
Concurrent CPU Hotplug

Assumptions
●​ Initially just concurrently onlining CPUs to speed up the boot process.
●​ Might later wish to concurrently offline CPUs.
●​ Would it be necessary to concurrently online and offline CPUs? Doing this might be

more complex, for example, see the smp_mb() in rcu_cpu_starting().

David Woodhouse Dec 8 2021 Patches
(Review based on a meeting between Neeraj Upadhyay, Boqun Feng, and Paul E. McKenney,
cut short by the Google Meet one-hour grace period.)

The email thread is here.

Patch 1: David acquires a new rcu_startup_lock across the whole of rcu_cpu_starting().

Patch 2: David looks at an alternative approach of expanding the scope of the existing rcu_node
->lock to cover more of rcu_cpu_starting(), but needs to handle the fact that rcu_report_qs_rnp()
drops that lock.

The problem is that lockdep needs the ->ofl_seq field to have an odd value when acquiring the
rcu_node structure’s ->lock. This could be addressed by placing the ->ofl_seq field into the
rcu_data structure.

However, grace-period initialization waits for ->ofl_seq to get an even value before propagating
CPU-hotplug bitmap changes up the rcu_node combining tree. It could wait on each CPU in
turn, but that would bloat the rcu_gp_init() function’s cache footprint. So exactly why is that wait
required? There is a claim of the potential for a too-short grace period. If this wait is
unnecessary, then there would be no penalty for placing the ->ofl_seq field into the rcu_data
structure.

But Neeraj points out the following sequence of events:

1.​ rcu_cpu_starting() increments ->ofl_seq so that the value is now odd.
2.​ rcu_cpu_starting() begins acquiring the rcu_node ->lock, and its vCPU is preempted (or

whatever delay) while lockdep is in an RCU reader.

https://lore.kernel.org/all/d7939a95731de8b8eb9245c330f014772e40f145.camel@infradead.org/

3.​ rcu_gp_init() beats rcu_cpu_starting to acquire the rcu_node ->lock, and thus sets up the
next grace period to ignore the incoming CPU.

4.​ rcu_cpu_starting() gets a nasty surprise when it resumes to find that the RCU-protected
data it is referencing has been freed.

Except does lock acquisition cause lockdep to execute any RCU readers?

Maybe rcutorture has an opinion?

Alternatively, how about arch_spin_lock()? [David took the approach of repurposing the
existing ->ofl_seq, but using arch_spin_lock() and arch_spin_unlock() so as to avoid lockdep
complaints. This seems like an eminently reasonable approach.]

Inspection of RCU Onlining

rcu_cpu_starting()
Discussed on IRC and over email. The upshot is to also acquire rcu_state.ofl_lock in
rcu_cpu_starting(), but to use arch_spin_lock() and arch_spin_unlock() in order to avoid the
lockdep issues. David is also looking into replacing ->ofl_seq with
arch_spin_is_locked(rcu_state.ofl_lock).

rcutree_prepare_cpu()
This function is already concurrent-online-ready, except that it invokes
rcu_spawn_one_boost_kthread(). As currently written, this could get multiple RCU
priority-boosting kthreads (“rcub”) per rcu_node structure. I suggest making
rcu_spawn_one_boost_kthread() acquire a new rcu_node-structure mutex for serialization.

Do not (repeat, not) attempt to re-use the rcu_node structure’s ->boost_mtx or you will be
subject to weird race conditions that mess up the priority boosting.

And the rcu_spawn_cpu_nocb_kthread() has the same issue, but with the spawning of the
no-CB grace-period kthread (“rcuog”). The new rcu_node structure mutex used to serialize
rcu_spawn_one_boost_kthread() can also be used to serialize rcu_spawn_cpu_nocb_kthread().

rcutree_online_cpu()
The first part of this function looks to be concurrent-online-ready.

The call to the sync_sched_exp_online_cleanup() function is more interesting, with calls to
get_cpu() and put_cpu(). But this should still work, as these functions will continue to
manipulate preemption state. So no change appears to be needed here.

The call to rcutree_affinity_setting(), which calls rcu_boost_kthread_setaffinity(), manipulates
affinity masks. The new rcu_node-structure mutex should be used to serialize
rcu_boost_kthread_setaffinity(). (Not the callers, but the function itself.)

The call to tick_dep_clear() is OK for concurrent onlining, but would require protection by a
counter or some such if concurrent onlining and offlining is to be supported.

Validation
In kernel/torture.c, both torture_online() and torture_online_all() need to exercise concurrent
CPU onlining. Note that the torture tests already avoid concurrency in CPU hotplug operations.
The hope is that the current serialization will continue to allow only one CPU offline or one group
of CPU onlines to be in flight at any given time.

The concurrent CPU onlining appears to be x86-only, which means that the old non-concurrent
validation will need to be retained.

Inspection of RCU Offlining
Pingfan Liu proposes concurrent CPU offlining in order to speed up kexec.

rcutree_dead_cpu()

Pingfan Liu’s patch takes care of the non-atomic WRITE_ONCE() update of
rcu_state.n_online_cpus. However, rcu_boost_kthread_setaffinity() needs fixing so that
concurrent invocations do not undo each others’ work, as was noted in a reply to Pingfan here.

The tick_dep_clear() is SMP-safe because it uses atomic operations, but the problem is
that if there are multiple nohz_full CPUs going offline concurrently, the first CPU to invoke
rcutree_dead_cpu() will turn the tick off. This might require an atomically manipulated
counter to mediate the calls to rcutree_dead_cpu().

There are several reasons why this call to tick_dep_clear() was added:

1.​ Timekeeping can be blocked while entering a stop-machine event, and the occasional
scheduling-clock interrupt can kick things back into action. However, it is quite possible
that the more recent checks for jiffies not advancing has made this unnecessary.

2.​ There might be some dependencies on the tick from timers, and in any case, other
unannounced dependencies might have appeared in the past year or so.

https://lore.kernel.org/all/20220822021520.6996-7-kernelfans@gmail.com/
https://lore.kernel.org/all/20220824162050.GA6159@paulmck-ThinkPad-P17-Gen-1/

But unless and until it can be shown that the calls to tick_dep_set() and
tick_dep_clear() are unnecessary, it will be necessary to provide an atomic_t,
presumably in the rcu_state structure, that is incremented in rcutree_offline_cpu()
and decremented in rcutree_dead_cpu(). If atomic_inc_return() is used to do the
increment, then the call to tick_dep_set() would be conditioned on a return value of one. If
atomic_dec_and_test() is used to do the decrement, then the call to
tick_dep_clear() would be conditioned on a return value of zero.

	Concurrent CPU Hotplug
	Assumptions
	David Woodhouse Dec 8 2021 Patches
	Inspection of RCU Onlining
	rcu_cpu_starting()
	rcutree_prepare_cpu()
	rcutree_online_cpu()

	Validation
	Inspection of RCU Offlining
	rcutree_dead_cpu()

