
Learnability (1/2)

Learning Approaches

How We Learn a New User Interface

When computers first appeared in the world, there were some assumptions about how people
would learn how to use the software. Programmers assumed that users would read the manual
first–obviously not true.

Companies assumed that their employees would take a class first–not always true. Even now
that we have online help built into virtually every desktop application, and web page help often
just a search engine query away, users don’t go to the help first or read overviews.

All these statements have to be caveated, because in some circumstances–some applications,
some tasks, some users–these might very well be the way the user learns. Very complex,
professional-level tools might well be encountered in a formal training situation–that’s how pilots
learn how to use in-cockpit software, for example. And some users (very few of them) do read
manuals.

Nearly all the general statements we make in this class should be interpreted as “It Depends.”
There will be contexts and situations in which they’re not true, and that’s one of the complexities
of UI design.

Learning by Doing

●​ User has a goal to achieve
○​ “Get rid of the redeye from my photo.”

●​ User explores the interface for features that satisfy the goal.

So users don’t try to learn first – instead, they typically try to do what they want to do, and
explore the interface to see if they can figure out how to do it. This practice is usually called
learning by doing, and it means that the user is starting out with a goal already in mind; they
are more interested in achieving that goal than in learning the user interface (so any learning
that happens will be secondary); and the burden is on the user interface to clearly communicate
how to use it and help the user achieve their first goal at the same time.

Seeking Help

●​ User resorts to seeking help when they get stuck
○​ User already has a problem when they arrive, and they’re usually looking

for concrete solutions to it

Only when they get stuck in their learning-by-doing will a typical user look for help. This affects
the way help systems should be designed, because it means most users (even first-timers) are
arriving at help with a goal already in mind and an obstacle they’ve encountered to achieve that
goal. A help system that starts out with a long text explaining The Philosophy of the System will
not work. That philosophy will be ignored, because the user will be seeking answers to their
specific problem.

Modern help systems understand this, and make it easy to ask for the user to ask the question
up-front, rather than wading through pages of explanation.

Lessons for Designers

●​ Know the user’s goals when we design
●​ User interface should communicate how it works and how to use it
●​ Help must be searchable and goal-oriented

The fact that users are learning our interfaces by actually using them has some implications for
how we should design them.

First, we should know something about what the users’ goals actually are – collecting
information about that is a critical feature of the user-centered design process that we’ll talk
about in a few readings. If we’re designing for the wrong goals, users are going to struggle to
figure out how to do what they want in our system.

Second, the UI should be the primary teacher of how to use it. The UI itself must communicate
as clearly as possible how it’s supposed to be used, so that users can match their goals with
appropriate actions in the system. In the next reading, we’ll talk about a few specific techniques
for doing this–affordances, feedback, and information scent.

Third, when the user does have to resort to help, that help should be searchable and
goal-directed. Providing a 30-minute video tutorial probably won’t help people who learn by
doing.

Try It: Google Autosuggest to find Learnability Problems

●​ Look at the suggested queries for prefixes such as:
○​ “photoshop how to”
○​ “iphone how to”
○​ “android how to”

●​ What kind of goals do you see?
●​ What kind of goals don’t appear?
●​ What does it say about the learnability of the UI for that task?

Search engines have become even more important than in-application help systems, however.
And a wonderful thing about search engines is that they show us query suggestions, so we can
get some insight into the goals of thousands of other users.

What is it that they’re trying to do with their iPhone, but isn’t easily learnable from the interface?
(Adam Fourney, Richard Mann, and Michael Terry. “Characterizing the Usability of Interactive
Applications Through Query Log Analysis.” CHI 2011.)

Learning by Watching

One more way that we learn how to use user interfaces is by watching other people use them.
That’s a major way we navigate an unfamiliar subway system, for example.

Unfortunately much of our software–whether for desktops, laptops, tablets, or smartphones–is
designed for one person, and you don’t often use it together with other people, reducing the
opportunities for learning by watching. Yet seeing somebody else do it may well be the only way
you can learn about some features that are otherwise invisible. For example, you probably know
how to use Alt-Tab to switch between windows. How did you learn that? The UI itself certainly
didn’t communicate it to you. Pinch-zooming on smartphones and tablets is similar–but
pinch-zooming may have benefited from mass media advertising showing us all how to use it.

http://dl.acm.org/citation.cfm?id=1979205
http://dl.acm.org/citation.cfm?id=1979205

Social computing is changing this situation somewhat. We’ll look at Twitter in a moment, and
see that you can learn some things from other people even though they’re not sitting next to
you.

Interaction Styles

Recognition vs. Recall

●​ Recognition: remembering with the help of a visual cue
○​ uses knowledge in the world

●​ Recall: remembering with no help
○​ uses knowledge in the head

●​ Recognition is much easier!

It’s important to make a distinction between recognition (remembering with the help of a visible
cue, also known as knowledge in the world) and recall (remembering something with no help
from the outside world–purely knowledge in the head). Recognition is far, far easier than
uncued recall.

Psychology experiments have shown that the human memory system is almost unbelievably
good at recognition. In one study, people looked at 540 words for a brief time each, then took a
test in which they had to determine which of a pair of words they had seen on that 540-word list.
The result? 88% accuracy on average! Similarly, in a study with 612 short sentences, people
achieved 89% correct recognition on average.

Note that since these recognition studies involve so many items, they are clearly going beyond
working memory, despite the absence of elaborative rehearsal. Other studies have
demonstrated that by extending the interval between the viewing and the testing. In one study,
people looked briefly at 2,560 pictures, and then were tested a year later–and they were still
63% accurate in judging which of two pictures they had seen before, significantly better than
chance. One more: people were asked to study an artificial language for 15 min, then tested on
it two years later–and their performance in the test was better than chance.

Interaction Style #1: Command Language

●​ User types in commands in an artificial language
○​ all knowledge in the head; low learnability

The earliest computer interfaces were command languages: job control languages for early
computers, which later evolved into the Unix command line.

Although a command language is rarely the first choice of a user interface designer nowadays,
they still have their place–often as an advanced feature embedded inside another interaction
style. For example, Google’s query operators form a command language. Even the URL in a
web browser is a command language, with particular syntax and semantics.

Interaction Style #2: Menus and Forms

●​ User is prompted to choose from menus and fill in forms
○​ all knowledge in the world; far more learnable

A menu/form interface presents a series of menus or forms to the user. Traditional (Web 1.0)
web sites behave this way. Most graphical user interfaces have some kind of menu/form
interaction, such as a menubar (which is essentially a tree of menus) and dialog boxes (which
are essentially forms).

Interaction Style #3: Direct Manipulation

●​ User interacts with visual representation of data objects
○​ Continuous visual representation
○​ Physical actions or labeled button presses
○​ Rapid, incremental, reversible, immediately visible effects

Next we have direct manipulation: the preeminent interface style for graphical user interfaces.
Direct manipulation is defined by three principles [Shneiderman, Designing the User Interface,
2004]

1.​ A continuous visual representation of the system’s data objects. Examples of this
visual representation include: icons representing files and folders on your desktop;
graphical objects in a drawing editor; text in a word processor; email messages in your
inbox. The representation may be verbal (words) or iconic (pictures), but it’s continuously
displayed, not displayed on demand. Contrast that with the behavior of ed, a command
language-style text editor: ed only displayed the text file you were editing when you gave
it an explicit command to do so.

2.​ The user interacts with the visual representation using physical actions or labeled
button presses. Physical actions might include clicking on an object to select it,
dragging it to move it, or dragging a selection handle to resize it. Physical actions are the
most direct kind of actions in direct manipulation–you’re interacting with the virtual
objects in a way that feels like you’re pushing them around directly. But not every
interface function can be easily mapped to a physical action (e.g., converting text to
boldface), so we also allow for “command” actions triggered by pressing a button–but the
button should be visually rendered in the interface, so that pressing it is analogous to
pressing a physical button.

3.​ The effects of actions should be rapid (visible as quickly as possible), incremental (you
can drag the scrollbar thumb a little or a lot, and you see each incremental change),
reversible (you can undo your operation–with physical actions this is usually as easy as
moving your hand back to the original place, but with labeled buttons you typically need
an Undo command), and immediately visible (the user doesn’t have to do anything to
see the effects; by contrast, a command like cp a.txt b.txt has no immediately visible
effect).

https://en.wikipedia.org/wiki/Ed_%28text_editor%29

Why is direct manipulation so powerful? It exploits perceptual and motor skills of the human and
depends less on linguistic skills than command or menu/form interfaces. So it’s more “natural” in
a sense, because we learned how to manipulate the physical world long before we learned how
to talk, read, and write.

Interaction Style #4: Speech Dialog

●​ User speaks in natural language, and system responds in the same way

A fourth interaction style–once the province of research, but now increasingly important in real
deployed apps or devices–is speech dialog in natural language. (This exchange is from the
Mercury system, a flight-search system developed at MIT in the 1990s, which could be used
over the phone.)

Speech dialog leans heavily on knowledge in the head. Much of this knowledge is “natural”–in
the sense that humans learn how to speak and understand their native language very early in
our lives, and we have a special innate facility for spoken interaction. But beyond the mechanics
of speaking, the user still needs to learn what you can say. What functionality is available in the
system? What can I ask for? This is a fundamental problem even in human-human interaction,
and is the reason why fast-food restaurant drive-through windows display a menu. A recent
work showed that a lack of meaningful feedback on what systems can do may lead to poor
mental models on how conversational systems work (see this work, "Like Having a Really Bad
PA": The Gulf between User Expectation and Experience of Conversational Agents, by Ewa
Luger and Abigail Sellen, ACM CHI 2016 HTML). This highlights that conversational systems
should inform system capabilities and intelligence through interactions.

Comparison of Interaction Styles

●​ Learnability (knowledge in the head vs. world)
●​ Error messages
●​ Efficiency
●​ User Experience
●​ Synchrony
●​ Programming difficulty
●​ Accessibility

Let’s compare and contrast the four styles: command language (CL), menus and forms (MF),
direct manipulation (DM), and speech dialog (SD).

Learnability: knowledge in the head vs. knowledge in the world. CL requires significant
learning. Users must put a lot of knowledge into their heads in order to use the language, by
reading, training, practice, etc. (Or else compensate by having manuals, reference cards, or
online help close at hand while using the system.) The MF style puts much more information
into the world, i.e., into the interface itself. Well-designed DM also has information in the world,
delivered by the affordances, feedback, and constraints of the visual metaphor. Since
recognition is so much easier than recall, this means that MF and DM are much more learnable
and memorable than CL or SD.

Error messages: CL, MF, and SD often have error messages (e.g., “you didn’t enter a phone
number”), but DM rarely needs error messages. There’s no error message when you drag a
scrollbar too far, for example; the scrollbar thumb simply stops, and the visual constraints of the
scrollbar make it obvious why it stopped.

https://www.microsoft.com/en-us/research/publication/like-having-a-really-bad-pa-the-gulf-between-user-expectation-and-experience-of-conversational-agents/

Efficiency: Experts can be very efficient with CL, since they don’t need to wait for and visually
scan system prompts, and many CL systems have command histories and scripting facilities
that allow commands to be reused rather than constantly retyped. Efficient performance with MF
interfaces demands good shortcuts (e.g., keyboard shortcuts, tabbing between form fields,
typeahead). Efficient performance with DMs is possible when the DM is appropriate to the task;
but using DM for a task it isn’t well-suited for may feel like manual labor with a mouse.

User type: CL is generally better for expert users, who keep their knowledge active and who
are willing to invest in training and learning in exchange for greater efficiency. MF, DM, and SD
are generally better for novices and infrequent users.

Synchrony: Command languages are synchronous (first the user types a complete command,
then the system does it). So are menu systems and forms; e.g., you fill out a web form, and then
you submit it. Speech requires turn-taking between the system and user, so it’s synchronous as
well. DM, on the other hand, is asynchronous: the user can point the mouse anywhere and do
anything at any time. DM interfaces are necessarily event driven. (Note: This concept is a bit
confusing in that in DM, an object must be selected by a user, and then follow-up interactions
can happen. In that way, DM interfaces are event driven - event of selecting an object. In other
interaction methods, objects are already chosen, and only synchronous interactions occur
afterward).

Example: Twitter’s Tweet Creation UI

●​ What aspects of this UI use knowledge in the head?
●​ What aspects of this UI use knowledge in the world?

Let’s look at Twitter’s interface–specifically, let’s focus on the interface for creating a new tweet.
What aspects of this interface are knowledge in the world, and what aspects require knowledge
in the head? In what way is Twitter a hybrid of a command language and a menu/form
interface?

Twitter is actually an unusual kind of command interface in that examples of “commands”
(formatted tweets generated by other users) are constantly flowing at the user. So the user can
do a lot of learning by watching on Twitter. On the other hand, learning by doing is somewhat
more embarrassing, because your followers can all see your mistakes (the incorrect tweets you
send out while you’re still figuring out how to use it).

Self Disclosure

Self-disclosure is a technique for making a command language more visible, helping the user
learn the available commands and syntax. Self-disclosure is useful for interfaces that have both
a traditional GUI (with menus and forms and possibly direct manipulation) as well as a
command language (for scripting). When the user issues a command in the GUI part, the
interface also displays the command in the command language that corresponds to what they
did. A primitive form of self-disclosure is the address bar in a web browser–when you click on a
hyperlink, the system displays to you the URL that you could have typed in order to visit the
page. A more sophisticated kind of self-disclosure happens in Excel: when you choose the sum
function from the toolbar, and drag out a range of cells to be summed, Excel shows you how
you could have typed the formula instead. (Notice that Excel also uses a tooltip, to make the
syntax of the formula more visible.)

On the bottom is another example of self-disclosure: Google’s Advanced Search form, which
allows the user to specify search options by selecting them from menus, the results of which are
also displayed as a command based query (microsoft windows operating system OR OS -glass
-washing site:microsoft.com) which can be entered on the main search page (example suggested
by Geza Kovacs).

Conceptual Models

Models

●​ Model of a system = how it works
○​ its constituent parts and how they work together to do what the system

does

Regardless of interaction style, learning a new system requires the user to build a mental
model of how the system works. Learnability can be strongly affected by difficulties in building
that model.

A model of a system is a way of describing how the system works. A model specifies what the
parts of the system are, and how those parts interact to make the system do what it’s supposed
to do.

For example, at a high level, the model of Twitter is that there are other users in the system,
you have a list of people that you follow and a list of people that follow you, and each user
generates a stream of tweets that are seen by their followers, mixed together into a feed.
These are all the parts of the system. At a more detailed level, tweets and people have
attributes and data, and there are actions that you can do in the system (viewing tweets,
creating tweets, following or unfollowing, etc.). These data items and actions are also parts of
the model.

Three Models in UI Design

There are actually several models you have to worry about in UI design:

●​ The system model (sometimes called implementation model) is how the system actually
works.

●​ The interface model (or manifest model) is the model that the system presents to the
user through its user interface.

●​ The user model (or mental model) is how the user thinks the system works.

A cell phone presents the same simple interface model as a conventional wired phone, even
though its system model is quite a bit more complex. A cell phone conversation may be handed
off from one cell tower to another as the user moves around. This detail of the system model is
hidden from the user.

As a software engineer, you should be quite familiar with this notion. A module interface offers a
certain model of operation to clients of the module, but its implementation may be significantly
different.

In software engineering, this divergence between interface and implementation is valued as a
way to manage complexity and plan for change. In user interface design, we value it primarily
for other reasons: the interface model should be simpler and more closely reflect the user’s
mental model of the actual task.

The term “mental model” comes from cognitive science; it generally refers to “an explanation of
someone's thought process about how something works in the real world.” If you’d like to
know more about this concept, please take a look at this article:
https://www.nngroup.com/articles/mental-models/

https://www.nngroup.com/articles/mental-models/

The System Image: Designer vs. User

In this book, “The Design of Everyday Things” (1988), Don Norman said, “For people to use a
product successfully, they must have the same mental model (the user’s model) as that of the
designer (the designer’s model). But the designer only talks to the user via the product itself, so
the entire communication must take place through the ‘system image’: the information conveyed
by the physical product itself.” It is likely the case that usability problems are attributed to the
gap between designers’ mental models and users’ mental models.

Interestingly, the above diagram referred to a designer’s mental model as “a designer’s
conceptual model.” What is a conceptual model? “A conceptual model is a high-level
description of an application. It enumerates all concepts in the application that users can
encounter, describes how those concepts relate to each other, and how those concepts fit into
tasks that users perform with the application.” (Johnson and Henderson, Conceptual Models:
Core to Good Design, 2012). A designer’s mental model is directly translated into conceptual
design that leads to interface and system models. In other words, the conceptual design
reflects a designer’s conceptual model (how design should work) that represents the objects
that a user interacts with and the tasks (or actions) that the user performs with the objects. For
example, let’s consider the conceptual design of online library catalogs. It is likely that the
conceptual model (or a designer's mental model) is based on the metaphors and analogies of
“physical card catalogs” where the objects are the items in the category (say books, magazines,
videos) with the existing attributes (title, ISBN, status) and associated actions (checkout,

check-in, reserve). Users learn how the system works through this system image (e.g., interface
metaphors and analogies, and existing experiences).

System Image - Intro to the Design of Everyday Things
https://www.youtube.com/watch?time_continue=1&v=-UvlRFP3_uI

User’s Model May Be Wrong

The user’s model may be totally wrong without affecting the user’s ability to use the system. A
popular misconception about electricity holds that plugging in a power cable is like plugging in a
water hose, with electrons traveling from the power company through the cable into the
appliance. The actual system model of household AC current is of course completely different:
the current changes direction many times a second, and the actual electrons don’t move far,
and there’s really a circuit in that cable, not just a one-way tube. But the user model is simple,
and the interface model supports it: plug in this tube, and power flows to the appliance.

But a wrong user model can also lead to problems. Consider a household thermostat, which
controls the temperature of a room. If the room is too cold, what’s the fastest way to bring it up
to the desired temperature?

Some people would say the room will heat faster if the thermostat is turned all the way up to
maximum temperature. This response is triggered by an incorrect mental model about how a
thermostat works: either the timer model, in which the thermostat controls the duty cycle of the

https://www.youtube.com/watch?time_continue=1&v=-UvlRFP3_uI

furnace, i.e., what fraction of time the furnace is running and what fraction it is off; or the valve
model, in which the thermostat affects the amount of heat coming from the furnace. In fact, a
thermostat is just an on-off switch at the set temperature. When the room is colder than the set
temperature, the furnace runs full blast until the room warms up. A higher thermostat setting will
not make the room warm up any faster. (Norman, Design of Everyday Things, 1988)

These incorrect models shouldn’t simply be dismissed as “ignorant users.” (Remember, the
user is always right! If there’s a consistent problem in the interface, it’s probably the
interface’s fault.) These user models for heating are perfectly correct for other systems: a car
heater and a stove burner both use the valve model. And users have no problem understanding
the model of a dimmer switch, which performs the analogous function for light that a thermostat
does for heat. When a room needs to be brighter, the user model says to set the dimmer switch
right at the desired brightness.

The problem here is that the thermostat isn’t effectively communicating its model to the user. In
particular, there isn’t enough feedback about what the furnace is doing for the user to form the
right model.

This material is a derivative of MIT's 6.813/6.831 reading material, used under CC
BY-SA 4.0. Collaboratively authored with contributions from: Elena Glassman, Philip
Guo, Daniel Jackson, David Karger, Juho Kim, Uichin Lee, Rob Miller, Stephanie
Mueller, Clayton Sims, and Haoqi Zhang. This work is licensed under CC BY-SA 4.0.

http://web.mit.edu/6.813/www/sp18/

	Learnability (1/2)
	
	Learning Approaches
	How We Learn a New User Interface
	Learning by Doing

	
	Seeking Help
	Lessons for Designers
	Try It: Google Autosuggest to find Learnability Problems
	Learning by Watching

	Interaction Styles
	Recognition vs. Recall
	Interaction Style #1: Command Language
	Interaction Style #2: Menus and Forms
	Interaction Style #3: Direct Manipulation
	Interaction Style #4: Speech Dialog
	Comparison of Interaction Styles
	Example: Twitter’s Tweet Creation UI
	Self Disclosure

	Conceptual Models
	Models
	Three Models in UI Design
	The System Image: Designer vs. User
	User’s Model May Be Wrong

