| Enduring
Understandings | Learning Objectives | Essential Knowledge | |--|---|---| | (Students will understand that) | (Students will be able to) | (Students will know that) | | EU 1.1: The concept a limit can be used to understand the behavior of functions. | LO 1.1A(a): Express limits symbolically using correct notation. | EK 1.1A1: Given a function f , the limit $f(x)$ as x approaches c is a real number R if $f(x)$ can be made arbitrarily close to R by taking x sufficiently close to c (but not equal to c). If the limit exists and is a real number, the the common notation is $\lim_{x \to c} f(x) = R.$ | | | LO 1.1B: Estimate limits of functions. | EK 1.1B1: Numerical and graphical information can be used to estimate limits. | | EU 2.3: The derivative has multiple interpretations and applications including those that involve instantaneous rates of change. | LO 2.3B: Solve problems involving the slope of a tangent line. | EK 2.3B1: The derivative at a point is the slope of the line tangent to a graph at that point on the graph. | | | | EK 2.3B2: The tangent line is the graph of a locally linear approximation of the function near the point of tangency. |