OAT Bootcamp Physics Equation Sheet

	LINEAR KINEMATICS			
	Formula	Notes		
Average Velocity	$v_{avg} = \frac{d}{t}$	v _{avg} = velocity (units: m/s) d = displacement (units: m) t = time (units: s)		
Displacement	$d = v_i t + \frac{1}{2} a t^2$	d = displacement (units: m) v _i = initial velocity (units: m/s) a = acceleration (units: m/s²) t = time (units: s)		
Final Velocity (Time)	$v_f = v_i + at$	v _f = final velocity (units: m/s) v _i = initial velocity (units: m/s) a = acceleration (units: m/s²) t = time (units: s)		
Final Velocity (Displacement)	$v_f^2 = v_i^2 + 2ad$	v _f = final velocity (units: m/s) v _i = initial velocity (units: m/s) a = acceleration (units: m/s²) d = displacement (units: m)		
Average Acceleration	$a_{avg} = \frac{(v_f - v_i)}{t}$	a_{avg} = acceleration (units: m/s²) v_f = final velocity (units: m/s) v_i = initial velocity (units: m/s) t = time (units: s)		

	FORCES			
	Formula	Notes		
Net Force	$F_{net} = ma$	F _{net} = net force (units: N) m = mass (units: kg) a = acceleration (units: m/s²)		
Weight	$F_{_{W}} = mg$	F_w = weight (units: N) m = mass (units: kg) g = acceleration due to gravity (g = 10 m/s ²)		
Normal Force	$F_{N} = F_{w} cos(\theta)$	F_N = normal force (units: N) F_w = weight (units: N) m = mass (units: kg) θ = angle between horizontal and force		
Friction Force	$F_f = \mu F_N$	F_f = friction force (units: N) F_N = normal force (units: N) μ = friction coefficient		

GRAVITATIONAL			
	Formula	Notes	
Gravitational Force (Two bodies)	$F = \frac{Gm_1m_2}{d^2}$	F = gravitational force (units: N) G = gravity constant (G = 6.67 x 10 ⁻¹¹ N·m²/kg²) m ₁ = mass object 1 (units: kg) m ₂ = mass object 1 (units: kg) d = distance between centers of objects (units: m)	
Gravitational Acceleration (One body)	$g = \frac{Gm}{r^2}$	g = acceleration due to gravity (g = 10 m/s²) G = gravity constant (G = 6.67 x 10 ⁻¹¹ N·m²/kg²) m = mass single body (units: kg) r = radius of body (units: m)	

	ROTATIONAL & CIRCULAR MOTION			
	Formula	Notes		
Uniform Circular Motion Velocity	$v_c = \frac{2\pi r}{T}$	v _c = velocity (units: m/s) r = radius (units: m) T = period (units: s)		
Centripetal Acceleration	$a_c = \frac{v^2}{r}$	<pre>a_c = centripetal acceleration (units: m/s²) v = velocity (units: m/s) r = radius (units: m)</pre>		
Centripetal Force	$F_c = ma_c = \frac{mv^2}{r}$	F _c = centripetal force (units: N) m = mass (units: kg) a _c = centripetal acceleration (units: m/s²) v = velocity (units m/s) r = radius (units: m)		
Torque	$\tau = r \times F$ $ \tau = r F sin\theta$	T = torque vector (units: N·m) r = lever arm vector (units: m) F = force vector (units: N) θ = angle between lever arm and force Note: x denotes magnitude or absolute value		
Linear Displacement	$d = r\theta$	d = linear displacement (units: m) r = radius (units: m) θ = angular displacement (units: rad)		
Linear Velocity	$v = r\omega$	v = linear velocity (units: m/s) r = radius (units: m) ω = angular velocity (units: rad/s)		
Linear Acceleration	$a = r\alpha$	a = linear acceleration (units: m/s²) r = radius (units: m) α = angular acceleration (units: rad/s²)		

ENERGY AND MOMENTUM			
	Formula	Notes	
Kinetic Energy	$KE = \frac{1}{2}mv^2$	KE = kinetic energy (units: J) m = mass (units: kg) v = velocity (units: m/s)	
Potential Energy	PE = mgh	PE = potential energy (units: J) m = mass (units: kg) g = acceleration due to gravity (g = 10 m/s²) h = height (units: m)	
Total Mechanical Energy	$E_{TME} = KE + PE$	E _{TME} = total mechanical energy (units: J) KE = kinetic energy (units: J) PE = potential energy (units: J)	
Work (Done by Force)	$W = Fdcos(\theta)$	W = work (units: J) F = force (units: N) d = displacement (units: m) θ = angle between F and d	
Work-Energy Theorem	$W = \Delta KE$	W = work (units: J) ΔKE = change in kinetic energy (units: J)	
Power	$P = \frac{W}{t}$	P = power (units: W) W = work (units: J) t = time (units: s)	
Momentum	$\rho = mv$	<pre>ρ = momentum (units: kg·m/s) m = mass (units: kg) v = velocity (units: m/s)</pre>	
Impulse	$\Delta \rho = F \Delta t$	$\Delta \rho$ = impulse (units: N·s) F = force applied (units: N) Δt = duration of time (units: s)	
Inelastic Collisions	$m_1 v_1 + m_2 v_2 = m_3 v_3$	m_1 = mass object 1 (units: kg) v_1 = velocity object 1 (units: m/s) m_2 = mass object 2 (units: kg) v_2 = velocity object 2 (units: m/s) m_3 = total mass of objects 1 & 2 (units: kg) v_3 = velocity object 3 (units: m/s)	
Elastic Collisions	$m_1 v_{1,i} + m_2 v_{2,i} = m_1 v_{1,f} + m_2 v_{2,f}$	m_1 = mass object 1 (units: kg) $v_{1,i}$ = initial velocity object 1 (units: m/s) $v_{1,f}$ = final velocity object 1 (units: m/s) m_2 = mass object 2 (units: kg) $v_{2,i}$ = initial velocity object 2 (units: m/s) $v_{2,f}$ = final velocity object 2 (units: m/s)	
Photon Energy	$E = \frac{hc}{\lambda}$	E = photon energy (units: J) h = Planck's constant (6.626 x 10^{-34} J·s) c = speed of light (3 x 10^8 m/s) λ = wavelength (units: m)	

CENTER OF MASS					
	Formula Notes				
Center of Mass	$COM = \frac{m_1 x_1 + m_2 x_2 + \dots}{m_1 + m_2 + \dots}$	COM = center of mass (units: m) m = mass of object (units: kg) x = distance of object (units: m)			

	SIMPLE HARMONIC MOTION (SPRINGS & PENDULUMS)				
	Formula	Notes			
Spring Force (Hooke's Law)	F = -kx Stretched: x is positive (+) Compressed: x is negative (-)	F = force from the spring (units: N) k = spring constant (units: N/m) x = distance stretched/compressed (units: m)			
Work (Spring)	$W = \frac{1}{2}kx^2$	W = work (units: J) k = spring constant (units: N/m) x = distance stretched/compressed (units: m)			
Potential Energy (Spring)	$PE = \frac{1}{2}kx^2$	PE = potential energy (units: J) k = spring constant (units: N/m) x = distance stretched/compressed (units: m)			
Period (Spring)	$T = 2\pi \sqrt{\frac{m}{k}}$	T = period (units: s) m = mass of object (units: kg) k = spring constant (units: N/m)			
Period (Pendulum)	$T = 2\pi \sqrt{\frac{L}{g}}$	T = period (units: s) L = length of pendulum (unit: m) g = acceleration due to gravity (g = 10 m/s²) Note: the period is independent of mass			
Angular Frequency	$\omega = \frac{2\pi}{T}$ $\omega = 2\pi f$	ω = angular frequency (units: rad/s) T = period (units: s) F = frequency (units: Hz)			
Angular Frequency (Oscillating Spring)	$\omega = \sqrt{\frac{k}{m}}$	ω = angular frequency (units: rad/s)k = spring constant (units: N/m)m = mass (units: kg)			

	WAVES			
	Formula	Notes		
Wave Velocity	$v = \lambda f$	v = velocity (units: m/s) λ = wavelength (units: m) f = frequency (units: Hz)		
Period	$T = \frac{1}{f}$	T = period (units: s) f = frequency (units: Hz)		
Wave / Sound Intensity	$I = \frac{P}{A} = \frac{P}{4\pi x^2}$	I = sound intensity (units: W/m²) P = power (units: W) A = area (units: m²) x = distance from point source (units: m)		
Sound Intensity (in Decibels)	$dB = 10log\left(\frac{I}{I_0}\right)$	dB = change in decibels $I = \text{intensity of sound (units: W/m}^2)$ $I_0 = \text{intensity of the softest sound perceivable by}$ the human ear $(I_0 = 10^{-12} \text{ W/m}^2)$		
Standing-Wave Harmonics Conventions	Open Air Column	Closed Air Column		
	n = 1	n = 1		
	n = 2	n = 3		
	n = 3	n = 5		
	n = 1, 2, 3 any <u>positive</u> integers	n = 1, 3, 5 any <u>odd</u> integers		
	$\lambda_n = \frac{2L}{n}$ $f_n = n(\frac{v}{2L})$	$\lambda_n = \frac{4L}{n}$ $f_n = n(\frac{v}{4L})$		
	λ_n = wavelength, f_n = frequency,	n = harmonic number (overtone + 1), v = speed		

	FLUID STATICS			
	Formula	Notes		
Density	$\rho = \frac{m}{V}$	ρ = density (units: kg/m³) m = mass (units: kg) V = volume (units: m³)		
Buoyant Forces	$F_{_{B}}= ho V g$ For floating objects: $F_{_{B}}=mg$	F_B = buoyant force (units: N) ρ = density of fluid displaced (units: kg/m³) V = volume of fluid displaced (units: m³) g = acceleration due to gravity (g = 10 m/s²) m = mass of floating object (kg)		
Pressure	$P = \frac{F}{A}$	P = pressure (units: Pa) F = force (units: N) A = area (units: m²)		
Hydrostatic Pressure	$P = P_o + \rho g h$	P = pressure (units: Pa) P_0 = surface level pressure (units: Pa) ρ = density (units: kg/m³) g = acceleration due to gravity (g = 10 m/s²) h = height (units: m)		
Pascal's Principle (Hydraulics)	$\frac{F_1}{F_2} = \frac{A_1}{A_2}$	F_1 = force, region 1 (units: N) F_2 = force, region 2 (units: N) A_1 = area, region 1 (units: m²) A_2 = area, region 2 (units: m²)		
Partially Submerged Object Relationships	$\frac{V_{sub}}{V_{obj}} = \frac{\rho_{obj}}{\rho_{fluid}}$	V_{sub} = volume of submerged portion (units: m³) V_{obj} = volume of entire object (units: m³) ρ_{obj} = density of object (units: kg/m³) ρ_{fluid} = density of fluid (units: kg/m³)		

	OPTICS			
	Formula	Notes		
Index of Refraction	$n = \frac{c}{v}$	n = index of refraction of medium c = speed of light constant (c = 3 × 10 ⁸ m/s) v = speed of light in medium (units: m/s)		
Snell's Law	$n_{_{1}}sin\theta_{_{1}}=n_{_{2}}sin\theta_{_{2}}$	n_1 = index of refraction, medium 1 θ_1 = angle from normal, incident wave n_2 = index of refraction, medium 2 θ_2 = angle from normal, refracted wave		
Apparent Depth	$D_{apparent} = D_{actual}(\frac{n_2}{n_1})$	$D_{apparent}$ = object's apparent depth (units: m) D_{actual} = object's actual depth (units: m) n_2 = index of refraction, medium of observer n_1 = index of refraction, medium of object		
Critical Angle	$sin\theta_c = \frac{n_2}{n_1}$	θ_c = angle from normal, incident wave n_1 = index of refraction, medium 1 n_2 = index of refraction, medium 2		
	For total internal reflection: n ₁ > n ₂			
Thin Lens Equation	$\frac{1}{o} + \frac{1}{i} = \frac{1}{f}$	o = objects distance from lens (units: cm, mm) i = image distance from lens (units: cm, mm) f = focal length (units: cm, mm)		
Optical Power	$P = \frac{1}{f}$	P = power (units: D) f = focal length (units: MUST be in meters)		
Magnification	$M=rac{h_i}{h_o}$ $M=-rac{i}{o}$ $(+M)= \begin{subarray}{c} upright image \\ (-M)= \begin{subarray}{c} inverted image \end{subarray}$	M = magnification h _i = image height (units: cm, mm) h _o = object height (units: cm, mm) o = object distance from lens (units: cm, mm) i = image distance from lens (units: cm, mm)		
Image Height	$\frac{h_i}{h_o} = \frac{d_i}{d_o}$	h _o = object height (units: cm, mm) h _i = image height (units: cm, mm) d _o = object distance from lens (units: cm, mm) d _i = image distance from lens (units: cm, mm)		
Focal Length (Spherical Mirrors)	$f = \frac{r}{2}$	f = focal length (units: cm, mm) r = radius of spherical mirror (units: cm, mm)		

Thin Lens & Mirrors Sign Conventions

- i(+) \rightarrow real, inverted image formed on opposite side of lens or same side of mirror
- i (-) \rightarrow virtual, upright image formed on same side of lens or opposite side of mirror

	Focal Length (f)	Object Distance (o)	Image Distance (i)	Image Formed	Magnification (m)
Converging		o < f	i (-)	lens: virtual, upright, in front of lens mirror: virtual, upright, behind mirror	magnified
Systems: Convex Lens	f (+)	o = f	i (0)	No image	
& Concave Mirror	&	o > f	i (+)	lens: real, inverted, behind lens mirror: real, inverted, in front of mirror	o > 2f: reduced o = 2f: same size f < o < 2f: magnified
Diverging Systems: Concave Lens & Convex Mirror	f (-)	o < f, o = f, o > f	i (-)	lens: virtual, upright, in front of lens mirror: virtual, upright, behind mirror	reduced

Notes:

- All of the objects in this diagram are real.
- For mirrors, real images are formed on the same side as the object.
- For lenses, real images are formed on the opposite side as the object.

	THERMODYNAMICS				
	Formula	Notes			
Change in Internal Energy	$\Delta U = Q + W$ Work done BY the system = (-W) Work done ON the system = (+W)	ΔU = change in internal energy (units: J) Q = heat added to system (units: J) W = work done by/on system (units: J)			
Pressure- Volume Work	$W=-P\Delta V$ Work done BY the gas = (-W) Work done ON the system = (+W)	W = work done by/on gas (units: J) P = external pressure on gas (units: atm) ΔV = change in volume (units: L)			
Heat Energy Gained / Lost	$Q = mC\Delta T$	Q = heat energy gained/lost (units: J) m = mass (units: g) C = specific heat capacity (units: J/g·°C) ΔT = change temperature (units: °C or K)			
Linear Thermal Expansion	$\Delta L = \alpha L_0 \Delta T$	ΔL = change in object length (units: m) L_0 = original object length (units: m) α = linear expansion coefficient (units: °C ⁻¹) ΔT = change in temperature (units: °C)			
Ideal Gas Equation	PV = nRT	P = pressure (units: atm, Pa) V = volume (units: L, m³) n = moles of gas (units: mol) T = absolute temperature (units: K) R = gas constant (L·atm/mol·K, J/mol·K)			
	Version 1 Use R = 0.0821 L·atm/mol·K when: ■ solving for (P) in atm ■ solving for (V) in L	Version 2 Use R = 8.31 J/mol⋅K when: • Solving for (P) in Pa • Solving for (V) in m³			

DC CIRCUITS			
	Formula	Notes	
Voltage (Ohm's Law)	V = IR	V = voltage (units: V) I = current (units: A) R = resistance (units: Ω)	
Power	$P = IV = I^2 R = \frac{V^2}{R}$	P = power (units: W) I = current (units: A) V = voltage (units: V) R = resistance (units: Ω)	
Current	$I = \frac{q}{t}$	I = current (units: A) q = charge (units: C) t = time (units: s)	
Resistance (of wire)	$R = \frac{\rho L}{A}$	R = resistance (units: Ω) ρ = resistivity constant (units: $\Omega \cdot m$) L = length of wire (units: m) A = area of wire (units: m^2)	
Equivalent Capacitance (Series Capacitors)	$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$	C_{eq} = equivalent capacitance (units: F) C_n = individual capacitance (units: F)	
Equivalent Resistance (Series Resistors)	$R_{eq} = R_1 + R_2 + R_3 + \dots$	R_{eq} = equivalent resistance (units: Ω) R_n = individual resistance (units: Ω)	
Equivalent Capacitance (Parallel Capacitors)	$C_{eq} = C_1 + C_2 + C_3 + \dots$	C_{eq} = equivalent capacitance (units: F) C_n = individual capacitance (units: F)	
Equivalent Resistance (Parallel Resistors)	$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$	R_{eq} = equivalent resistance (units: Ω) R_n = individual resistance (units: Ω)	
Charge (on a Capacitor)	Q = CV	Q = charge (units: C) C = capacitance (units: F) V = voltage differential (units: V)	
Energy (in a Capacitor)	$E = \frac{1}{2}CV^2$	E = energy (units: J) C = capacitance (units: F) V = voltage differential (units: V)	

ELECTROSTATICS		
	Formula	Notes
Coulomb's Law	$F = \frac{k q_1 q_2 }{x^2}$	F = electric force (units: N) k = Coulomb's constant (k = $9 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$) q_1 = charge 1 magnitude (units: C) q_2 = charge 2 magnitude (units: C) x = distance between charges (units: m)
Electric Field	$E = \frac{F}{q}$	E = electric field strength (units: N/C or V/m) F = force (units: N) q = charge (units: C)
Electric Field of a Point Charge	$E = \frac{k q }{x^2}$ +q = direction of E is radially outwards -q = direction of E is radially inwards	E = electric field strength (units: N/C or V/m) q = point charge (units: C) k = Coulomb's constant of 9 × 10 ⁹ (units: Nm ² /C ²) x = distance from point charge q (units: m)
Electric Potential (Point Charge)	$V = \frac{kq}{r}$	V = electric potential (units: V) q = charge (units: C) k = Coulomb's constant (k = 9 × 10 ⁹ N·m²/C²) r = distance from source charge (units: m)
Electric Potential Energy	$\Delta U = q \Delta V$	ΔU = change in electric potential energy (units: J) q = charge (units: C) ΔV = change in electric potential (units: V)

Sine & Cosine			
Angle	Sin	Cos	
0°	0	1	
30°	1/2	$\sqrt{3}$ /2	
45°	$1/\sqrt{2}$	$1/\sqrt{2}$	
60°	$\sqrt{3}/2$	1/2	
90°	1	0	