection. Each
net::HttpStreamFactory::Job will begin working further in priority order with a short delay
between starting each net::HttpStreamFactory::Job. This will all be coordinated by the
net::HttpStreamFactory::JobController. The amount of delay will be based on the
current logic for delaying the non-upgrade net::HttpStreamFactory::Job behind Alt-Svc
net::HttpStreamFactory::Jobs, which dynamically determines a suitable delay for
non-QUIC net::HttpStreamFactory::Jobs based recent QUIC connection performance,
generally at least 300ms and at most 3 seconds. This delay will allow higher-priority
net::HttpStreamFactory::Jobs to be preferred, even if lower-priority
net::HttpStreamFactory::Jobs are able to connect quicker (or are already connected).
Note that resulting DNS lookups for all these net::HttpStreamFactory::Jobs will often be
redundant, but net::HostResolver should generally be able to re-use the same results, either
through merging redundant net::HostResolver::ResolveHostRequests or retrieving
previous results from cache, except in very rare cases where the cache expires in the short time
between DNS lookups.

https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job_controller.h;drc=8cd33c0a2ffc73d284354e431687011534e29fb8;l=181
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.cc;l=883-884;drc=587068ee20325543d40cbd4bf50bed6af51ee23e
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver.h
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver.h;drc=2bc48c70ec6b45c73757d5e75a459f27ed44cda2;l=56

Just like with the current “main” and “alternate” logic, once any
net::HttpStreamFactory::Job successfully completes, all other still-running or waiting
net::HttpStreamFactory::Jobs are cancelled by the
net::HttpStreamFactory::JobController. And once any net::HttpStreamFactory::Job
completes unsuccessfully, the next-priority net::HttpStreamFactory::Job, if not yet started,
will be started without delay.

TODO: Consider if there’s further optimization room by more intelligently merging together
net::QuicStreamFactory::Jobs for the same destination, differing only by the new parameter
specifying if it should fail without a DNS-based upgrade path. Could be important for cases
around abnormal timing delays in various concurrent
net::HttpsStreamFactory::JobControllers, resulting in concurrent Alt-Svc and
DNS-based net::HttpStreamFactory::Jobs that will not cancel each other on first
completion (maybe because another concurrent net::HttpsStreamFactory::JobController
succeeded via a non-upgrade net::HttpStreamFactory::Job and found Alt-Svc data that
wasn’t available for a still-running DNS-based net::HttpStreamFactory::Job). Maybe on
success (or earlier), a net::QuicStreamFactory::Job should look for
net::QuicStreamFactory::Jobs of the other type and cancel/merge with them. But care
must be taken to ensure net::HttpStreamFactory::Jobs cannot result in QUIC connections
when there is no QUIC upgrade path currently available (e.g. because Alt-Svc info expired and
Chrome no longer has any relevant Alt-Svc info). In current Chrome logic, once Alt-Svc info is
gone, no “alternate” net::HttpStreamFactory::Job will run, and thus QUIC will not be used,
even if a compatible QUIC session is available. To maintain that behavior, a DNS-based
upgrade net::HttpStreamFactory::Job cannot be allowed to connect to that session, at least
not without first confirming with DNS results that a DNS-based upgrade is available to the same
server. But those dangers mostly only apply to whether or not to allow a DNS-based
net::HttpStreamFactory::Job to merge with an Alt-Svc job/session. Once unexpired
Alt-Svc info is found and and Alt-Svc net::HttpStreamFactory::Job is created, it should be
safe for it to merge with any DNS-based net::QuicStreamFactory::Jobs that have already
passed the DNS stage.

Metrics

Success metrics

TODO: Success is mostly just that this gets used (HTTPS records received, HTTP requests
upgraded, protocol upgrades, ECH keys received), so add the obvious metrics for that
usage. But it may be a long-term thing after all implementation is complete before we
really see a lot of that and can declare “success”.

https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job_controller.h;drc=8cd33c0a2ffc73d284354e431687011534e29fb8;l=181
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/quic/quic_stream_factory.cc;drc=40a8d5fea781057ff74a699247bc699f71ca4d5d;l=316
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job_controller.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job_controller.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/quic/quic_stream_factory.cc;drc=40a8d5fea781057ff74a699247bc699f71ca4d5d;l=316
https://source.chromium.org/chromium/chromium/src/+/master:net/quic/quic_stream_factory.cc;drc=40a8d5fea781057ff74a699247bc699f71ca4d5d;l=316
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/http/http_stream_factory_job.h
https://source.chromium.org/chromium/chromium/src/+/master:net/quic/quic_stream_factory.cc;drc=40a8d5fea781057ff74a699247bc699f71ca4d5d;l=316

Regression metrics

TODO: Mostly just the typical mix of DNS-specific and Chrome-wide performance metrics.
Make sure we don’t slow anything down.

New metrics:

●​ Various HTTP record cases (e.g. incompatible “alpn”, incompatible “mandatory”, etc)
●​ The security-sensitive cases (timeout or SERVFAIL over DoH)
●​ HTTPS-record-specific performance/results (mostly just adapted from the current

query experiment metrics)

Experiments
Most behavior covered by a new “UseDnsHttpsSvcb” Finch Feature. The Feature itself will
control whether or not HTTPS will be queried alongside A/AAAA queries. Additional Finch
FeatureParams:

●​ “UseDnsHttpsSvcbHttpUpgrade” controls whether or not HostResolver will emit the
ERR_DNS_NAME_HTTPS_ONLY error on receiving HTTPS results for http-schemed
requests. It will also be checked by the redirect logic expected to handle the error.

●​ “UseDnsHttpsSvcbEnforceSecureResponse” controls whether or not Chrome uses the
special handling for HTTPS timeout or SERVFAIL responses received via DoH to treat
such failures as fatal to the entire request. This behavior is the behavior desired to
prevent ECH downgrade attacks.

●​ “UseDnsHttpsSvcbEnableInsecure” controls whether HTTPS queries will be made via
Classic DNS or only when DoH is in use.

●​ “UseDnsHttpsSvcbExtraTimeAbsolute” and “UseDnsHttpsSvcbExtraTimePercent” are
used to control extra timeout behavior specific to HTTPS transactions still running after A
and AAAA transactions have completed. This timeout behavior mirrors the timeouts
created for the initial query-only experiments.

ECH will primarily be controlled through separate experiments. If HTTPS is queried (controlled
by the “UseDnsHttpsSvcb” Feature) and ECH config information is received,
net::HostResolver will always output it with results. The connection and BoringSSL code will
then use its own experiments to control whether or not that information is used to protect the
connections with ECH.

TODO: TBD Finch control for connection protocol upgrade behavior.

Rollout plan
The first planned launch of HTTPS-based behavior is the HTTP->HTTPS upgrade functionality,
and only for simpler cases where the HTTPS record does not redirect to other DNS names.

https://source.chromium.org/chromium/chromium/src/+/master:net/base/features.h;l=114;drc=0ce9df69ba9e32bafc53c3d90db8a707c243da40;bpv=0;bpt=1
https://source.chromium.org/chromium/chromium/src/+/master:net/base/features.h;l=118;drc=0ce9df69ba9e32bafc53c3d90db8a707c243da40;bpv=0;bpt=1
https://source.chromium.org/chromium/chromium/src/+/master:net/base/features.h;l=125;drc=0ce9df69ba9e32bafc53c3d90db8a707c243da40;bpv=0;bpt=1
https://source.chromium.org/chromium/chromium/src/+/master:net/base/features.h;l=129;drc=0ce9df69ba9e32bafc53c3d90db8a707c243da40;bpv=0;bpt=1
https://source.chromium.org/chromium/chromium/src/+/master:net/base/features.h;l=143;drc=0ce9df69ba9e32bafc53c3d90db8a707c243da40;bpv=0;bpt=1
https://source.chromium.org/chromium/chromium/src/+/master:net/base/features.h;l=145;drc=0ce9df69ba9e32bafc53c3d90db8a707c243da40;bpv=0;bpt=1
https://docs.google.com/document/d/14eCqVyT_3MSj7ydqNFl1Yl0yg1fs6g24qmYUUdi5V-k
https://source.chromium.org/chromium/chromium/src/+/master:net/base/features.h;l=114;drc=0ce9df69ba9e32bafc53c3d90db8a707c243da40;bpv=0;bpt=1
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver.h

This will be launched via the “UseDnsHttpsSvcb” Feature with the
“UseDnsHttpsSvcbHttpUpgrade” FeatureParam. TBD based on other ongoing experiments and
initial rollout metrics how “UseDnsHttpsSvcbEnableInsecure”,
“UseDnsHttpsSvcbExtraTimeAbsolute”, and “UseDnsHttpsSvcbExtraTimePercent” will be set for
this launch.

TODO: Plan subsequent launches. Likely ECH behavior, then handling for more advanced
records with aliasing and followup queries and such, then handling for protocol upgrade.

Core principle considerations

Speed

Expect performance improvements for websites that support HTTPS-based QUIC upgrade
(those with an HTTPS record that lists the QUIC protocol). Should make QUIC upgrade (and
the resulting performance improvements) a little more common. Should make QUIC
upgrade itself a little more performant by eliminating unnecessary connection roundtrips.

Some potential negative implications due to waiting on the DNS resolves themselves
(because host resolution blocks until the slowest of A, AAAA, and HTTPS completes), but
with all the DNS caching (both in Chrome and DNS servers) HTTPS should have about the
same performance as A/AAAA and it is generally expected to be a mostly insignificant
impact. Biggest risk is that HTTPS will often be negative results while A/AAAA are often
positive, and it is hypothesized that negative results may be very slightly slower overall in
DNS. Will carefully monitor during rollouts to ensure no major impact.

Simplicity

Mostly expected to be invisible-to-user technical changes. Users shouldn’t notice anything
other than maybe that they end up on https:// pages a little more often and that Chrome
describes their websites as “insecure” a little less often. Performance and security
improvements without any user action.

No direct user configurability is planned. The only expected reason a user/enterprise
would ever want to disable HTTPS queries would be if it breaks something in a network
(which should not happen unless the network is doing something buggy and extremely
counter to many old and foundational DNS standards). Users/enterprises will be able to
disable HTTPS queries via DoH by disabling DoH (currently supported through group policy
or via Chrome’s “Secure DNS” configuration UI). If Chrome supports HTTPS queries though

https://source.chromium.org/chromium/chromium/src/+/master:net/base/features.h;l=114;drc=0ce9df69ba9e32bafc53c3d90db8a707c243da40;bpv=0;bpt=1
https://source.chromium.org/chromium/chromium/src/+/master:net/base/features.h;l=118;drc=0ce9df69ba9e32bafc53c3d90db8a707c243da40;bpv=0;bpt=1
https://source.chromium.org/chromium/chromium/src/+/master:net/base/features.h;l=129;drc=0ce9df69ba9e32bafc53c3d90db8a707c243da40;bpv=0;bpt=1
https://source.chromium.org/chromium/chromium/src/+/master:net/base/features.h;l=143;drc=0ce9df69ba9e32bafc53c3d90db8a707c243da40;bpv=0;bpt=1
https://source.chromium.org/chromium/chromium/src/+/master:net/base/features.h;l=145;drc=0ce9df69ba9e32bafc53c3d90db8a707c243da40;bpv=0;bpt=1

non-DoH (TBD), a temporary group policy will be provided to allow enterprises to disable
the queries until their network bugs are fixed.

Security

Multiple security improvements expected:
●​ The DNS-based HTTP->HTTPS connection upgrade subfeature should be able to

prevent some forms of SSL stripping attacks. Unless an attacker is also able to
block/alter the DNS results, websites are able to signal to Chrome that HTTPS is
expected to be functional and Chrome will disallow connecting to the site via HTTP.
An attacker could not successfully force HTTP by blocking the HTTP site redirecting
to HTTPS or force a fallback to HTTP by blocking access to HTTPS. This is very similar
to the protection provided by HSTS. Except note that the “no user recourse”
features of HSTS are not reflected here; a DNS-based HTTPS upgrade will allow the
same normal-Chrome-behavior user recourse as if the user had just typed in an
https:// URL or received an HTTP redirect to one.

●​ The fact that HTTPS records and their various features only work for sites that
support HTTPS connections may lead to some small portion of websites better
supporting HTTPS connections in order to access desired features of the records
(e.g. the better DNS aliasing).

●​ ECH config retrieval should unblock the security/privacy improvements of ECH.
●​ Improved access to QUIC could improve security of some websites and Chrome’s

connections to them.

No expected increases of vulnerabilities. Like any other DNS mechanisms, Chrome will
receive the information without any direct validation that the information comes from the
domain name owner. If using DoH, the information is at-best only as trustworthy as the
user’s trust in their DNS server, and if DoH is not used, there is even less protection. But
because the information from HTTPS records is only used for HTTPS connections, standard
TLS encryption and validation should protect users from any new attacks other than
attempting to manipulate/block HTTPS records to block a user from being able to access a
site. But it is assumed that an attacker that can manipulate/block HTTPS records would be
able to do the same for A/AAAA records for the same result. E.g., an attacker could attempt
to insert false HTTPS alias records redirecting to an attacker-controlled server, but unless
the attacker server has access to certs for the origin name, Chrome would refuse to
connect to the false server and the user is no worse off than if the attacker had
manipulated the A/AAAA records. No change is ever made to the origin except the

HTTP->HTTPS redirect, which is limited to only ever allowing the scheme portion of the
origin to change from “http” to “https” (or “ws” to “wss”).

To further clarify the vulnerability if HTTPS queries are made via Classic DNS: If an attacker
blocks HTTPS responses, leading to false negatives, the user gets no advantages from
HTTPS and is generally no worse off than if Chrome did not support HTTPS. At worst, an
attacker could attempt to slow Chrome’s performance by delaying HTTPS responses and
making Chrome wait additional time or by designing HTTPS responses that Chrome will
work extra hard to parse. But overall, this isn’t significantly different from the capabilities
of a similar attacker doing the same manipulations on A or AAAA responses. Conversely, if
an attacker manipulated HTTPS responses to provide false data the damage is limited from
the fact that the data is only used to assist with making https:// connections that must
always have a TLS cert matching the origin from before any HTTPS manipulation. At worst,
an attacker could prevent Chrome from successfully connecting to a website, or divert the
connection attempt to an unaffiliated server that can never pass TLS cert checks and will
just receive extra useless connection attempts from Chrome. This is not significantly
different from the capabilities of a similar attacker modifying A or AAAA responses.

Of special note is that an on-path attacker (either between Chrome and the recursive
resolver or between the recursive resolver and other resolvers) could attempt to
block/manipulate HTTPS records to force a downgrade attack from HTTPS-related features
to a normal A/AAAA-only connection, e.g. preventing the use of ECH. There is no protection
from such attacks unless the user is using DoH. If using DoH, an attacker would have to be
sophisticated enough to identify and block the HTTPS packets while allowing the A/AAAA
packets through normally. Chrome’s protection from such attacks will be to disallow any
connection to a site on receiving a timed out response (indicating a potential attack
between Chrome and the DNS server) or a SERVFAIL response (indicating a potential attack
between the DNS recursive resolver and other resolver servers) to an HTTPS DoH query.
This will ensure a worst-case attack of blocking access to a site (which we assume any
similarly capable attackers could do with or without HTTPS records) rather than forcing a
security-downgraded connection to the site. This protection will be implemented before
implementing support for ECH.

Privacy considerations
No privacy implications expected other than the improved security/privacy of the resulting
site connections. Making HTTPS queries (alongside A/AAAA queries) doesn’t reveal

anything about Chrome or the user that wouldn’t be revealed by the A/AAAA queries
except that Chrome is a new enough version to support such queries.

Testing plan
Unit tests as well as adding basic HTTPS query tests to the DoH-related integration tests:
HttpWithDnsOverHttpsTest and DohBrowserTest (note that HTTPS queries cannot be
exercised in most general browser tests because most of the DNS stack is generally
bypassed in Chrome browser tests). Fuzzers already in place to cover the DNS record
parsing code and the main code (net::HostResolverManager) for handling DNS
query/response behavior.

Followup work

●​ If performance doesn’t meet expectations, consider implementing Happy Eyeballs
v2 (RFC 8305) to better deal with performance differences between multiple DNS
query types.

●​ Implement full ECH support in BoringSSL and Chrome’s TLS connection logic to take
advantage of the ECH configs received through HTTPS records. Design doc.

https://source.chromium.org/chromium/chromium/src/+/master:net/url_request/http_with_dns_over_https_unittest.cc
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/net/dns_over_https_browsertest.cc
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.h
https://tools.ietf.org/html/rfc8305
https://docs.google.com/document/d/1jOwfbFMJx_tP9ppoS7TQxPlsgwarWVL9YzGMoX_Ww3M

	DNS HTTPS Records
	One-page overview
	Summary
	Platforms
	Team
	Bug
	Code affected

	
	Background
	SVCB/HTTPS Records
	Previous Experiments
	Akamai Research
	Other Browsers/Clients

	Design
	DNS Stack Interface
	HTTPS-required error
	Adding scheme to input hostname
	net::AddressList replacement

	DNS Stack Internals
	Querying HTTPS
	Handling HTTPS Responses
	Followup Queries
	HostCache Rewrite

	Network Connection Logic Changes
	HTTPS connection upgrade
	Encrypted Client Hello (ECH)
	Protocol upgrade

	Metrics
	Success metrics
	Regression metrics
	Experiments

	Rollout plan
	Core principle considerations
	Speed
	Simplicity
	Security

	Privacy considerations
	Testing plan
	Followup work

